Two-Color Rado Numbers for the Equations $2x_1 + 2x_2 + c = x_3$ and $2x_1 + 2x_2 + 2x_3 + c = x_4$

Daniel Schaal
daniel.schaal@sdstate.edu
and
Melanie Zinter
mrzinter@jacks.sdstate.edu

Department of Mathematics and Statistics
South Dakota State University
Brookings, SD 57007

Abstract

For every integer c, let r(2, 2, c) be the least integer n such that for every 2-coloring of the set $\{1, 2, \ldots, n\}$ there exists a monochromatic solution to the equation

$$2x_1 + 2x_2 + c = x_3$$
.

Secondly, for every integer c, let r(2,2,2,c) be the least integer n such that for every 2-coloring of the set $\{1,2,\ldots,n\}$ there exists a monochromatic solution to the equation

$$2x_1 + 2x_2 + 2x_3 + c = x_4$$
.

In this paper, exact values are found for r(2,2,c) and r(2,2,2,c).

Note: The major work for this paper occurred when the second author was an undergraduate student at South Dakota State University under the direction of the first author.

Introduction

Let N represent the set of natural numbers and let [a, b] denote the set $\{n \in \mathbb{N} \mid a \leq n \leq b\}$. A function $\Delta : [1, n] \to [0, k-1]$ is referred to as a k-coloring of the set [1, n]. Given a k-coloring Δ and a system L of linear equations in m variables, a solution (x_1, x_2, \ldots, x_m) to L is monochromatic if and only if

$$\Delta(x_1) = \Delta(x_2) = \cdots = \Delta(x_m).$$

In 1916, I. Schur [19] proved that for every $k \geq 2$, there exists a least integer n = S(k) such that for every k-coloring of the set [1, n], there exists a monochromatic solution to

$$x_1 + x_2 = x_3$$
.

The integers S(k) are called *Schur numbers*. It is known that S(2) = 5, S(3) = 14 and S(4) = 45, but no other Schur numbers are known [20].

In 1933, R. Rado generalized the concept of Schur numbers to arbitrary systems of linear equations. Rado found necessary and sufficient conditions to determine if an arbitrary system of linear equations admits a monochromatic solution under every k-coloring of the natural numbers [11, 12, 13]. For a given system L of linear equations, the least integer n, provided that it exists, such that for every k-coloring of the set [1, n] there exists a monochromatic solution to L is called the k-color k-

In 1982, A. Beutelspacher and W. Brestovansky [2] considered the equation

$$x_1+x_2+\cdots+x_{m-1}=x_m.$$

They were able to show that the 2-color Rado number for this equation is $m^2 - m - 1$ for every integer $m \ge 3$.

S.A. Burr and S. Loo [4] were able to prove that for every integer $c \ge 0$, the equation

$$x_1 + x_2 + c = x_3$$

has a 2-color Rado number equal to 4c + 5.

More recently, these two results were taken together and generalized. For every integer $m \geq 3$, the 2-color Rado numbers for the equation

$$x_1 + x_2 + \cdots + x_{m-1} + c = x_m$$

were found for all positive integers c by D. Schaal [16] and for most negative integers c by W. Kosek and D. Schaal [9]. A. Baer, B. Mammenga and C. Spicer [1] recently found the 2-color Rado numbers for all the remaining values of c.

In 2008, S. Guo and Z.W. Sun [5] confirmed a conjecture originally presented in [6] by finding the 2-color Rado numbers for the equation

$$a_1x_1 + a_2x_2 + \cdots + a_{m-1}x_{m-1} = x_m$$

for every integer $m \geq 3$ and for all natural numbers $a_1, a_2, \ldots, a_{m-1}$.

In this paper, we establish the 2-color Rado numbers for the following families of equations for all integer values of c:

$$2x_1 + 2x_2 + c = x_3$$

and

$$2x_1 + 2x_2 + 2x_3 + c = x_4$$

We use the following notation.

Definition 1. For every integer c, let L(2,2,c) represent the system consisting of the single equation

$$2x_1 + 2x_2 + c = x_3$$

and let r(2,2,c) represent the 2-color Rado number for L(2,2,c). Also let L(2,2,2,c) represent the system consisting of the single equation

$$2x_1 + 2x_2 + 2x_3 + c = x_4$$

and let r(2,2,2,c) represent the 2-color Rado number for L(2,2,2,c).

Main Results

Theorem 1. For every integer c,

$$r(2,2,c) = \begin{cases} 11c + 34 & \text{for } c \ge -3\\ \left\lceil \frac{1 - 11c}{34} \right\rceil + \phi_1(c) & \text{for } c \le -4 \end{cases}$$

where

$$\phi_1(c) = \begin{cases} 4 & \text{for } c = -4\\ 1 & \text{for } c \in \{-14, -11, -8, -5\}\\ 0 & \text{for } c \text{ otherwise.} \end{cases}$$

Proof. Let an integer c be given. If c=-3, it is clear that r(2,2,c)=1 since $x_1=x_2=x_3=1$ would be a solution to L(2,2,c) and obviously monochromatic. We will now consider the two cases of c>-3 and c<-3.

Case 1: Assume c > -3.

Lower Bound: We will first show that

$$r(2,2,c) \ge 11c + 34$$

by exhibiting a 2-coloring of the interval [1, 33+11c] that avoids a monochromatic solution to L(2, 2, c).

Let $\Delta: [1, 33 + 11c] \rightarrow [0, 1]$ be defined by

$$\Delta(x) = \begin{cases} 0 & \text{for } 1 \le x \le 3 + c \\ 1 & \text{for } 4 + c \le x \le 15 + 5c \\ 0 & \text{for } 16 + 5c \le x \le 33 + 11c. \end{cases}$$

It is easy to verify that Δ avoids a monochromatic solution to L(2,2,c). We may therefore conclude

$$r(2,2,c) \ge 11c + 34.$$

Upper Bound: We will next show that

$$r(2,2,c) \le 11c + 34$$

by proving that every 2-coloring of the interval [1, 11c + 34] must contain a monochromatic solution to L(2, 2, c).

Let $\Delta: [1, 11c + 34] \rightarrow [0, 1]$ be an arbitrary coloring. Without loss of generality, we may assume

$$\Delta(1)=0.$$

Because $x_1 = x_2 = 1$ and $x_3 = 4 + c$ is a solution to L(2, 2, c), we know that if $\Delta(4 + c) = 0$, then we have a monochromatic solution to L(2, 2, c). Therefore we may assume

$$\Delta(4+c)=1.$$

Now because $x_1 = x_2 = 4 + c$ and $x_3 = 16 + 5c$ is a solution to L(2, 2, c), we know that if $\Delta(16 + 5c) = 1$, then we have a monochromatic solution to L(2, 2, c). Therefore we may assume

$$\Delta(16+5c)=0.$$

Next because $x_1 = 1, x_2 = 7 + 2c$ and $x_3 = 16 + 5c$ is a solution to L(2,2,c), we know that if $\Delta(7+2c) = 0$, then we have a monochromatic solution to L(2,2,c). Therefore we may assume

$$\Delta(7+2c)=1.$$

Now because $x_1 = 4 + c$, $x_2 = 7 + 2c$ and $x_3 = 22 + 7c$ is a solution to L(2,2,c), we know that if $\Delta(22 + 7c) = 1$, then we have a monochromatic solution to L(2,2,c). Therefore we may assume

$$\Delta(22+7c)=0.$$

Next because $x_1 = 1, x_2 = 10 + 3c$ and $x_3 = 22 + 7c$ is a solution to L(2,2,c), we know that if $\Delta(10+3c) = 0$, then we have a monochromatic solution to L(2,2,c). Therefore we may assume

$$\Delta(10+3c)=1.$$

Finally, because $x_1 = 1$, $x_2 = 16 + 5c$ and $x_3 = 11c + 34$ is a solution to L(2,2,c), it is true that if $\Delta(11c+34) = 0$, then a monochromatic solution to L(2,2,c) exists. Similarly, because $x_1 = 7 + 2c$, $x_2 = 10 + 3c$ and $x_3 = 11c+34$ is also a solution to L(2,2,c), it is also true that if $\Delta(11c+34) = 1$, then a monochromatic solution to L(2,2,c) exists. Thus for both values of $\Delta(11c+34)$ we have a monochromatic solution to L(2,2,c). We may conclude

$$r(2,2,c) \le 11c + 34.$$

Because we have previously shown $r(2,2,c) \ge 11c + 34$, we have now proven that for c > -3,

$$r(2,2,c) = 11c + 34.$$

Case 2: Assume c < -3. There exists a unique $s \in \mathbb{N}$ and a unique $t \in [0, 33]$ such that c = -34s + 3t. Note that for every $t \in [0, 33]$,

$$\left[\frac{1-33t}{34}\right] = \frac{1-33t}{34} + \frac{33-t}{34} = 1-t.$$

Therefore,

$$\left[\frac{1-11c}{34}\right] = \left[\frac{1-11(-34s+3t)}{34}\right] = 11s + \left[\frac{1-33t}{34}\right] = 11s + 1 - t.$$

Lower Bound: The lower bound for all c < -3 results from the proof of the following claim.

Claim 1. For all integers c < -3, $r(2,2,c) \ge \left\lceil \frac{1-11c}{34} \right\rceil$.

Proof of Claim 1. Let an integer c < -3 be given and let c = -34s + 3t for $s \in \mathbb{N}$ and $t \in [0, 33]$. We will show that

$$r(2,2,c) \ge \left\lceil \frac{1-11c}{34} \right\rceil = 11s + 1 - t$$

by exhibiting a 2-coloring of the interval [1, 11s-t] that avoids a monochromatic solution to L(2, 2, c).

Let c' = s - 3. Because $s \in \mathbb{N}$, it is clear that c' > -3. Therefore it is known from the proof of Case 1 that

$$r(2, 2, c') = 11c' + 34 = 34 + 11(s - 3) = 11s + 1.$$

Therefore there exists some coloring $\Delta':[1,11s]\to [0,1]$ that avoids a monochromatic solution to L(2,2,c'). Let $\Delta:[1,11s-t]\to [0,1]$ be defined by

$$\Delta(x) = \Delta'(11s + 1 - t - x).$$

We will now show that Δ avoids a monochromatic solution to L(2,2,c).

Let (x_1, x_2, x_3) be a solution to L(2, 2, c) for $x_1, x_2, x_3 \in [1, 11s - t]$. That is

$$2x_1 + 2x_2 + c = x_3.$$

For every $i \in [1, 3]$, define $y_i \in [1, 11s]$ as

$$y_i = 11s + 1 - t - x_i$$

Note that (y_1, y_2, y_3) is a solution to L(2, 2, c') because

$$2y_1 + 2y_2 + c' = 2(11s + 1 - t - x_1) + 2(11s + 1 - t - x_2) + s - 3$$

$$= 11s + 1 - t - (2x_1 + 2x_2 - 34s + 3t)$$

$$= 11s + 1 - t - (2x_1 + 2x_2 + c)$$

$$= 11s + 1 - t - x_3$$

$$= y_3.$$

Since (y_1, y_2, y_3) is a solution to L(2, 2, c') and Δ' admits no monochromatic solutions to L(2, 2, c'), we know (y_1, y_2, y_3) is not monochromatic in Δ' . That is

$$\Delta'(y_i) \neq \Delta'(y_j)$$
 for some $i, j \in [1, 3]$ with $i \neq j$.

Since
$$\Delta'(y_i) = \Delta'(11s + 1 - t - x_i) = \Delta(x_i)$$
, we have

$$\Delta(x_i) = \Delta'(y_i) \neq \Delta'(y_j) = \Delta(x_j).$$

Therefore the solution (x_1, x_2, x_3) to L(2, 2, c) is not monochromatic in Δ . Because $\Delta: [1, 11s - t] \rightarrow [0, 1]$ avoids a monochromatic solution to L(2, 2, c), we may conclude

$$r(2,2,c) \ge 11s + 1 - t$$

and the proof of Claim 1 is complete.

We will now need the following definition.

Definition 2. For integers c < -3, for natural numbers s and for $t \in [0, 33]$, the set E_1 contains all c = -34s + 3t for which s = 1 or s = 2.

By this definition, $E_1 = \{-68, -65, -62, \dots, -38, -35, -34, -32, -31, -29, -28, \dots, -5, -4\}$ and has a cardinality of 33.

Upper Bound: An upper bound for c < -3 and $c \notin E_1$ results from the proof of the following claim.

Claim 2. For integers c < -3, if $c \notin E_1$, then $r(2,2,c) \leq \left\lceil \frac{1-11c}{34} \right\rceil$.

Proof of Claim 2. Let an integer c < -3 be given such that $c \notin E_1$ and let c = -34s + 3t for $s \in \mathbb{N}$ and $t \in [0, 33]$. We will show that

$$r(2,2,c) \le \left\lceil \frac{1-11c}{34} \right\rceil = 11s+1-t$$

by proving that every 2-coloring of the interval [1, 11s + 1 - t] must contain a monochromatic solution to L(2, 2, c).

Let c' = s - 6. Because $c \notin E_1$, we have $s \ge 3$, and it is clear that $c' \ge -3$. Therefore it is known from the proof of Case 1 that

$$r(2, 2, c') = 11c' + 34 = 34 + 11(s - 6) = 11s - 32.$$

It follows that every coloring $\Delta': [1, 11s - 32] \to [0, 1]$ must contain a monochromatic solution to L(2, 2, c'). Let $\Delta: [1, 11s + 1 - t] \to [0, 1]$ be an arbitrary coloring and let $\Delta': [1, 11s - 32] \to [0, 1]$ be defined by

$$\Delta'(y) = \Delta(11s + 2 - t - y).$$

We will now show that Δ contains a monochromatic solution to L(2,2,c). Let (y_1,y_2,y_3) be a solution to L(2,2,c') that is monochromatic in Δ' with $y_1,y_2,y_3 \in [1,11s-32]$. That is

$$2y_1 + 2y_2 + c' = y_3$$

and

$$\Delta'(y_1) = \Delta'(y_2) = \Delta'(y_3).$$

For every $i \in [1, 3]$, define $x_i \in [1, 11s + 1 - t]$ as

$$x_i = 11s + 2 - t - y_i.$$

We will next show that (x_1, x_2, x_3) is a solution to L(2, 2, c) that is monochromatic in Δ .

Algebraically,

$$2x_1 + 2x_2 + c = 2(11s + 2 - t - y_1) + 2(11s + 2 - t - y_2) - 34s + 3t$$

$$= 11s + 2 - t - (2y_1 + 2y_2 + s - 6)$$

$$= 11s + 2 - t - (2y_1 + 2y_2 + c')$$

$$= 11s + 2 - t - y_3$$

$$= x_3.$$

Therefore (x_1, x_2, x_3) is a solution to L(2, 2, c). Also for $i, j \in [1, 3]$,

$$\Delta(x_i) = \Delta(11s+2-t-y_i) = \Delta'(y_i) = \Delta'(y_j) = \Delta(11s+2-t-y_j) = \Delta(x_j),$$

so (x_1, x_2, x_3) is monochromatic in Δ .

Because $\Delta:[1,11s+1-t]\to [0,1]$ contains a monochromatic solution to L(2,2,c), we may conclude

$$r(2,2,c) \le 11s + 1 - t$$

and the proof of Claim 2 is complete.

Because we previously showed $r(2,2,c) \ge 11s+1-t$ for all c < -3, we have now proven that for c < -3 when $c \notin E_1$,

$$r(2,2,c) = 11s + 1 - t = \left[\frac{1 - 11c}{34}\right].$$

For integers c < -3 when $c \in E_1$, the exact value of r(2, 2, c) has been determined by a computer program. The computer results are displayed in the table below. The function $\phi_1 : (-\infty, -4] \to \mathbb{Z}$ is the difference between r(2, 2, c) and the lower bound determined by Claim 1. The integers $c \in E_1$ for which $\phi_1(c) = 0$ have been omitted from the table.

\boldsymbol{c}	r(2,2,c)	$\left[\frac{1-11c}{34}\right]$	$\phi_1(c)$
-4	6	2	4
-5	3	2	1
-8	4	3	1
-11	5	4	1
-14	6	5	1

The proof of Theorem 1 is complete.

Theorem 2. For every integer c,

$$r(2,2,2,c) = \begin{cases} 15c + 76 & \text{for } c \ge -5\\ \left\lceil \frac{1 - 15c}{76} \right\rceil + \phi_2(c) & \text{for } c \le -6 \end{cases}$$

where

$$\phi_2(c) = \begin{cases} 8 & \textit{for } c = -6 \\ 5 & \textit{for } c = -7 \\ 3 & \textit{for } c = -12 \\ 2 & \textit{for } c \in \{-18, -13, -8\} \\ 1 & \textit{for } c \in \{-44, -39, -34, -29, -28, -24, -23, -19, -14, -9\} \\ 0 & \textit{for } c \textit{ otherwise.} \end{cases}$$

Proof. Let an integer c be given. If c = -5, it is clear that r(2, 2, 2, c) = 1 since $x_1 = x_2 = x_3 = x_4 = 1$ would be a solution to L(2, 2, 2, c) and obviously monochromatic. We will now consider the two cases of c > -5 and c < -5.

Case 1: Assume c > -5.

Lower Bound: We will first show that

$$r(2,2,2,c) \ge 15c + 76$$

by exhibiting a 2-coloring of the interval [1,75+15c] that avoids a monochromatic solution to L(2,2,2,c).

Let $\Delta: [1,75+15c] \rightarrow [0,1]$ be defined by

$$\Delta(x) = \begin{cases} 0 & \text{for } 1 \le x \le 5 + c \\ 1 & \text{for } 6 + c \le x \le 35 + 7c \\ 0 & \text{for } 36 + 7c \le x \le 75 + 15c. \end{cases}$$

It is easy to verify that Δ avoids a monochromatic solution to L(2,2,2,c). We may therefore conclude

$$r(2,2,2,c) \ge 15c + 76.$$

Upper Bound: We will next show that

$$r(2, 2, 2, c) \le 15c + 76$$

by proving that every 2-coloring of the interval [1, 15c + 76] must contain a monochromatic solution to L(2, 2, 2, c).

Let $\Delta: [1, 15c + 76] \rightarrow [0, 1]$ be an arbitrary coloring. Without loss of generality, we may assume

$$\Delta(1)=0.$$

Because $x_1 = x_2 = x_3 = 1$ and $x_4 = 6 + c$ is a solution to L(2, 2, 2, c), we know that if $\Delta(6 + c) = 0$, then we have a monochromatic solution to L(2, 2, 2, c). Therefore we may assume

$$\Delta(6+c)=1.$$

Now because $x_1 = x_2 = x_3 = 6 + c$ and $x_4 = 36 + 7c$ is a solution to L(2,2,2,c), we know that if $\Delta(36+7c) = 1$, then we have a monochromatic solution to L(2,2,2,c). Therefore we may assume

$$\Delta(36+7c)=0.$$

Next because $x_1 = x_2 = 1$, $x_3 = 16 + 3c$ and $x_4 = 36 + 7c$ is a solution to L(2,2,2,c), we know that if $\Delta(16+3c) = 0$, then we have a monochromatic solution to L(2,2,2,c). Therefore we may assume

$$\Delta(16+3c)=1.$$

Finally, because $x_1=x_2=1$, $x_3=36+7c$ and $x_4=15c+76$ is a solution to L(2,2,2,c), it is true that if $\Delta(15c+76)=0$, then a monochromatic solution to L(2,2,2,c) exists. Similarly, because $x_1=6+c$, $x_2=x_3=16+3c$ and $x_4=15c+76$ is also a solution to L(2,2,2,c), it is also true that if $\Delta(15c+76)=1$, then a monochromatic solution to L(2,2,2,c) exists.

Thus for both values of $\Delta(15c + 76)$ we have a monochromatic solution to L(2,2,2,c). We may conclude

$$r(2,2,2,c) \le 15c + 76.$$

Because we have previously shown $r(2, 2, 2, c) \ge 15c + 76$, we have now proven that for c > -5,

$$r(2, 2, 2, c) = 15c + 76.$$

Though Case 1 of Theorem 2 is significantly different than Case 1 of Theorem 1, Case 2 of Theorem 2 is very similar to Case 2 of Theorem 1. For this reason, we will omit many of the details in the proof of Case 2 of Theorem 2.

Case 2: Assume c < -5. There exists a unique $s \in \mathbb{N}$ and a unique $t \in [0,75]$ such that c = -76s + 5t. Note that for every $t \in [0,75]$,

$$\left[\frac{1-75t}{76}\right] = \frac{1-75t}{76} + \frac{75-t}{76} = 1-t.$$

Therefore,

$$\left\lceil \frac{1 - 15c}{76} \right\rceil = \left\lceil \frac{1 - 15(-76s + 5t)}{76} \right\rceil = 15s + \left\lceil \frac{1 - 75t}{76} \right\rceil = 15s + 1 - t.$$

Lower Bound: The lower bound for all c < -5 results from the proof of the following claim.

Claim 3. For all integers c < -5, $r(2, 2, 2, c) \ge \left[\frac{1-15c}{76}\right]$.

Proof of Claim 3. Let an integer c < -5 be given and let c = 76s + 5t for $s \in \mathbb{N}$ and $t \in [0, 75]$. We will show that

$$r(2,2,2,c) \ge \left\lceil \frac{1-15c}{76} \right\rceil = 15s + 1 - t$$

by exhibiting a 2-coloring of the interval [1, 15s-t] that avoids a monochromatic solution to L(2, 2, 2, c).

Let c' = s - 5. Because $s \in \mathbb{N}$, it is clear that c' > -5. Therefore it is known from the first case of this Theorem 2 proof that

$$r(2, 2, 2, c') = 15c' + 76 = 76 + 15(s - 5) = 15s + 1.$$

Therefore there exists some coloring $\Delta':[1,15s]\to [0,1]$ that avoids a monochromatic solution to L(2,2,2,c'). Let $\Delta:[1,15s-t]\to [0,1]$ be defined by

$$\Delta(x) = \Delta'(15s + 1 - t - x).$$

Let (x_1, x_2, x_3, x_4) be a solution to L(2, 2, 2, c) for $x_1, x_2, x_3, x_4 \in [1, 15s - t]$. For every $i \in [1, 4]$, define $y_i \in [1, 15s]$ such that

$$y_i = 15s + 1 - t - x_i.$$

It can be shown that (y_1, y_2, y_3, y_4) is a solution to L(2, 2, 2, c').

Since (y_1, y_2, y_3, y_4) is a solution to L(2, 2, 2, c') and Δ' admits no monochromatic solutions to L(2, 2, 2, c'), we know (y_1, y_2, y_3, y_4) is not monochromatic in Δ' . Therefore the solution (x_1, x_2, x_3, x_4) to L(2, 2, 2, c) is not monochromatic in Δ .

Because $\Delta: [1,15s-t] \rightarrow [0,1]$ avoids a monochromatic solution to L(2,2,2,c), we may conclude

$$r(2,2,2,c) \ge 15s + 1 - t$$
.

The proof of Claim 3 is complete.

We will now need the following definition.

Definition 3. For integers c < -5, for natural numbers s and for $t \in [0, 75]$, the set E_2 contains all c = -76s + 5t for which $s \le 4$.

By this definition, $E_2 = \{-304, -299, -294, \dots, -234, -229, -228, -224, -223, -219, -218, \dots, -159, -158, -154, -153, -152, -149, -148, -147, -144, -143, -142, \dots, -84, -83, -82, -79, -78, -77, -76, -74, -73, -72, -71, -69, -68, -67, -66, \dots, -9, -8, -7, -6\}$ and has a cardinality of 150.

Upper Bound: An upper bound for c < -5 and $c \notin E_2$ results from the proof of the following claim.

Claim 4. For integers c < -5, if $c \notin E_2$, then $r(2,2,2,c) \le \left\lceil \frac{1-15c}{76} \right\rceil$.

Proof of Claim 4. Let an integer c < -5 be given such that $c \notin E_2$ and let c = -76s + 5t for $s \in \mathbb{N}$ and $t \in [0, 75]$. We will show that

$$r(2,2,2,c) \le \left\lceil \frac{1 - 15c}{76} \right\rceil = 15s + 1 - t$$

by proving that every 2-coloring of the interval [1, 15s + 1 - t] must contain a monochromatic solution to L(2, 2, 2, c).

Let c'=s-10. Because $c \notin E_2$, we have $s \ge 5$, and it is clear that $c' \ge -5$. Therefore it is known from the first case of this Theorem 2 proof that

$$r(2, 2, 2, c') = 15c' + 76 = 76 + 15(s - 10) = 15s - 74.$$

It follows that every coloring $\Delta': [1, 15s - 74] \to [0, 1]$ must contain a monochromatic solution to L(2, 2, 2, c'). Let $\Delta: [1, 15s + 1 - t] \to [0, 1]$ be an arbitrary coloring and let $\Delta': [1, 15s - 74] \to [0, 1]$ be defined by

$$\Delta'(y) = \Delta(15s + 2 - t - y).$$

We will now show that Δ contains a monochromatic solution to L(2,2,2,c). Let (y_1,y_2,y_3,y_4) be a solution to L(2,2,2,c') for $y_1,y_2,y_3,y_4 \in [1,15s-74]$ that is monochromatic in Δ' . For every $i \in [1,4]$, define $x_i \in [1,15s+1-t]$ as

$$x_i = 15s + 2 - t - y_i$$
.

It can be shown that (x_1, x_2, x_3, x_4) is a solution to L(2, 2, 2, c). Also for $i, j \in [1, 4]$,

$$\Delta(x_i) = \Delta(15s + 2 - t - y_i) = \Delta'(y_i) = \Delta'(y_j) = \Delta(15s + 2 - t - y_j) = \Delta(x_j),$$

so (x_1, x_2, x_3, x_4) is monochromatic in Δ .

Because $\Delta: [1, 15s+1-t] \to [0, 1]$ contains a monochromatic solution to L(2, 2, 2, c), we may conclude

$$r(2,2,2,c) \le 15s + 1 - t.$$

The proof of Claim 4 is complete.

Because we previously showed $r(2,2,2,c) \ge 15s + 1 - t$ for all c < -5, we have now proven that for c < -5 when $c \notin E$,

$$r(2,2,2,c) = 15s + 1 - t = \left[\frac{1 - 15c}{76}\right].$$

For integers c<-5 when $c\in E_2$, the exact value of r(2,2,2,c) has been determined by a computer program. The computer results are displayed in the table below. The function $\phi_2:(-\infty,-6]\to\mathbb{Z}$ is the difference between r(2,2,2,c) and the lower bound determined by Claim 3. The integers $c\in E_2$ for which $\phi_2(c)=0$ have been omitted from the table.

С	r(2,2,2,c)	$\left[\frac{1-15c}{76}\right]$	$\phi_2(c)$
-6	10	2	8
-7	7	2	5
-8	4	2	2
-9	3	2	1
-12	6	3	3
-13	5	3	2
-14	4	3	1
-18	6	4	2
-19	5	4	1
-23	6	5	1
-24	6	5	1
-28	7	6	1
-29	7	6	1
-34	8	7	1
-39	9	8	1
-44	10	9	1

The proof of Theorem 2 is complete.

Acknowledgements

This material is based upon work supported by the NASA South Dakota Space Grant Consortium.

References

- [1] A. Baer, B. Mammenga, C. Spicer, 2-Color Rado Numbers for $\sum_{i=1}^{m-1} x_i + c = x_m$, preprint.
- [2] A. Beutelspacher, W. Brestovansky, Generalized Schur Numbers, Lecture Notes Math., 969, Springer, Berlin-New York: (1982), 30-38.
- [3] A. Bialostocki, D. Schaal, On a Variation of Schur Numbers, *Graphs and Combinatorics*, 16 (2000), 139-147.
- [4] S. A. Burr, S. Loo, On Rado Numbers I, preprint.
- [5] S. Guo, Z.W. Sun, Determination of the Two-color Rado Number for $a_1x_1 + \cdots + a_mx_m = x_0$, Journal of Combinatorial Theory, Series A, 115 (2008), 345-353.
- [6] B. Hopkins, D. Schaal, On Rado Numbers for $\sum_{i=1}^{m-1} a_i x_i = x_m$, Advances in Applied Mathematics, 35 (2005), 433-441.
- [7] S. Jones, D. Schaal, Some 2-color Rado Numbers, Congressus Numerantium, 152 (2001), 197-199.
- [8] S. Jones, D. Schaal, Two-color Rado Numbers for x + y + c = kz, Discrete Mathematics, 289 (2004), 63-69.

- [9] W. Kosek, D. Schaal, Rado Numbers for the Equation $\sum_{i=1}^{m-1} x_i + c = x_m$ for Negative Values of c, Advances in Applied Mathematics, 27 (2001), 805-815.
- [10] B. Martinelli, D. Schaal, On Generalized Schur Numbers for $x_1 + x_2 + c = kx_3$, Ars Combinatoria, 85 (2007), 33-42.
- [11] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad. Wiss. Phys.- Math. Klasse, 17 (1933), 1-10.
- [12] R. Rado, Studien zur Kombinatorik, Math. Z., 36 (1933), 242-280.
- [13] R. Rado, Note on Combinatorial Analysis, Proc. London Math. Soc., 48 (1936), 122-160.
- [14] K. Rendall Truman, D. Schaal, Three-color Rado Numbers for $x_1 + x_2 + c = x_3$ for Negative Values of c, Congressus Numerantium, 183 (2006), 5-10.
- [15] A. Robertson, D. Schaal, Off-Diagonal Generalized Schur Numbers, Advances in Applied Mathematics, 26 (2001), 252-257.
- [16] D. Schaal, On Generalized Schur Numbers, Congressus Numerantium, 98 (1993), 178-187.
- [17] D. Schaal, A Family of 3-color Rado Numbers, Congressus Numerantium, 111 (1995), 150-160.
- [18] D. Schaal, D. Vestal, Rado Numbers for $x_1 + x_2 + \cdots + x_{m-1} = 2x_m$, Congressus Numerantium, 191 (2008), 105-116.
- [19] I. Schur, Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$. Jahresber. Deutsch. Math. Verein., 25 (1916), 114-117.
- [20] W. Wallis, A. Street, J. Wallis, Combinatorics: Room Squares, Sumfree Sets, Hadamard Matrices, Lecture Notes in Math., 292, Springer, Berlin-New York: (1972).