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Abstract

For every integer c, let 7(2, 2, ¢) be the least integer n such that for
every 2-coloring of the set {1,2,...,n} there exists a monochromatic
solution to the equation

221 + 2z2 + ¢ = z3.

Secondly, for every integer ¢, let r(2,2,2,¢) be the least integer n
such that for every 2-coloring of the set {1,2,...,n} there exists a
monochromatic solution to the equation

2x1 + 229 + 223 + ¢ = 24.

In this paper, exact values are found for »(2,2,¢) and r(2,2,2,c).

Note: The major work for this paper occurred when the second author was an
undergraduate student at South Dakota State University under the direction of
the first author.

Introduction

Let N represent the set of natural numbers and let [a, b] denote the set
{n€N|a<n<b} Afunction A: [1,n] - [0,k — 1] is referred to as a
k-coloring of the set [1,n]. Given a k-coloring A and a system L of linear
equations in m variables, a solution (x1,%2,...,Zm) to L is monochromatic
if and only if

A(:Bl) = A(:I:z) = .. = A(:rm)

In 1916, 1. Schur [19] proved that for every k > 2, there exists a least
integer n = S(k) such that for every k-coloring of the set [1,n], there exists
a monochromatic solution to

z) + X2 = I3.
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The integers S(k) are called Schur numbers. It is known that S(2) = 5,
S(3) = 14 and S(4) = 45, but no other Schur numbers are known [20].

In 1933, R. Rado generalized the concept of Schur numbers to arbitrary
systems of linear equations. Rado found necessary and sufficient conditions
to determine if an arbitrary system of linear equations admits a monochro-
matic solution under every k-coloring of the natural numbers (11, 12, 13].
For a given system L of linear equations, the least integer m, provided
that it exists, such that for every k-coloring of the set [1,n] there exists a
monochromatic solution to L is called the k-color Rado number (or k-color
generalized Schur number) for the system L. If such an integer n does not
exist, then the k-color Rado number for the system L is infinite. In recent
years, the exact Rado numbers for several families of equations have been
found [3, 7, 8, 10, 14, 15, 17, 18].

In 1982, A. Beutelspacher and W. Brestovansky [2] considered the equa-
tion

Ty+zT2+ -+ Tm-1 = T
They were able to show that the 2-color Rado number for this equation is
m?2 — m — 1 for every integer m > 3.

S.A. Burr and S. Loo [4] were able to prove that for every integer ¢ > 0,

the equation
Iy +2Z2+Cc=123

has a 2-color Rado number equal to 4c + 5.
More recently, these two results were taken together and generalized.
For every integer m > 3, the 2-color Rado numbers for the equation

ry1+z2+- -+ Tm-1 +C=Inm

were found for all positive integers ¢ by D. Schaal [16] and for most negative
integers ¢ by W. Kosek and D. Schaal {9]. A. Baer, B. Mammenga and C.
Spicer (1] recently found the 2-color Rado numbers for all the remaining
values of c.

In 2008, S. Guo and Z.W. Sun [5] confirmed a conjecture originally
presented in [6] by finding the 2-color Rado numbers for the equation

a1T1 + a2+ -+ 0p—1Tm—-1 = Ty

for every integer m > 3 and for all natural numbers aj,as,...,am-1.
In this paper, we establish the 2-color Rado numbers for the following
families of equations for all integer values of c:

2z, + 2z +c=1z3

and
2z + 2z + 223 + ¢ = 4.

We use the following notation.
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Definition 1. For every integer c, let L(2,2,c) represent the system con-
sisting of the single equation

21+ 2204+ c=1z3

and let (2,2, ¢) represent the 2-color Rado number for L(2,2,c). Also let
L(2,2,2,c) represent the system consisting of the single equation

2z, +2IL'2 +2(L‘3+C=$4
and let 7(2, 2,2, ¢) represent the 2-color Rado number for L(2,2,2,¢).
Main Results

Theorem 1. For every integer c,

1ic+ 34 fore> -3
r(220) = [—1 ;4116] +¢1(c) forc< —4

where

4 forc=—4
$1(c)=¢ 1 forece {-14,-11,-8,-5}
0 for ¢ otherwise.

Proof. Let an integer c be given. If ¢ = =3, it is clear that 7(2,2,¢) =1
since ; = To = 73 = 1 would be a solution to L(2,2,c) and obviously
monochromatic. We will now consider the two cases of ¢ > —3 and ¢ < —3.

Case 1: Assume ¢ > -3.
Lower Bound: We will first show that

r(2,2,c) =2 1lc+ 34

by exhibiting a 2-coloring of the interval [1,33+11¢] that avoids a monochro-
matic solution to L(2, 2,¢).

Let A : [1,33 + 11¢| — [0, 1] be defined by
0 forl1<z<3+¢
Az) = 1 ford+c<zx<15+5¢
0 forl6+5c<z<33+1lc.

It is easy to verify that A avoids a monochromatic solution to L(2,2,c).
We may therefore conclude

r(2,2,¢) 2 11lc+ 34.

203



Upper Bound: We will next show that
7(2,2,¢) < 1llc+ 34

by proving that every 2-coloring of the interval [1,11c+ 34] must contain a
monochromatic solution to L(2, 2, c).

Let A : [1,11c + 34] — [0,1] be an arbitrary coloring. Without loss of

generality, we may assume
A(1) =0.

Because 7; = 22 = 1 and z3 = 4 + ¢ is a solution to L(2, 2, ¢), we know
that if A(4 + ¢) = 0, then we have a monochromatic solution to L(2,2,¢).
Therefore we may assume

Ad+c)=1.

Now because 21 = 3 = 4+c and x3 = 16+ 5c is a solution to L(2, 2, c),
we know that if A(16 +5¢) = 1, then we have a monochromatic solution to
L(2,2,¢). Therefore we may assume

A(16 + 5¢) = 0.

Next because z; = 1,290 = 7+ 2¢ and z3 = 16 + 5c is a solution to
L(2,2,c), we know that if A(7 + 2¢) = 0, then we have a monochromatic
solution to L(2,2,c). Therefore we may assume

A(7 + 26) =1.

Now because T; = 4+ ¢,23 = 7 + 2¢ and z3 = 22 + 7c is a solution to
L(2,2,c), we know that if A(22 + 7¢) = 1, then we have a monochromatic
solution to L(2,2,c). Therefore we may assume

A(22 + 7¢) = 0.

Next because z1 = 1,29 = 10 + 3c and z3 = 22 + 7c is a solution to
L(2,2,c), we know that if A(10 + 3c) = 0, then we have a monochromatic
solution to L(2,2,c). Therefore we may assume

A(10+3c) =1.

Finally, because z; = 1, 9 = 16 + 5¢ and 23 = 11lc+ 34 is a solution to
L(2,2,¢), it is true that if A(11c+ 34) = 0, then a monochromatic solution
to L(2,2,c) exists. Similarly, because z; = 7 + 2¢, z2 = 10 + 3c and z3 =
1le+34 is also a solution to L(2,2, ¢), it is also true that if A(11le+34) =1,
then a monochromatic solution to L(2,2,c) exists. Thus for both values
of A(1l1lc + 34) we have a monochromatic solution to L(2,2,c). We may
conclude

7(2,2,¢) < 11lc + 34.
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Because we have previously shown 7(2,2,¢) > 1lec + 34, we have now
proven that for ¢ > -3,

r(2,2,¢) = 11lc + 34.

Case 2: Assume ¢ < —3. There exists a unique s € N and a unique
t € [0, 33] such that ¢ = —34s + 3t. Note that for every ¢ € [0, 33],

1-—33t 1-33t 33-t¢
[ 34 ]‘ 3 T m o lTh
Therefore,
1-1le]  [1-11(=34s+3)] _ 1-33t]
[ 31 ]—[ 32 -|—113+[ 31 ]—11s+1 t.

Lower Bound: The lower bound for all ¢ < —3 results from the proof of the
following claim.

Claim 1. For all integers ¢ < -3, 7(2,2,¢) > [1541].

Proof of Claim 1. Let an integer ¢ < —3 be given and let ¢ = —34s 4 3t for
s € Nand t € [0,33]. We will show that

1-1lc
34

r(2,2,c)z[ -|=lls+1—t

by exhibiting a 2-coloring of the interval (1, 11s—¢] that avoids a monochro-
matic solution to L(2,2,¢).

Let ¢/ = s — 3. Because s € N, it is clear that ¢/ > —3. Therefore it is
known from the proof of Case 1 that

7(2,2,¢) =11c' + 3¢ =34 +11(s — 3) = 11s + 1.

Therefore there exists some coloring A’ : [1,11s] — [0, 1] that avoids a
monochromatic solution to L(2,2,¢'). Let A : [1,11s—t] — [0, 1] be defined
by

Alz)=A'"(11s+1 -t —z).
We will now show that A avoids a monochromatic solution to L(2,2,¢c).

Let (z1,z2,73) be a solution to L(2,2,¢) for z1,z,z3 € [1,11s —¢t].
That is

2z; + 22 4+ ¢ = 3.

For every i € (1, 3], define y; € {1,11s] as

yi=118—|-1—t—:z:,-.
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Note that (y;,y2,y3) is a solution to L(2,2,¢') because

2(11s+1-t—z;) +2(11s+1 -t —x22) +5 -3
= 1lls+1—t—(2z; + 2z — 345+ 3t)
11s+1—t— (2z, + 222 +¢)

lis+1—t—=z3

Ys3.

2y + 2y2 + ¢

Since (1, Y2, y3) is a solution to L(2,2,c’) and A’ admits no monochro-
matic solutions to L(2,2,¢'), we know (y1, y2,¥3) is not monochromatic in
A’. That is

A'(y;) # A'(y;) for some i,j € [1,3] with ¢ 5 5.
Since A'(y;) = A'(11s +1 -t — z;) = A(x;), we have
Azi) = Al(y:) # A'(y;) = Alz;).

Therefore the solution (z1,z2,z3) to L(2,2,c) is not monochromatic in A.
Because A : [1,11s — t] — [0,1] avoids a monochromatic solution to
L(2,2,¢), we may conclude

7(2,2,¢) 2 11s+1-1t

and the proof of Claim 1 is complete.
We will now need the following definition.

Definition 2. For integers ¢ < —3, for natural numbers s and for ¢ € [0, 33],
the set E; contains all ¢ = —34s + 3t for which s =1 or s = 2.

By this definition, E, = {68, -65,—62,...,—38, -35, —34, -32, -31, —29,
—28,...,-5,—4} and has a cardinality of 33.

Upper Bound: An upper bound for ¢ < —3 and ¢ ¢ E; results from the
proof of the following claim.

Claim 2. For integers c < -3, if c ¢ Ey, then 7(2,2,c) < [155<].

Proof of Claim 2. Let an integer ¢ < —3 be given such that ¢ ¢ E; and let
¢ = —34s + 3t for s € N and t € [0, 33]. We will show that

1-11c
3

r(2,2,c)5[ -|=lls+1-t

by proving that every 2-coloring of the interval [1,11s+1 —¢t] must contain
a monochromatic solution to L(2,2,¢).
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Let ¢/ = s — 6. Because ¢ ¢ E;, we have s > 3, and it is clear that
¢’ > —3. Therefore it is known from the proof of Case 1 that

r(2,2,c') = 11c’ + 34 = 34 + 11(s — 6) = 11s — 32.

It follows that every coloring A’ : [1,11s — 32] — [0, 1] must contain a
monochromatic solution to L(2,2,c'). Let A: [1,11s+1—¢t] — [0,1] be an
arbitrary coloring and let A’ : [1,11s — 32] — [0, 1] be defined by

Ally) =A(1ls+2 -t —y).

We will now show that A contains a monochromatic solution to L(2, 2, c).
Let (y1,y2,y3) be a solution to L(2,2,¢') that is monochromatic in A’
with y1,y2,y3 € [1,11s — 32). That is

2y +2y2+ ¢ =y3
and
Al(y1) = Al(y2) = A'(y3).
For every i € [1,3], define z; € [1,11s +1 —t] as

z;,=11s+2 -1t —y,.

We will next show that (z,, z2, z3) is a solution to L(2, 2, ¢) that is monochro-

matic in A.
Algebraically,

2z)+2z3+¢c = 2(1ls+2—-t—y1) +2(11s+2 -t —y2) — 34s + 3¢
11s+2—t— (2y1 +2y2 +s —6)
s +2—t—(2y1 +2y2 + ')
= 1ls+2—-t—-ys
Zx3.

Therefore (z1,Z2,z3) is a solution to L(2,2,c). Also for 4,j € [1, 3],
A(zi) = A(1ls+2—t—y;) = A'(y:) = A'(y;) = A(11s+2—t—y;) = A(z;),

so (z1,Z2,Z3) is monochromatic in A.
Because A : [1,11s + 1 —t] — [0, 1] contains a monochromatic solution

to L(2,2,¢), we may conclude
7(2,2,c) <1ls+1-1t

and the proof of Claim 2 is complete.
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Because we previously showed 7(2,2,¢) > 11s+1 —¢ for all c < —3, we
have now proven that for ¢ < —3 when ¢ ¢ E,,

1- llc"

r(2,2,¢)=11s+1 -t = [ 34

For integers ¢ < —3 when ¢ € E), the exact value of 7(2,2, ¢) has been
determined by a computer program. The computer results are displayed in
the table below. The function ¢; : (—o00, —4] — Z is the difference between
7(2,2,c) and the lower bound determined by Claim 1. The integers ¢ € E,
for which ¢;(c) = 0 have been omitted from the table.

c r(2,2,¢) [1'3—;1“] d1(c)
4

-4 6 2
-5 3 2 1
-8 4 3 1
-11 5 4 1
-14 6 5 1
The proof of Theorem 1 is complete. (]
Theorem 2. For every integer c,
15¢ 4 76 forec> -5
= 1-
7(2,2,2,¢) 15¢ +dalc) forc< —6
76
where
forc=—6
fore= =7
a(c) = forc=-12

for ce {-18,-13,-8}
for c € {—44,-39, -34, -29, -28, -24, -23, -19, —14, -9}
for ¢ otherwise.

O = N W Lo

Proof. Let an integer ¢ be given. If ¢ = -5, it is clear that 7(2,2,2,c) =1
since ;1 = T3 = 73 = x4 = 1 would be a solution to L(2,2,2,¢) and
obviously monochromatic. We will now consider the two cases of ¢ > —5
and ¢ < —5.

Case 1: Assume ¢ > —5.
Lower Bound: We will first show that

r(2,2,2,¢) > 15¢ + 76
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by exhibiting a 2-coloring of the interval [1, 75+15¢| that avoids a monochro-
matic solution to L(2,2,2, ¢).

Let A :[1,75+ 15¢] — [0,1] be defined by

0 forl1<z<5+4c¢
A(z)=<¢ 1 for6+c<z<35+7c
0 for36+T7c<zx<75+ l5c.

It is easy to verify that A avoids a monochromatic solution to L(2, 2,2, ¢).
We may therefore conclude

7(2,2,2,¢) 2 15¢ + 76.
Upper Bound: We will next show that
(2,2,2,¢) £ 15¢+ 76

by proving that every 2-coloring of the interval {1, 15¢ + 76] must contain a
monochromatic solution to L(2,2,2,c).
Let A : {1,15¢ + 76] — [0,1] be an arbitrary coloring. Without loss of

generality, we may assume
A(1)=0.
Because 1 = z2 = z3 = 1 and x4 = 6 + ¢ is a solution to L(2,2,2,¢),
we know that if A(6 + ¢) = 0, then we have a monochromatic solution to
L(2,2,2,c). Therefore we may assume

A6+¢)=1.

Now because ; = o9 = 3 = 6 + ¢ and x4 = 36 + 7c is a solution to
L(2,2,2,c), we know that if A(36+7¢c) = 1, then we have a monochromatic
solution to L(2,2,2,¢). Therefore we may assume

A(36 + 7c) = 0.

Next because ; = £, = 1, z3 = 16+ 3¢ and =4 = 36+ 7¢ is a solution to
L(2,2,2,c), we know that if A(16+3c) = 0, then we have a monochromatic
solution to L(2,2,2,c). Therefore we may assume

A(16+3c) = 1.

Finally, because z; = z3 = 1, z3 = 36+7c and =4 = 15¢+76 is a solution
to L(2,2,2,¢), it is true that if A(15¢c 4+ 76) = 0, then a monochromatic
solution to L(2,2,2,c) exists. Similarly, because z; = 6 + ¢, z2 = 3 =
16 + 3c and z4 = 15¢ + 76 is also a solution to L(2,2,2,¢), it is also true
that if A(15¢+76) = 1, then a monochromatic solution to L(2,2, 2, ¢) exists.
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Thus for both values of A(15¢c + 76) we have a monochromatic solution to
L(2,2,2,c). We may conclude

7(2,2,2,¢) € 15¢ + 76.

Because we have previously shown r(2,2,2,c) > 15¢ + 76, we have now
proven that for ¢ > —5,

7(2,2,2,¢) = 15¢c + 76.

Though Case 1 of Theorem 2 is significantly different than Case 1 of
Theorem 1, Case 2 of Theorem 2 is very similar to Case 2 of Theorem 1.
For this reason, we will omit many of the details in the proof of Case 2 of
Theorem 2.

Case 2: Assume ¢ < —5. There exists a unique s € N and a unique
t € [0,75] such that ¢ = —76s + 5t. Note that for every t € [0, 75],

1- 75t —1_75t+75_t—1—t
% | 76 76 '
Therefore,
1—-15c| [1—15(—76s+5¢t)] 1-75t]
[T]_[ 78 ]-—15s+[ 6 ]—153—{-1 t.

Lower Bound: The lower bound for all ¢ < —5 results from the proof of the
following claim.

Claim 3. For all integers ¢ < -5, 7(2,2,2,c) > [1553¢].

Proof of Claim 8. Let an integer ¢ < —5 be given and let ¢ = 76s + 5t for
s€Nand t € (0,75). We will show that

1 —15¢
76

r(2,2,2,c)2[ ]:153+1—t

by exhibiting a 2-coloring of the interval [1, 15s—t] that avoids a monochro-
matic solution to L(2,2,2,c).

Let ¢/ = s — 5. Because s € N, it is clear that ¢ > —5. Therefore it is
known from the first case of this Theorem 2 proof that
r(2,2,2,¢') = 15¢' + 76 = 76 + 15(s — 5) = 155 + 1.

Therefore there exists some coloring A’ : [1,15s] — [0, 1] that avoids
a monochromatic solution to L(2,2,2,¢'). Let A : [1,15s — ¢] — [0,1] be
defined by
A(zx) =A'(15s +1—t —z).
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Let (z1, T2, 3, 24) be a solution to L(2, 2,2, ¢) for z1, T2, z3, 24 € [1,155—
t]. For every i € [1,4], define y; € [1,15s] such that

yi=15s+1—-t —ux;.

It can be shown that (y1,¥2,v3,y4) is a solution to L(2,2,2,¢').

Since (y1,¥2, ¥3, y4) is a solution to L(2,2,2,¢') and A’ admits no mono-
chromatic solutions to L(2, 2,2, ¢'), we know (y;, y2, y3, Y1) is not monochro-
matic in A’. Therefore the solution (zi1,z2,z3,24) to L(2,2,2,c) is not
monochromatic in A.

Because A : [1,15s — t] — [0,1] avoids a monochromatic solution to

L(2,2,2,c), we may conclude
7(2,2,2,¢) 2 15s+ 1 —t.
The proof of Claim 3 is complete.

We will now need the following definition.

Definition 3. For integers ¢ < —5, for natural numbers s and for ¢ € [0, 75],
the set E; contains all ¢ = —76s 4 5t for which s < 4.

By this definition, £, = {—304,—299, —294, ..., —234, —229, —228, —224,
—223,-219,-218,...,-159, —158, —154, ~153, —152, —~149, —148, —147,
—144,-143,-142,..., -84, —83,—82,-79, -78, ~77, 76, —74,—73, —72,
—-71,—69,—68, —67,—66,...,—9,—8,—7,—6} and has a cardinality of 150.

Upper Bound: An upper bound for ¢ < —5 and ¢ ¢ E, results from the
proof of the following claim.

Claim 4. For integers ¢ < =5, if c ¢ Ey, then 7(2,2,2,c) < [15%<].

Proof of Claim 4. Let an integer ¢ < —5 be given such that ¢ ¢ E3 and let
¢ = —76s + 5t for s € N and t € [0,75]. We will show that

1-15¢
76

r(2,2,2,c)5[ -'=15s+1—t
by proving that every 2-coloring of the interval [1,15s+ 1 —t] must contain
a monochromatic solution to L(2,2,2,c).

Let ¢! = s — 10. Because ¢ ¢ E, we have s > 5, and it is clear that
¢’ > —5. Therefore it is known from the first case of this Theorem 2 proof

that
r(2,2,2,c') = 15¢' + 76 = 76 + 15(s — 10) = 155 — 74.
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It follows that every coloring A’ : [1,15s — 74] — [0, 1] must contain a
monochromatic solution to L(2,2,2,¢'). Let A : [1,155+1 —¢t] — [0,1] be
an arbitrary coloring and let A’: [1,15s — 74] — [0, 1] be defined by

A'(y) = A(15s +2 —t — ).

We will now show that A contains a monochromatic solution to L(2,2, 2, c).
Let (1, Y2, y3, ya) be a solution to L(2,2,2,c’) for y1,y2, ¥3,¥4 € {1,155—
74] that is monochromatic in A’. For every ¢ € [1,4], define z; € [1,15s +
1-t]as
;=158 4+2 -1t —y;.
It can be shown that (z;, z2, 3, z4) is a solution to L(2,2,2,¢). Also for
i,j € [1,4],

A(.’L‘,) = A(153+2—t—y,~) = A'(y,-) = A'(yj) = A(153+2—t—yj) = A(:z:j),

so (z1,z2,%3,24) is monochromatic in A.
Because A : [1,15s + 1 — t] — [0, 1] contains a monochromatic solution
to L(2,2,2,c), we may conclude

7(2,2,2,¢) < 15s+1—1t.

The proof of Claim 4 is complete.

Because we previously showed r(2,2,2,¢) > 155+ 1 —¢ for all ¢ < -5,
we have now proven that for ¢ < —5 when ¢ ¢ E,
1-—15¢
76 ’

T(2$2’21c) = 153+1—t= [

For integers ¢ < —5 when ¢ € E,, the exact value of 7(2, 2, 2, ¢) has been
determined by a computer program. The computer results are displayed in
the table below. The function ¢ : (—00, —6] — Z is the difference between
7(2,2, 2, c) and the lower bound determined by Claim 3. The integers ¢ € E,
for which ¢2(c) = 0 have been omitted from the table.
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c T(2,2, 2:C) I-l__éﬁ.l ¢2(C)

|

-6 10 2 8
-7 7 2 5
-8 4 2 2
-9 3 2 1
-12 6 3 3
-13 5 3 2
-14 4 3 1
-18 6 4 2
-19 5 4 1
-23 6 5 1
-24 6 5 1
-28 7 6 1
-29 7 6 1
-34 8 7 1
-39 9 8 1
-44 10 9 1
The proof of Theorem 2 is complete. |
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