Hamilton-Waterloo Problem: Bipartite case
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Abstract

Given two non-isomorphic bipartite 2-factors F; and F; of order
4n, the Bipartite Hamilton-Waterloo Problem (BHWP) asks for a 2-
factorization of K2n,2n into a copies of Fy and 8 copies of F2, where
a+ 8 =nand o, 8 > 1. We show that the BHWP has solution when
F5 is a refinement of Fi, where no component of F} is a C4 or Cs,
except possibly when a = 1 and either (i) F» is a Cy-factor or (ii)
F; has more than one C4 with all other components of an order r =
0(mod 4)> 4 or (iii)) F2 has components with an order r = 2(mod 4),
when n is even. We also show that there does not exist a factorization
of Ke,e into a single 12-cycle and two Cj-factors.
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1 Introduction

Let G be a graph. Let C,, K, and K, denote a cycle, a complete
graph and an independent set (or complement of a complete graph) on
n vertices respectively. Let K, , be the complete bipartite graph with
partite sets U = {u1,uz,...,un} and V = {v1,vs,...,v,}. Let Ex =
{{ui,v;} € E(Knn) : (j—i) = k(mod ), 1 < 4,5 <n}, 0 <k <
n — 1 be the set of edges of distance k in K, ,. It is clear that each
Ey is a 1-factor of K, and {Eo, E1,...,En_1} gives a 1-factorization
of Kpn. The subgraph of K, , induced by E;,E; and Ex, 0 < i # j #
k < n —1 is denoted as (E;, E;, Ex)nn. A 2-regular subgraph of G, with
components Cg,,Ck,,...,Ck, is denoted by [ky,kz,...,kp). A cycle with

vertices v1, vz, . . ., Un and edges {v1,v2}, {va,v3}, ..., {¥n=1,0n}, {¥n,v1} is
denoted as (v1,vs,...,vs). A path with vertices v1,v2,...,v, and edges
{v1,v2}, {v2,v3},...,{vn-1,vn} is denoted as (v1,vs,...,vn). The notation

Ng(v) denotes the set of all neighbors of a vertex v in a graph G. A 2-
regular spanning subgraph of G is called a 2-factor of G; In particular,

JCMCC 95 (2015), pp. 215-256



if all its components are isomorphic to Cj, then it is called Ci-factor. A
2-factorization of G is a partition of G into edge-disjoint 2-factors. For a
given 2d-regular graph G and 2-factors Gy, Ga, . ..,Gs, s < d, the existence
of a 2-factorization {F}, Fy, ..., F4} of G such that each F; = G; for some
tand 7,1 <i<d,1<j<s, is called the 2-factorization problem [2].

The 2-factorization problem for the complete graph K, in which all
the 2-factors are isomorphic to a given 2-factor of K, is known as the
Oberwolfach Problem [11]. Piotrowski {14] has shown that K, . can be
decomposed into copies of any given bipartite 2-factor, except that there
does not exist a Cg-factorization of Kgg. Liu [13] extended this to the
multipartite Oberwolfach problem, where all cycles are of uniform length.
A survey of results on this problem can be found in [3]. Let F; and F;
be two non-isomorphic 2-factors of K,,. The Hamilton-Waterloo Problem
(HWP) [9] asks for a 2-factorization of K, (respectively K, — I, where I
is a 1-factor of K, when n even) in which a(> 1) 2-factors are isomorphic
to F; and B(> 1) 2-factors are isomorphic to F3, such that o + 8 = "‘1
(respectively a + 8 = ";2) if such a 2-factorization exists, we say tha.t
(o, B) € HW P(n; F\, F2) or HW P(n; Fy, F,) exists. If all the components
of F} are k-cycles and all the components of F» are l-cycles, then we de-
note the problem by HWP(n;|k,k,...,k},[l,L,...,1]). Recently, Bryant,
Danziger and Dean [5] have solved the (standard) HWP for bipartite 2-
factors. For results on the HWP, see (1, 4, 5, 6, 7, 8, 10, 15, 16, 17, 18].

The Bipartite Hamilton-Waterloo Problem (BHWP) can be stated as
follows: Given two non-isomorphic bipartite 2-factors Fy and F of or-
der 4n, the Bipartite Hamilton-Waterloo Problem (BHWP) asks for a 2-
factorization of Ko, o, into o copies of F; and B copies of F,, where
a+f = nand a,8 > 1. If such a factorization exists, we say that
(o, ) € BHWP(n,n; F\,F;) or BHWP(n,n; F}, F;) exists. If all the
components of F; are k-cycles and all the components of F2 are [-cycles,
then we denote the problem by BHW P(n, n; [k, k,..., k], [L,{,...,1]).

Haggkvist [12] proved that the graph (E;, E;; 1),, 2~ ®Ks can be fac-
torized into two 2-factors, isomorphic to a given 2-factor of Kap 25. In this
paper, first we prove that the graph (E;, Ej41, Ej+2)nn®Ka2, 1 < j <n—1
has a factorization into three 2-factors of which either (i) two of them are
isomorphic to a given 2-factor (non isomorphic to a Cy-factor) of Kap 2n
and one is a Hamilton cycle, or (ii) one of them is isomorphic to a given
2-factor of Ko, 2, and two are Hamilton cycles, or (iii) all of them are iso-
morphic to a given 2-factor of Ka, 3, with components of order divisible
by 4 (non isomorphic to a Cys-factor, when n is odd). As a consequence, we
show that the BHWP has solution when Fj is a refinement of F}, where
no component of Fi is a C4 or Cs, except possibly when o = 1 and either
(i) F2 is a Cy factor or (ii) F» has more than one C4 with all other com-
ponents of an order » =0(mod 4)> 4 or (iii) F> has components with an
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order r =2(mod 4), when n is even. Finally, we show that the BHWP has
solution when F} is a Hamilton cycle and F; has more than one C; with all
other components of an order » =0(mod 4). We also show that there does
not exist a factorization of K¢ into a single 12-cycle and two Cy-factors.

2 Preliminaries

The wreath product of two graphs G and H is a graph G® H with vertex
set V(G) x V(H), in which (u1,v) is adjacent to (ug,v2) whenever (i)
{u1,u2} € E(G), or (ii) uy = uz and {v;,v2} € E(H). The following
definition is due to Bryant et.al (5):

Definition 2.1. If a 2-regular graph Fa can be obtained from a 2-regular
graph Fy by replacing each cycle of F\ with a 2-regular graph on the same
vertex set, then Iy is said to be a refinement of Fy. For example, [4,8%,102,12]
is a refinement of [4,16,18,22), but [4,182,20] is not. Of course, every 2-
regular graph of order n is a refinement of an n-cycle.

In 1985, Haggkvist [12] proved the following:

Lemma 2.1 ([12]). For a given 2-factor F of Kn n,n > 3, the graph C, ®
K, has a 2-factorization {Hy, Ha} such that Hy = Hy & F.

Using the notation and terminology from {4] we define a class of graphs
Jom, where m > 4 is even, as follows.

V(']2m)= {uly U2y . v oy Umy Um 41, Um+2} U {v1’v2, ey Umy Um+1, 'Um+2}-

E(sz)‘—" {{u‘h ui-{-l}) {via vi+l}1 {uisvi-i'l}’ {'Uiyui-l-l} 1= 2) 3: SN 1}
U{{uwi, uits}, {vi, vips}, {ui, vira}, {vs, uigs} : 1 =2,4,...,m — 2}
U{{u1,us}, {v1,v3}, {v1,v3}, {v1,us}}, see Figure 2.1.

Uyn -2 U=l U Ul Y42
Vin—2 V-1 U Vsl Um+2

Flgure 2.1. The graph Jo,,

Note that we obtain the J graphs from [4] if we add a pair of isolated
vertices, one between «; and ug and the other between v; and v2. We obtain
a new graph Jom * {41Um, U2Um42, V1Vm, V2Um42} from Jom, see Figure 2.2,

217



by contracting the vertices u; with u,,, us with um4e, v1 with v, and vy
with vy 42 as follows.

us Uq Um+l Um+2

@ ——

W AN

N e—— @
DA TRSETTINSFQLN\
=< =

Figure 2.2. The contracted graph Jom - {¢1%m, U2¥m+2, V1VUm, V2Um+2}

s
=

Lemma 2.2. When m is even

Jom - {u1um,uzum+2,'v1vm, v2vm+2} = (E07 EI’EZ) 2.5 ® KZ-

Proof. We relabel the vertices of {Ep, E1, Ez)xg,.r; as shown in Figure 2.3.

Taking the wreath product of this graph with K, makes the simple identi-
fication of isomorphism between these two graphs.

uq ug ug uio Um-2 Um Um+2

ug us ur ug Um-3 Um—1 Um+1

Figure 2.3. The graph (Ey, E1, E>)

m

m
27

]

We call the vertices {u1, u2, Um, Um+2, V1, V2, Um, Um+2} the end vertices of
Jom, out of which {uy, ug, v1,v2} are called the left hand end and {um, um42,
Um,Um+2} are called the right hand end.

Definition 2.2. Let H;, H;, H3 be 2-regular graphs of order 2m. A decom-
position of Jam into {Hy, Ha, Hs} satisfying (p1), (p2) and (p3) is denoted
by sz — {H1, H2,H3}, where

(p1) : V(H1) = {u1,u2,. ., Um—2,Um—1, Um+1 {3, V45 . . ., Um, Umt1, Um2}s
(Pz) : V(Hz) = {ua,u4,~-~,Um,‘um+1,um+2}U{'Ul,v2,~-,vm—z,vm-1,vm+1},
(p3) : V(Hs) = {u2,u3,...,Um—1,Um, Um+1 }U{V2,V3, ..., Um—1,Vm, Um+1}-
Thus

H, misses the end vertices um, um+2, v1 and va.
Hs misses the end vertices u1,u2, vy and Umyo.
Hj misses the end vertices u1, Um+2,v1 and Um4o.
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We now introduce some notation for decomposition of J»,, into specified

subgraphs, to get the desired decomposition of (Ey, E1, Ez) 2,2 ® Ka.

(3):
(i4) : '/ \
CDE )

)
(3v) :

F—————

Figure 3.1

Definition 2.3. 1. Fork >0, [a1,as,...,ak,b represents a subgraph of
Jom, where the first k components are cycles of length a1,as,...,ax at
the left hand end and the last component is a path of length b’ having
both of its end vertices at the right hand end, see Figure 3.1.(3) for
an ezample of [4,8. In particular, if k = 0, then [b denotes a path of
length ‘b’ having both of its end vertices at the right hand end.

2. Fork >0, a,by,by,...,b,c represents a subgraph of Jom, with cycles
of lengths by, b, ..., by in the middle, a path of length ‘a’ having both
its end vertices at the left hand end and a path of length ‘¢’ having
both its end vertices at the right hand end, see Figure 3.1.(ii) for an
example of 2,4,2.

3. ‘a’ represents a subgraph of Jom, with two paths each having one end
at the left hand end and other end at the right hand end, and contains
‘a’ edges in total, see Figure 3.1.(ii2) for an example where a = 8.

4. Fork 20, a,by,bs,...,by] represents a subgraph of Jom, where the
rightmost k components are cycles of length by, ba, ..., bx and the first
component is a path of length ‘a’ having both of its end vertices at the
left hand end, see Figure 3.1.(iv) for an ezample of 4,4).

A decomposition of Ja,, into three (not necessarily regular) subgraphs
H,, H, and Hs, is denoted as Jon, — {H1; Ha; H3}, where the end vertices
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of any paths in H;, Hy and Hj are end vertices of Jy,,,. Note that Jo,, —
{H,, H, H3} denotes the decomposition of Jo, into 2-regular subgraphs
H,,H; and Hs, whereas Jo,, — {H; Ho; Hs} denotes the decomposition
of Jo,, into subgraphs H;, H and H3 with a provision to join some of the
end vertices of the components to those of an another Jy; to get a larger

decomposition of Ja(;m 41y in a similar manner to that used in [4].

Definition 2.4. 1. L**® denotes
Jatb > {[a,b; [a,b; [a,b}

2. R%Y denotes
Ja+b s {0., b] ) @, b] ) @, b]}

3. For k>0, L{°22%® denotes

Jai+azt+-+ar+b — {[@1,82,...,ak,b; [@1+a2+- - +ar+d; [a1,a2,..

ak, b}

4. For k>0, Rybrb2—b denotes

Ja+b1+6z+m+bk — {a,bl, bo, ..., bk] 5 a+by+bo4--- -+bk] ; a,by,ba,. ..

bi]}

5. For k>0, Ot P2 gonotes

b ]

Jatbitbyttbere — {a,b1,02,...,06,¢ 5 @+ b1+ ba + -0 + b +

cs avbl)b%"*)bk,c}
6. P denotes Jg — {8; 8; 8}.

7. Fork>0, Lg““"""“"'b denotes

Jartazt+ap+b — {[a1,02,.. 05,05 [y +as+ - +ar+b; (a1 +

az + -+ +ax + b}

8. For k >0, Ry® 2% denotes

Jatby+ba 4oty F {@,b1,b2,.. . bk s a+by b+ -+ be]  a+by+

b+ + bi])

9. For k>0, Ctb2--be gonotes

Jasby+batetbptc = {2y b1, b2, ..., b, e a+by+bo+---+br+c; at

by +ba+ - +br+c}

10. For k>0, LR‘;"""”"'"""’c denotes

Ja+b1+bz+-~-+bk+c — {aabl)bZ"”lbkac y G1,€1 a’bl)b21°"abk$c}7

whereaj+cy=a+by+bs+---+be+c

11. For k >0, LRY®12b0¢ denotes

Jatby+bpt-tbete 7 {a,01,b2,. .., bk, ¢ 5 ar,e1 5 az,c2}, where a; +

co=az+ca=a+by+by+.-+b+ec
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3 Building blocks for the decomposition of
J2m

In this section we provide the building blocks which we put together to get
our required decomposition of Jo,,. We begin with an analogue of Lemma
8 of [4).

Lemma 3.1. If Jom — {Hl,qu, H3} and Ja - {H,,H,, H;} then
J2(m+[) - {Hl ,Hz,H3 }, Whem Hi = Hi eHi’ 1 S 1 S 3.

Proof. Consider Jom, and Jor, with V(Jom) = {u1,u2,.. ., Umy Um+1, Um2 }U
{v1,v2,...,VUm, Um+1,Um+2} and V(Ja1) = {z1,72,...,Tm, Tm+1, Tmt+2} U
{v1,¥2, .-, Y1, Y141, yi+2}. If we contract the vertices um with zj, Umy2
with z3, vy With y; and vp,49 with y2, the resulting graph is isomorphic
to Jo(m+1)- From the properties (p1), (p2) and (p3) we observe that H; and
H;, 1 £ i < 3 are vertex disjoint in Jaim41y. Let H;' =H; ® H,-', 1<:<3.
Hence Ja(m+ty = {Hy, Hy, H3 }. O

Lemma 38.2. If Hy,,H, and Hj3 are given 2-regz£¢_zr graphs of order 2m
and Jom — {Hi, Hs, H3}, then (Ey, Ey, E2)p, » ® K2 has a 2-factorization
{H\, H, H3}.

Proof. By the Lemma 2.2, we see that Jom - {U1Um, U2Um+2, V1Vm, V2Umt2} =
(Eo, E1, E2) ., ® K2. From the properties (p1), (p2) and (p3), it is clear
that {Hi, Hz, Hs} of Jom gives a 2-factorization of (Eo, E1, E2)p,z2 ®
K. |

First we present the constructions for Jy, — {H,, H2, H3} for smaller
values of m as follows.

Lemma 3.3. The following decompositions exist.

1. Jg = {(8], 8], 8]} = {[(u1,us,v4,us,v6, Vs, u2,v3)], [(v1, U3, ua, us, us,
Vs, V2, U3)], [(’UQ, u3, u4, ¥s, ¥4, V3, V2, uS)]}

2. Js — {[4,4],[4,4], 4, 4]} = {[(v1,us, u2,v3)(us, ve, vs,v4)], [(v1, v3, V2,
u3)(ua, us, us, vs)|, [(u2, us, V2, vs)(us, ug, v3,vq)]}

3. J12 - {[4, 8]1[4v8],[4y 8]} = {[(ul,us,u4,v3)(u2,u5,v5,v7,vg,u7,v4,
'05)], [(vla V3, V4, u3)(v2a Us, Ug, V7, U8, U7, U4,’LL5)], [('UQ, us, vz, 'U3)(U4, v,
vy, Us, Ug, U7, Vs, Us| }

4. J12 — {[69 6]a [12]7 [6:6]} = {[(uly ug, uz, Vs, 1)4,1)3)(0.4,115,1)6, V7, V8, u7)]a
[('Ul;'US,'Um Vs, U4, U7, U, U7, U6, UB, ’()4,'!13)], [(ug,u5,v2,u3,u4,v3)(v4,v7,
ug, Vs, Vs, u7)] }

221



. J12 s {[61 6]’ [12]’ [12]} = {[(ula us, u2, s, V4, 'U3)('U,4, Uus, Vg, V7, Us, 'LL7)],
[(v1, v3,v2, us, v4, ur, us, vr, Ug, Vs, u4, ua)), [(uz, va, u4, vz, v4, us, vz, vs,
Vg, U7, Ug, U5 )]}

6. J12 - {[4, 8]; [12]= [47 8]} = {[(U1, us, uz, '03)('”4, us, Ve, Vs, V4, V7, U, u’7)]1
[(vlv v3, V2, U5, Us, Us, V4, U7, Ug, U7, Ug, Ug)], [(usa U7, V6, ‘U7)('U.2, us, V2, U3,
V4, V3, U4, U5)] }

7’ J12 - {[4’ 8]’ [12]’ [12]} = {[(Ul, U3,u2,v3)('u.4,'05, V4, V7, 7)8, u7, Ve, U5)],
[('Ul, vs, V2, Us, Us, Us, V4, U7, U, V7, U4, U3)], [(u2; us, U2, U3, Vq, V3, Uq, U7,
Ueg, V7, V6, ‘05)]}

8. J12 ad {[12]$ [12]’ [12]} = {[(ul’u3su21 Us, U4, Vs, Vg, U7, U8, ’1)7,1)4,1)3)],
[(v1,v3, v2, Vs, v, us, Us, V7, U, U7, Us, U3)], [(u2, Vs, Us, U7, V4, U3, V2, Us,
Vg, U7, U4, v3)]}

9. Jlﬁ d {[81 8]) [16]: [8’ 8]} = {[(u1,U3,U2,U5,U4,u5,U4,’U3)('us, Vg, V10, Ug,
Vg, U7, Vg, v?)]v [(’U],‘U3,'U4,U7,us,'U5,'U»4,'U7,U8,U9,’U'10, ’UQ,'UG,U5,’U2,’U.3)],
(w2, us, us, ug, Ve, vs, v2,v3) (ua,uq,ur, us, vo, vs, v7,v4)|}

10. Jie — {8, 8],[16], [16]} = {[(u1, ua, uz, vs, v4, us, ua, v3){us, v, V10, Uy,
Vg, U7, Vg, 'U7)], [(vla v3, V4, U7, Ug, U5, U4, VU7, UB, V9, U10, U9, Vg, U5, U2, ’U.3)],
((u2, us, ug, ug, us, uy, u4, us, v4, 7, vs, V9, Ve, Vs, U2, v3)] }

11. J20 - {[10’ 10]1 [20]: [10! 10]} = {[(ula v3, V4, V7, U, Ug, Ug, Us, u27u3)(u4x
uz, vg, V11, V12, ull,UIOavgsvﬁva)]a [(vhvvaZav5au6,u71u87v9a Vs, U11,
U2, V11, 10, U9, U, U7, Ud, Us, V4, U3)], [(u2, Vs, va, U7, Vs, Us, V2, U3, Ua, V3)
(us, vo, u10, 11, U8, V11, V10, U9, U, V7)] }

12. ']20 - {[107 10]) [20]’ [20]} = {[(ulav:!v V4, V7, Ug, Ug, Ug, U5, U2, U3)(U4, urz,
Us, V11, V12, Y11, V10, V9, V6, Us)}, [(v1, v3, V2, Us, us, Vo, Us, V11, Y12, U11, Y10,
Uy, Vs, V7, Vs, U7, v4,u5,u4,u3)], [(UQ,‘Us,’U4,U7,US,U7,’LL3,U11,UB,’Ug,ulo,
V11, Y10, U9, Ve, U5, V2, U3, 04,1}3)]}
Now we present the construction for Jo,, = {Hi; Ha; H3} for smaller
values of m as follows.
Lemma 3.4. The following building blocks exist.
1. P: Jg— {8; 8; 8} ={H,;Hy; H3}, where
H, = (v1,u3, u2, us, ug,v3, v4) U (v2,Vs, Ve) ,
Hj = (uy,v3,u2,Us,v4, us, v6) U (v2,u3,us) ,
H3 = (uy,us, v4) U (v1,V3,v2, Us, Us, Us, Ua) -
2. L4 Jg— {[4,4; 4,4 ; [4,4)} = {H1; H2; Hs}, where
Hl = (uh us, Uyg, ’03) U ('Ud,uSa u32, Vs, '06) )
H2 = ('Ul, V3, V4, U3) U (‘U.q,’Us,Ug, us, vS) )
Hj = (ug,us, v2,v3) U (u4, us, us, Vs, va) -
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¢ (8{1,‘I.n,‘Vn,‘Qn‘9a,‘Ln‘bn‘8n‘Z(;) n (9n‘9a‘Zn‘8a‘In) = ZH
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¢ (Za‘Sn‘l’n‘Qn‘9n‘Ln‘8n‘l.n‘fm‘s‘n‘Zn‘En‘In) =g
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31.

32.

33.

34.

35.

36.

37.

R‘;'s's: Jis — {4,6,6] ; 16] ; 4,6,6]} = {H,; He; H3}, where

Hy = (v1,v3,v4, s, v2) U(uz, us, uq, u7, us, us) U(vs, v7, vs, g, v10, v9),
Hj = {(uy,u3, vq, u7, vs, ug, U10, V9, Us, V7, Us, U5, U2, U3, U4, Us, V2) ,

Hj = (uy,vs3,v2,us, v1) U (u4, v7, v4, us, Ve, vs) U (us, Vo, Vs, u7, Us, Ug).

R$1: Jig > {6,10]; 16] ; 6,10)} = {Hy; Ha; Hs}, where

Hl = ('U1, us, u4, U7, Vs, Us, UZ) U (uzy vs, Y4, V7, U, Ug, V10, V9, U6,U5),
H2 = (uh vs, u4, us, Vs, V7, Ue, Ug, U10, V9, Us, U7, V4, Vs, U2, U3,‘02) )
Hj = (u1,u3,v4, us, V2, 3,v1) U (s, Us, Us, U7, VU8, Vg, Vs, U9, Us, U7)-

RI**: Jie = {12,4] ; 16] ; 12,4]} = {Hy; Hz; H3}, where

H, = (v1,v3,u2, us, vg, Ug, V10, V9, Us, Vs, Va, U3, V2) U (u4, uz, vs, v7),
Hj = (u1,u3,uz, Vs, Ve, V9, 410, U9, Us, UT, UB, UT, V4, U5, Ud, U3, V2) ,
H3 = (U1,‘U3,'U4,’U7, Ve, U7, U6, US, V2, Us, U4, U3, Ul) U (US,‘UQ, US,UQ)-

LR>%%8 . Ji6— {2,4,4,6; 10,6 ; 2,4,4,6} = {Hy; Hy; Hs}, where
Hy = (v),v3,v2)U(u2, u3, ua, us)U(vq, vs, V6, ur)U(s, V9, us, U7, Us, U, V10) ,
Hjy = (u1,vs, uz, vs, U4, V7, Us, Us, V4, U3, V2)U{us, ug, vs, Uz, Us, Vs, V10) ,
H3 = (uy,u3, v1)U(v2, Us, us, us)U(vs, Vo, U10, ug)U(us, U7, Ug, V3, V4, V7, U8) .

LR?""10 . Jie {2,4,10; 8,8; 2,4,10} = {Hy; Hy; H3}, where

Hy = (v1,v3,v2)U(ug, us, ua, us)U(vs, Uz, Ve, ¥7, V4, Us, Us, U9, U8, V9, V10) s
H2 = (ulvv31u2’ Vs, Vs, Us, Vg, U3, UZ)U<u8, v7, U4, U7, U, Vg, Vs, Ug, le) s
H3 = (uy,us, v1)U(vs, Vg, u10, g)U(us, Uz, V4, U3, Ua, Vs, V2, Us, Us, U7, Ug) -

LRf""E”6 : Joo— {2,4,8,6; 10,10; 2,4,8,6} = {H,; Ha; H3}, where

H; = (v1,v3,v2) U (u2, us, ua, us) U (v4, vs, Vs, Vo, Us, V7, Vg, ur) U
(v10, U9, U10, V11, US, U11,V12) »

H2 = (uls'u33 u2, Us, Ug, V7, Vs, Us, V4, U3, 1-)2) U
(u10, V9, us, U7, Us, Ug, Vs, U11, V10, V11, V12) »

Hjz = (u1,u3,v1) U (ve, vs, ug, us) U (v, vq, v7, Us, Ug, Vs, U7, Ug) U
(%10, 211, %12, V11, V8, V9, V10) -

LR2W482 . Joo > {2,4,4,8,2; 4,16 ; 2,4,4,8,2} = {Hy; Hy; Ha},
where
Hy = (v1,v3,v2)U(uz, us, us, Us)U(Ua, Ud, w7, V4)U(Vs, Vg, U8, U7, Us, U11,
u10, ug) U (v10,v11, %12} ,
Hj = (uy,v3,uz, u3,v2) U
(u10) 11, Us, V9, Us, V7, U4, Us, V4, Us, Vs, U7, U, U9, V10, U11, le) )
Hs = (uy,u3,v1)U(us, uz, us, ug)U(vs, v11, 12, u11)U(ve, Us, U4, V3, V4,
v7:v6’u5) U (u10$ anUIO) .

LR85 . J,1 {2,4,4,8,6; 14,10 ; 2,4,4,8,6} = {Hy; Hy; Hs},
where
H, = (v, v3,v2)U(u2, us, ug, us)J(vs, vs, ve, u7)U(us, v7, Vs, Vg, £10, 11,
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55.
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58.

59.

60.

61.

62.

63.

RY%: Jip s {2,6,4]; 12] ; 12|} = {H); Ho; H3}, where
Hy = (v1,v3,v2) U (u2, us, v4, vs, Ua, us) U (uz, vs, v7, V6),
H2 = (‘UI,'U,3,’U.4,‘U7,'U.8, V7, U, Us, V4, V3, U2, Us, v2> ]

H3 = (UI,Us,U4, v7, V4, U7, Ug, Us, V6, Us, V2, U3, 'Ul) .

Ji2 — {4,8]; 12]; 12|} = {H:; He; H3}, where
Hy = (v1, us, u2, v, v2) U (ug, v7, Vs, U7, v4, Us, Ve, Us),
Hj = (u1,v3,v4, vs, u2, us, Us, U7, Us, U7, Uq, U3, V2) ,

H3 = ('U.l,us,'lM,’U'(,'Us, U7, U, Vs, V2, Us, U4, 'U3,'U1) .

Jiz — {8,4] ; 12] ; 12]} = {H1; Ha; H3}, where
H, = (v1,u3,uq, us, u2, Vs, V4, v3, V2) U (u7, V8, v7, Vs),
Hj = (u1,vs, u2, us, v4, us, Us, Uz, Us, U7, Ug, Us, V2) ,

Hs = (u1,us, v2, us, Vs, Us, Us, V7, V4, U7, Uq, V3, V1) .

R““ Jie — {4,6,6] ; 16] ; 16]} = {Hy; Hy; H3}, where
(vl,ua,Uz,va,vz)U(m,us,uﬁ,vs,v4,u7)u(ve,vv,vs,vg,vlo,ug),

H2 = (UI,U3,U4,’U,3, v4, V7, Us, U9, U10, Vg9, U, U7, Vs, Vs, U2, Us, ’02> ’

H3 = (uy,us, vz, vs, U4, V7, Us, U9, Vs, U7, U8, V9, V6, Us, U4, U3, V1) -

R3': Jig > {6,10] ; 16] ; 16]} = {Hy; Hp; Hs}, where

Hl = (vl,u:;,ug,u5,u4,v3,v2) U (1)4,’05,1)6,’&7, Ug, U9, V10, 09"”8)”7)’
Hj = (u1,v3, ua, vs, ug, U7, Us, Ug, 110, V9, Us, U7, U, Us, U4, U3, V2) ,
H3 = (Ul,U3,U4,U7,U8,Ug, Uue, Vs, V2, Us, Vs, Ug, U, U7, V4, V3, ‘U]) .

R : Jig v+ {12,4] ; 16] ; 16|} = {H\; Ha; Ha}, where
H1 = (vl,us,ug,u5,u4,u7,u3,v7,vs,vs,v4,v3,vz) U (vs, v9, V10, U9),
H; = (Ulyvs;UZ,US,u&uQ, 10, V9, Us, U7, Ug, Us, U4, U7, U4, U3, V2) ,
H3 = (uI, ug, v4,u7, Vs, V7, Us, U9, Vs, Vg, Ug, Us, V2, U5,'U.4,’03,‘Ul) .

LR2*%2. J15 0 {2,4,4,2; 8,4 ; 6,6} = {H\; Ho; Hs}, where
Hy = (v1,v3,v2) U (ug, u3,u4,u5) U (v4, vs, ue, u7) U (vs, v7, v8) ,
Hj = (u1,u3, v4,v7, U4, V3, Uz, Us, V2) U (us, Us, Vs, U7, Us) ,

Hj = (uy,v3,v4,us, v2, us, v1) U {us, v7, us, u7, Udg, Us, V6) -

LR?4%2. Ji6 {2,4,4,4,2; 10,6 ; 6,10} = {H); Hy; Ha}, where
Hy = (v1,v3,v2) U (uz,us,w,us) u (us,uhus,us) U (v4,vs,vs,v7) U
(vB’UQ»UIO))

H2 = (’U-l,U3,'U4,U7,’UB,’U7,’U.4,’U3,U2,’Us,’l)z)U(Us,’Ug,ue,'LL5,’U6,'LLQ, le) ]
Hj3 = (uy,v3,v4,us, v2, u3, v1)U(us, v7, Ug, Us, U4, U7, U, Y9, L10, U9, Us) -

LR>%: Ji3 {2,4,6; 8,4; 6,6} = {H); Hz; H3)}, where
Hy = (v, v3,v2) U (u2, u3, ug, us) U (ve, v7, us, Us, va, U7, V8) ,
Ha = (uy,u3, v4,v3, u2, Vs, Vs, us, v2) U (us, u7, ug, v7,s) ,
H3 = (u),v3,u4,vs, V2, u3,v1) U (us, us, v4, V7, us, u7,Vs) -
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64. LR2**®: Jig— {2,4,4,6 ; 8,8 ; 2,14} = {Hy; Ho; H3}, where
H) = (v1,v3,v2) U (uz,ua,w,vs) U (us,Us,u7,v4) U (v, 7, Vs, Ug, Us,
g, ¥10),
H2 = (ulav3s uz, us, U4, V7, Y4, U3, vg)U(ug,u7,v6,v5, Ug, V9, Vg, uQ;vIO)y
Hj = (uy,ua,v1)U(ug, vz, us, ug, U10, V9, V6, Us, U2, Us, V4, U3, U4, U7, Ug) -

65. LR2**8% . 1,4 {2,4,4,8,6; 8,16 ; 2,22} = {Hy; Hy; Ha}, where
H, = (vl,va,vz)U(Uz,us,w,vs)U(us,us,u7,v4)U(u8,vs,vs,Uu,ulo,
ug, Vg, v7) U (v12, V11, V10, %13, U12, V13, V14) ,
H2 = (‘ll.l,v3, u2, us, U4, V7, '04,’Ua3,’02) U (ul'b u11, Y10, V9, Us, Us, Vs, U7,
s, U9, Ug, V11, U10, V13, V12, U13, V14),
Hjz = (uy,u3,v1) U (w12, v11, Vs, v7, Us, U9, V10, V13, U14, L13, 410, V9, Us,
us, V2, Vs, V4, U3, Ug, U7, Ug, U1, V12)-

4 2-Factorizations of (E;, Eji1, Eji2)nn ® Ko

In this section we show that (F;, E;1, Ej12)nn ® K has a decomposition
into almost any bipartite 2-factor of Ko, 2,. We first prove the following
before proving our main result.

Lemma 4.1. The following holds:
(i) Je = {[k], [k), [k]}, when k = 0(mod 4)> 8.
(i) Jarr — {[4,%], (4, k), [4, k]}, when k = 0(mod 4)> 4.

Proof. (i) Ji — {[k], [¥], (K]}

If k = 4(mod 8),k > 20, the construction is given by L2 @ (5322)P & R®.
If k = O(mod 8)> 16, the construction is given by L8 & (%)P @ RE.
The construction for the remaining cases Jg — {[8],(8],(8]} and Ji2 —
{(12},(12], [12]} follows from Lemma 3.3(1,8).

(i) Jass — {4, K], 4, K], 4, K]}

If £k = O(mod 4)> 20 and k # O(mod 8), the construction is given by
L** @ (5512)P @ R®. If k = O(mod 8)> 16, the construction is given by
L3 g ("'l‘s )P @ R8. The remaining cases Js — {[4,4],[4,4],[4,4]} a.nd
Ji2 = {[4, 8] [4, 8], [4, 8]} are given in Lemma 3.3(2 & 3).

Theorem 4.2. Suppose that m is an even integer and F is a bipartite 2-
factor of order 2m, with the provision that if m = 2 (mod 4) and F' is not
a collection of 4-cycles, then (Ey, Ey,E3)p 2 ® K, has a 2-factorization
into {Hy, Hy, H3}, where H; = F, 1 <i< 3

Proof. Without loss of generality we may assume that the given 2-factor
F can be decomposed into 2-regular subgraphs Fi, Fs,..., F; such that
each F; is isomorphic to either [4,k], k € {4,8,12,16,...,} or [k], k €
{8,12,16,20,...,}. If m = 0(mod 4) and F = [4,4,...,4], then F can be
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decomposed into copies of [4,4]. If some of the components of F are Cy,
then F has a decomposition in which each F; is isomorphic to either (4, k]
or [k]. If F has no Cj, then F has a decomposition in which each F; is
isomorphic to [k]. By Lemma 4.1, we have Ji — {[k], [k], [k]} and Jy4x —
{[4, k], [4,k],[4,k]}. Then by Lemmas 3.1 and 3.2, we get the required 2-
factorization {Hy, Hz, H3} of (Eo, E1, E2) 2 = ® K. (]

Lemma 4.3. For m > 4, if Hy = Hs is a bipartite 2-reqular graph of
order 2m and Hj is a cycle of length 2m, then Jon, — {H\, Ha, H3} with
the following possible exceptions: (i) Hy is a Cy-factor (i) at least two
components of Hy are Cys and all other components are of order greater
than and divisible by 4.

Proof. 1f Hy & Hj, then the proof follows by Lemma 4.1(i). So assume
that H; 2 H,. We give a construction for Jo,, — {Hi, Ha, H3} based on
the structure of H,. Let p, q,7, s and ¢ be positive integers. Then the order
of the components of H; will be a combination of the following:
(i) k1,k2,. .., kp, where k; =0(mod 4) > 8, 1<i<p.
(ii) ki,k&,...,k;, where ¥} =6,1<i<q.
(i) kY, k%,... kY, where k! =2(mod 8) > 10, 1<i <.
(iv) k’l",k”’ ..., kY, where k{” = 6(mod 8) k}” > 14, 1 <i<s.
(v) ki ki, ... ki, where k{* =4, 1 <i <t
By the hypothes:s, H; & [k > S ] i.e., H; does not contain only
4-cycles. The number of possible types of H 1is (4)+(2)+(3)+(5)+( ) = 30.
Without loss of generality, assume that k; < ko < --- < kp, k < k§ <
- < k!, K < Ky < --- < kY. Now we construct the required cycle
decomposition in all the 30 types as follows:
Type 1: Hy 2 [k, k2, ..., kp| where p > 2 and k; = 0(mod 4) > 8.

Case 1: k, = 8
By our assumption k; = kp = --- = k, = 8. If p = 2, then by Lemma 3.3(9),

we have 115 - {Hl,Hg,Hs} {[8 8] [16 8 8}, le H1 & H3 = [8 8]
H; =2 [16). If p > 3, then the construction (LYo (- 3)C @Rl 81, gives
our requirement to get Jk, 4ky+...4k, — {H1, Hz, H3}, where H) & H; &
(k1,k2,..., kp) = [8,8,...,8], Ha = [ki+ka+-- -+ kp) = [8+8+---+8].
For exam Ple Jaz — {[8, 8 8,8],[32], [8,8,8, 8]}, by the construction {L}* @

4,4
Ci 81, see Figure 4.1.
5 ug U0 U U Ui UISNM17 s
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Figure 4.1. The graph Jsz = J12® Js ® J12
Case 2: k; = 8 for some i and k;4; > 12, 1 <i<p—1.
The construction for the case is {L}* @ (252)Po My & (232)PO M3 ®
@ (fe=ize=)P @ M, @ ("25%2) P ® R}, where

. = O ki =0(mod 8)
CT10%4, ki=4(mod 8),2<i<p-1,

.= 8, ki =0(mod 8)
YT 112, ki=4(mod 8),2<i<p-1,

= 12, kp =4(mod 8)
P~ 116, kp=0(mod 8),

R2, k, =0(mod 8)
dR= 1P
an {RB, k, = 4(mod 8).
Case 3: ki > 12. The construction for this case is
{80 (M52 )Po M, @ (B52)PO My @ - & (2=152=1)P @ M, @
(*25°2)P @ R},

C’f"‘, k1 = 4(mod 8)
where M = {Cf‘4, ky = 0(mod 8),

and 2y = {12, k1 = 4(mod 8)

16, k; = 0(mod 8).
The other terms M;, z;, 2 <i < p and R are as in Case 2.
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For future use, we denote

L?"‘@(Ezg—‘z)PeaMge(Elg—ﬂ)PeMge---eB('ff’—"—;‘Eﬂ)P

LS(]) _ oM -1, kl =8
Lsea(ﬁg—‘l)PeaMl@(hg—’l)P@Mgean-ea('—“'%ﬂ)P
eM,_,, ky > 12.

Type 2: Hy = [k, k3, ..., k).

Since k’ =6, 1 < i < q and the order of H; is congruent to 0(mod 4)
(by the definition of Jo,), ¢ must be even. If ¢ = 2, then by Lemma
3.3(4), we have Ji2 — {6[6 6),[12),(6,6]}. If ¢ > 4, the construction is
{L62e(g—_4)c462®R ,6,6

Type 3: Hy = [k7, k3, .. k”]

Since k! = 2(mod 8) > 10 1 £ 7 £ r and the order of H; is congruent to
0(mod 4), r must be even.

Case 1: k” =10.

Ifr=2, then by Lemma 3. 3511), we have Jyo — {{10, 10], [20], [10 10]}. If
r > 4, the construction is {L; @My oM@ - O M! , ® R6 10} where

MY = C®, iiseven
PU1CS, disodd, 2<i<r—2.
Case 2: ki =10 for some 7 and ki, > 18, 1 <i<r—1.
The construction is {L;*° (l—‘zg—w)P OMi®- & (—'—-‘—'8—2)13 eM!_,®
(525 P @ R'?}, where

44 .
MY = Cr®, iiseven
: C%, iisodd,2<i<r—1.

Case 3: ki > 18. The construction is
(Lo W) PoMie (i) Po Mo -0 ()P ML, ©
(22718) P @ R1?}, where
M = Cf“!, i is even
PTCe, disodd, 1<i<r—1.
Type 4: H; = [k{', kY, ..., kYV). 5
We observe that s is even. The construction is {L® & (hs;li)P eM"e®
o (B p o M & (K71)P @ R®), where

M = C38, iisodd
P88, diseven,1<i<s—1.
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Type 5: Hy = [ky, kg, ..., kp, ki, k5, ..., kg

We observe that ¢ is even.

Case 1: k; =8 for some i, 1 <17 <p.

The construction is

(L3 (Bzz)Po Mo - @ (=ls2=1\P O M, ® (232)P O M, ®
(9;—2)03’6’4 ® Rf’s}, where 2; and M;, 2 < i < p—1 are as in Case 2 of
Type 1.

_feit, k, =0(mod 8)
and My = {Cf"‘, k, = 4(mod 8)
Case 2. k; > 12. The construction is
(B2 )PoM o (B52) PO M@ - @ (2=l52=1)P & M, ®
(Ee:-’z)PeM,,e (552)02® : @ R>%}, where z; and M, are as in Case 3 of
Type 1 and the other terms are as in previous case.
For future use, we denote

L84®(_z—_zz)p@M2@ @(_Mz-_l)peM_l@(k 5—zyp

LS®) = S M,, ky=8 .
L*s (E%zl)PEBMl(h-g—zz)P@M2® ) (_&EZP_:L)P@
Mp"l ® (EL;_ZB)Pe M,, ky > 12.

Type 6: Hy = (ky, kz,..., kp kY, kY, ... kY]

We observe that 7 is even.

Case 1: kIl =10. The construction is

{LS® o M” OMy® . -®M'",®RI}, where

MY = Cf"', 1 is even
' CH8, iisodd, 1<i<r—2.

Case 2: k, > 18. The construction 1s
{L5® 0 (HFOPe M & - & (“4=)Po ML, @ (552)P o R12),

MY = CH*, iiseven
: CH®, disodd, 1<i<r—1.

Type 7: Hy 22 [k, k2, ..., kp, kY, k5", ... kL)
We observe that s is even. The constructlon for this cz’ac.sg 1s
(Ls® o (M) PeCi® e (N5 ) PO M'® - & (=24—)PO M, ®

(k 8-14)P®R8},
where
MY = {Cf's, i is odd
=

88, iiseven, 2<i<s—1.
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Type 8: H1 [4 k],kg, .o k‘ }

Case 1: k, = 8.

Ifp =1, then by Lemma 3, 3(6), we have le - {[4 8],[12], [4,8]}. For
p > 2, the construction is {L}* @ (p - 2)C* @ R1 8.

Case 2: k, > 12. The construction for this case is

(Lo (Bs2)PoM o (252)Po Mo - @ (k=132 ) P o M,_1 @
(%25%2)P @ R}, where

P, ki =0(mod 8)
M = c“ ki =4(mod 8), 1 <i<p-—1,
1 = ) -

Y 8, ki =0(mod 8)
*T 12, ki=4(mod 8),1<i<p-1,

_ )12, kp=4(mod 8)
7116, kp=0(mod 8),

R2, k, =0(mod 8)
dR={" 7 "
an {Rs, k, = 4(mod 8).

Type 9: Hy = [K{, K}, ... K, kI, kY, ..., k).

*r Mg
We observe that ¢ + r is even. Hence g and r are of same parity.

Case 1: r = 1. The construction is {L3? @ (5?-'-'—)6'4 %2 (Eﬁf"_IO)p@ R8}.
Case 2: k! =10 and both g and r > 3 are odd The constructlon is
{L%? o (2—)0‘“" 2oCtH oM OM!®- - &M, R¥°Y}, where

4,4 ..
MY = Cy®, iisodd
i Ce,s .. .
1, tiseven,2<i<r—2.

Case 3: k;! > 18 and both g and r > 3 are odd. The constructxon is
{L6.2®(g—_)04 6,2@(k']';10)P®Cf,4 (kﬂ_lo)PGBM”GB ®( kil_ 1 10)P®
M, & (55)P ® R!2}, where

4,4 ..
MY = Cy*, iisodd
R o T I .
L, tiseven, 2<i<r—1

Case 4: k¥ = 10 and both ¢ and r are even. The construction is
(L2 (52)CH2 o C o Ml @ MY ® -~ & M!_, ® R1°}, where

MY — C’f“’, i is even
P08, disodd, 1<i<r—2.
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Case 5: k;' > 18 and both q and r are even. The constructlon is
Lo (B0 ol e (BF) PO Ml @0 (== 2)Po Ml ®
(E%B)P @ R?}, where

M = C’f’4, i is even
L - ,
L, tisodd, 1 <i<r-—-1.

Type 10: Hy = [k, k3, ..., kg, k", k3, ... k')
We observe that g + s is even. Hence ¢ and s are of same parity.
Case 1: Both q and s are even. The construction for this case 1s {L6 2

Croleny Tow (i 1) peci®e (i M PeMye. - -o(2=1)Pe
Mm@ (ki1 ‘“)PeRS}, where

M — C’ K i is odd
* C3®, iiseven,2<i<s—1.

Case 2: Both q and s are odd. If s = 1, the construction is {L62
(57—)C'462 ® (51_—“)P @® R?}. If s > 3, the construction lS (L? @

(9—)0462 ® (kls_s)P ® M{” ® (kz 8—14)P ® Méll - ( a-l 14)})@
M, @ (5722 P @ R8}, where

M = C K i is even
! CcY®, iisodd,3<i<s—1.

Type 11: Hy = [k, k), ..., kj, k%, k5", ..., k).
We observe that g is even. The construction is {L}? @ (%52)C1%* @

(|552))C¥** @ R}, where

R— R¥®,  tisodd
R¥84 tis even.

Type 12: Hy = [k{,kY,... k! k' kY, ... kY.
We observe that r + s is even. Hence r and s are of same parity.
Case 1: k! =10 for some i, 1 < i < and both 7 and s are even. Then the

construction is {Lmsﬂa(u)P@M”@ &)(k _IO)PQM"e(E‘_—“)Pea
Clos g (M opo My @ - @ (BP0 MY, @ (K514)P @ R?),
where
MY = C;“, 1 is even
' C%8, iisodd,2<i<r,
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M = C , tisodd
¢ CP®, iiseven,2<i<s-1.

Case 2: k! =10 for some 7, 1 < i < r and both r and s are odd. Then the
construction is {L106 (52_—10)P69M”69 e(k -m)P@M”@(ﬁu_—M)PEB
M'e- - & (=—t— "‘ l4)PGBM,','11 ® (k _“)PGBRB}, where M/ is as above
and
M = Cy”, iiseven
: {cf's, iisodd, 1 <i<s—1.

Case 3: ki > 18 for some i, 1 < i < r and both r and s are even. Then the
construction is {L12$(-’51-:—1§)P69M” ('—‘2"—1°)P63M”ea L@ kel L) Pe
Mo (MY Pec® e (M PoMy o 0 (B PO MY, @
(514 P @ RS}, where

44 .
M = cr K % is even
¢ C*®, iisodd,1<i<r

and M/" is as in Case 1.
Case 4: ki > 18 for some i, 1 <1 < r and both r and s are odd. Then the

construction is {Ll?e(h‘—‘s)PeM"e(’-‘z'—w)PeM"e o270 Pe
Mo PoMIe- -0 () Po M o (5524) P@ RP), where
M/ is as in previous case and

M = Cf’e, 1 is even
i =988 . .
Cr”, iisodd,1<i<s—1.

Type 13: Hy = kY, k%,... kY kv kY, ... k).
We observe that r is even. In this type, define

I- LB  tisodd
L , tiseven

Case 1: r = 2. Then the construction is

(Lo (B9 Pe (|4L])C**% -0 (2572°)P o R}

Case 2: k” = 10 and 7 > 4. Then the construction is

(Lo ([i-J)c“ 2oCH oMl @ & M"_,® RS}, where
M = Ci, iiseven

' Cf’s, iisodd,3<i<r—2.
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Case 3: k! > 18 and r > 4. Then the construction is

{L“’(h‘—“’)Pe([LJ cr?e iz Pacte i) PoMie- -0
(’c =1 p o M/ ) (k18 _IS)PGBRIZ} where
M = C’f"‘, i is even
: C%®, iisodd, 3<i<r—1.
Type 14: H, = [k”’ AN L i 5 SR S
We observe that s is even.
Case I: s = 2. Then the construction is
(L2 o (MZ14 P g (|42 )C24? @ (5 574) P @ R}, where
R2,  tisodd
R= 12,4 :
R;®*, tiseven.
Case 2: s > 4. Then the constructlon is
(Lo Hpe My e- o (5924 Po M 0 (B Po )t
(==— kos l-‘6)15’63 (et e (k-1 _14)P€9R}, where R is as above and
MY = Cf’s, i is odd
: CP®, iiseven,1<i<s-—3.
Type 15: Hy = [k1, ko, ..., kp, by, kb, . .. kg, kY, K3 . k1.
We observe that ¢ and r are of same parity.
Case 1: Both q and r are even. The constructlon is

(9-—2)0264 R’ %1, where

66 .
MY = C;", tisodd
: CH*, diseven,1<i<r

Case 2: Both ¢ and r are odd. The construction is

(LsW @ (B0 po Ml o (M50 Po M) -0 (1) Po M/, o

(kl';lo)P®MU (—sz-)P@(L_)0264 R2 6}, where

M= C%8, iisodd
* Cf’4, iiseven,1<i<r-—1,

MII _

r

C%®,  kp =0(mod 8)
C%1°  k, = 4(mod 8),
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12, kp, = 4(mod 8).

Type 16: Hy & [ky, ko, ..., kp, k1, k5, .. kg, kY k5, .. K]
We observe that ¢ and s are of same parity.
Case I1: Both g and s are even. The construction is

{LS®a(L2)0} oL PoCi* o (43t PoMy e - (54— ktim14) pg
Mm @(k _14)P®R8}.

MY = {C’f 6, iisodd

and 7, = {8, kp = 0(mod 8)

088 iiseven, 2<i<s-—1.
Case 2: Both g and s are odd. The construction for s = 1 is {LS(s) @
(58P @ (552)0%%* @ R}®) and for s > 3 is {LS® @ (h-:-‘i)P@
(g_)0264®(k2 —14)P®CIOS®(IC3 _14)P$M”’e @( l 14)P®
M’”lea(" =14\P & R8}, where

M = CY®, iiseven
: CY®, iisodd, 3<i<s—1.

'I\ype 17: Hl [klv k2a kpakiv ] qv k2 e k:’v].
We observe that q is even. The constructlon 1s
{LS® @ (52)C284 o (|£])CP*? ® R}, where

Rf 8 tiseven
R=4q 7264 .
Ry, tisodd

Type 18: Hy = [ky, ko, ... kp, k7, k5, ... KL &Y kY, ... kY.

We observe that » and s are of same panty

Case 1: Both 7 and s are odd. }‘he construction is

{Ls® o (M5 P o M! © (55%)P o Mo o (=P e M/ ®

(k] _14)P®M'" (kg _14)P®M”’® (Lt kL 1~14)P$M"'1@(k _14)P@

R8} where
MY = C%®, iisodd
t Cf", iiseven,1<i<r.

M= C’f’s, i is even
: CP®, iisodd,1<i<s—1.
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Case 2: Bot,b r and s are even. ,:I‘he construction is

{LS® @ (M7 P o M{ @ (B 2%P o M@ =P o Mo
(kl _14)P®0106 (kz —14)P$M”® $( ,_1 14)P$M”/1®(k —14)P®
RS}, where M/ is as in Case 1 and

6,6 ..
M = Cy"®, iisodd
' Cls,s’ iiseven,2<i<s-—1.

Type 19: H] [kl,kz, p, ”, g,...,k;.',kiv, %”,...,kgv].
We observe that r is even The constructlon is 10
{LsW @ (530 P o M. e(ﬁz:lﬂ)Pe fo--o (=1 Pe M o

(—%ZZ)PG? ([—'%—J)Cf 4, 2 ® (’c 8"°)PeR}, where

MY — 3%, iisodd
* CH*, iiseven,1<i<r—2,

MII

r—1

cos, kp = O(mod 8)
C’6 10, kp = 4(mod 8),

. = 8, kp=0(mod 8)
7 e, kp, = 4(mod 8),

R, tisodd
dR= ’
an {Rf"‘, t is even.

Type 20: Hy = [ky, ko, ... kp k' k... kY kK, L k).
We observe that s is even.

Case 1: s = 2. The construction is o
(Ls® @ (K28 P @ (|41 |)C3*? ® (% 5)P @ R}, where

Re R2  tisodd
R, tiseven.

Case 2: s > 4. The construction is

(Ls®e (i) Pacl™ e (i PeMy o -0 (4= PO M 0
(E414)p 6 0 0 (E424)P o (| 51110747 0 (£54)P & R), where R
is as above and

—14

M Cc®, iisodd
! C¥8, iiseven,2<i<s—3.
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Type 21: Hy = [ky, k3, ... kg, by k5, kR kY, KLY,

Case 1: q,r and s are even. The construction is

{L* o ()i e o e (HFR)PO Ml o - 0 (“52)Po Ml ®

(Rfsl}s-l‘i]‘)lpeciloﬁ%(kz 8—-14)P®Mg®. . '@(k‘-ls_l4)P$M;’_l,le(k’ 8_14)P®
, where

MY = Ci, iiseven
: CH8, iisodd, 1<i<r,

M = Cf’s, i is odd
i = Cs,s .. <
1y iiseven,2<i<s—1.

Case 2: g is even r and s are odd. The construction is

L’ e (P e 0t @ (A )PO M & - (B52)P o M) ©
(A2 PoMI"® - (—'—k’"g-M)P@ M ® (—‘—kms_M)PGB R®}, where M/’
is as in Case 1 and

MY = C3®, iiseven
: C¥8, iisodd, 1<i<s—1.

Case 3: g and r are odd and s is even. The construction is

Lo (5ot e () Pech o () Po My 0 -0 (%52 PO
Mg'@("L'—k 8_14)P®C110'6®(53;—M)P®M2’,’@-..@(L.ls'ﬁ)p@Mglil ®
(Elg-_M)P@ R8}, where M!" is as in Case 1 and

44 .
MY = C{%, iisodd
¢ CY®, iiseven,2<i<T.

Case 4: g and s are odd and r is even. The construction is
(L’ ()01 0 (B2 Poct o (B Po M 0 o (552)Po

Motz PoM e 0B Po M | & (5514) P RBY, where

M/ is as in case 3 and M]" is as in Case 2.

Type 22: Hy = [k{, ks, ... kg, ki, kg, kYR RS, kY]
We observe that g and r are of same parity.

Case 1: Both ¢ and r are even. The construction is
{Lo(MF2)Pa((HE])CH e (HF2)Poc 0 (SF2) PO M@+

K219y p g MY @ (52)C2%* @ R¥®}, where

L‘;'s, t is even

I— {LB, t is odd
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4.4 ..
and M" = C16 K i is even
t C;”, iisodd,3<i<r.

Case 2: Both g and r are odd.
If r = 1, then the construction is {L? @ (52)C1%? @ (|L])CP*? @

(EHEQIO)P @ R}, where

R RB, tiseven
RY, tisodd.

If r > 3 and k! = 10, then the construction is {L;>° ® (-’Slz';i)P &M e
@ (=P e ML, © (50T @ (|42))01 % © ()P o R},

where
44 .
M Ci*, iiseven
: CH8, iisodd, 2<i<r—1,

Ao {RS, t is odd

R3*, tis even.

If » > 3 and k{ > 18, then the construction is {L!? @ (M)P oM
(kz"w)PEBM"@ €B( _1 m)PGBM;'_l@( -1)0264@([ J)C’242
k ;10 )P @ R}, where R is as above and

M!" =

2

Cy*, iiseven
CH%, iisodd,2<i<r—1.
Type 23: Hy = [ki, k), ... ko, k' kY, .. kY kY kS, .. k).

] q’
We observe that ¢ and s are of same parity.
Case 1: Both ¢ and s are odd.

If s = 1, then the construction is {L3? @ (331)C1*? @ ([L))C?*? @
(’51—8_—1-4-)13 & R}, where

R= R!2,  tiseven
R**, tisodd.

(k, '6)P®C“€B(k3 —14)P60106@(k3 —14)P®Mm® (= koL 1 14)};@
M, & (55714 P @ R}, where

MY = C%®, iiseven
PT1C%8, disodd, 3<i<s—1,

If s > 3, then the construction is {L$? @ (52)C1%* @ ([ J)C242
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R®  tiseven
dR= !
an {Rf"', t is odd.

Case 2: Both g and s are even. The construction is "
{L?,2 (2—_2)04 ,6,2 ® (liJ)C2,4,2®C4 4® (kl —14)Peclo,6 ® (kz 8—14)Pe
M®---® (%M)P eM", @ (Eﬂ—_ﬁ)P ® R}, where

6,6 ..
M = Cy”, iisodd
! CP®, iiseven,2<i<s—1,

R, tiseven
dR= ’
an {Rif"l, t is odd.

Type 24: Hy = [k, kY, ... kI kY kY, kY kR K, . k).
We obhserve that » and s are of same panty In this type, define

{L8 t is odd
L= .
L8 , tiseven

Case 1: Both r and s are odd. .
If r = s = 1, then the construction is {L & (852)P & (|2])C?*?* @

(sl p g RI2}.

Ifr = 1 and s > 3, then the construction is {L@(EL:lQ)pe([ 1))c242
("s“g—_f")P@C e(u)PGBCmGGB(E“_—M)P@M"’@ (R ,_, 14)P69
M, @ (551) P @ R®}, where

MY = C , tiseven
: cfs, iisodd,3<i<s~—1.

If # > 3, then the construction is {Le(’-cl-ﬂ)PEB([ J)C2 h 2630(53-—3)13‘69
084®(M)P$M”9 @(k _IO)P@M” (&_g_lj_)PeM{ue D
(B P o My, @ (551)P @ R®}, where

MY = Cf"‘, i is even
C%®, iisodd,3<i<m,

CY®, iiseven
Cy®, iisodd,1<i<s~1.
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Case 2: Both r and s are even. The construction is
{L@ kl —IO)Pe(I- J)C2,4,2 (kz_lo)P@084 (k:—lO)PeMlle .e

(k —lo)PeM"@(k‘ —14)P®0106®(k2 —14)PeMllle e( n I 14)Pe
M @ (Eid _14)P® R8}, where

M = CHt, iiseven
: CH®, iisodd,3<i<r,

C™®, iisodd
and M/ =1
¢ {018’8, iiseven,2<i<s—1.
Type 25: Hy = [k1, ks, . kp, K, Ky ., K0, K, K KL R RET L R2Y),

Case 1: q,r and s are even. The constructlon is
{st)@(a)cz“@(u)yewe o (57)PoM! 0 (Kt Pe

C}OS (Ez—_M)PeMII® @( c—) 14)P®M;,Ll e(k _14)P®R8},

where
MY C4, iiseven
* Cf’s, iisodd,1<i<r,

C%%, iisodd

C’ls's, iiseven, 2<i<s-—1.

Case 2: q is even r and s are odd. The construction is
(Ls@e)c e () Po My e o (S5)Po M & (H5H)Pe
M'e - -&(—— "‘ 14)}:‘€BM’"1®('c 3t )P @ R8}, where M/ is as in Case
1 and

M = C3%, iiseven
: C¥8, iisodd, 1<i<s—1.

Case 3: q and 7 are odd and s is even. The construclEion is
{Ls® o (B PoM! e o (5 )Po Mo (L) Po M e -0
(S557Po My, @ (S5 Pe O @ () Pe ()0 0 RY),
where M/’ is as in Case 1 and

MY = Cf’s, i is even
P o8, disodd, 1<i<s—2.

Case J: q and s are odd and r is even.
If s = 1, then the construction is {LS(5)®(51_—1°)P69M”63 @(k _IO)PGB
M! ® (u)P ® (9—-—)0264 R?%}. If s > 3, then the construction is
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{LS(S)Q;(.’E:—_“’)}J@M"@ @(ﬂ)p@Mﬂe(u)pecmﬁ
("z _14)P®M"'® @( .-2 14)P$M'”2$( .- )P@CB4 (k _G)PGB
(9-—)6'264 R?%}, where M" is as in case 1 a.nd

M Co8, iisodd
! CP8, iiseven,2<i<s-2.

Type 26: Hy = [k, ko, ..., kp, k1, k5, .- - kg kY RS, .. K, kv k... k).
We observe that g and r are of same parity.
Case 1: Both ¢ and r are even. The construction is

(LSO (M0 PoMye- o (L5 Po M o(552)CH 0 (|4 ))CH%e
R}, where

p_ J B tisodd
R¥S,  tiseven

CH4, iiseven

d M =
ane M {Cf‘e, iisodd,1<i<r.

Case 2: Both g and r are odd. The construction is
{LS(5)®(EL:£)PGBM"® & .._, lo)P@M" 1@(3'—)02 6, 49( I.%’LIJ )012,4,2
® (k 8‘1°)Pe R}, where

R= R8, tisodd
- Rf"‘, t is even

Ci* ifiis even

and M} =
: {Cf’s ifiisodd, 1<i<r—1.

Type 27: Hy & [ky ko, ... kp, k1, ks, .. ko, k' k', .. kY WOk, k).
We observe that q and s are of same parity. In thls type, define

R Rf’s, t is even
R3%*% tisodd

Case 1: Both ¢ and s are odd.
If s = 1, then the construction is {LS®) @ (51—'—6)P ® ()i o

(5)her** e Ry.
Ifs >3, then the construction i is {LS(S)GB(M)P@CIO 669(513“8_—14)1’63

M”’@ @( 2 M)P@M"'2®( .._1 14)P®084®(k —G)P®(g_-2-_1)C12,6,4e
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(1] )C3*? @ R}, where

M = C'f's, i is odd
' C}®, iiseven,2<i<s—2.

Case 2: Both g and s are even. The construction is
(Ls® o (B P ™ o (M5 Po My @ - & (=) PO M}, &
(B PoCciie (552)00% @ (|£])CP? @ R}, where

M C%®, iisodd
' CP®, iiseven, 2<i<s—1.

Type 28: Hy = [ky, ko, ... kp, ki kY, ...kl kY kY kY kY kY, .. k).
We observe that r and s are of same parity. In this type, define
R- R8, tisodd
~ | R}, tis even.

Case 1: Both r and s are even. The construction is "

LS® o (B Pe (|8 )ct 2 e (B2 )P cCH 0 (B2 PO My ©

8 2 1 8 1 B8

o2 PeoMre B PoM e o (B Y Po M, @
(521 p @ R}, where

s JCP4, iisodd
M = c® i .
1 s iiseven,2<i<r,
4 M = C88, iis odd
an L P X ,
1, iiseven,2<i<s—1.

Case 2: Both r and s are odd. "
If r = s = 1, then the construction is {LS® @ (h-s:—s)P &) (lﬁzij )012'4’2 o

(55°)Pe R}

If r = 1 and s > 3, then the construction is {LS(S) ® (-kﬂ;—G)P ®
()t e (B Pecte (i Pe ™ o (S5 Po My’ e
o (Bape M @ (B714)P @ R}, where

MY = Cf’ﬁ, i is even
: CcP®, iisodd,3<i<s—1.
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If » > 3, then the construction is {LS® @ (K_—G)P ® (|t e
(k] —IO)Pecs 4 ® (kz _IO)P$M”® ®(k —10)P$M"® (k12”8—14)Pe
CloSg (MM py Mg o (2 Po M & (5714) Po R}, where

. Jedt, iisodd
M = 6,6 .. .
C;”, tiiseven,2<i<r,

C%8  iiseven
d M{Il = 1
e M {c” iisodd, 3<i<s—1.
Type 29: Hy = [ki, k3, .. ,k",, A0 /O L N 7 SO A - RN o4
In this type, define
R— R, tiseven
"R}, tisodd
Case 1: q,r and s are even. The construction is
(LS e (L)) p(52)0 00y e(idﬁ)PeM"ea @ (=% Pe
M,’I;j o (k, 8—14)}, ® Clm,e o (kz 8_14)P69M£" @0 .—18 14)P93M§'11 ®
(%-5)P @ R}, where
M = Cf"‘, i is even
PTlCSS, iisodd, 1<i<,
C%8  iisodd
d M-I” = 1 »
and M {Cf’s, iiseven, 2 <i<s-—1.

Case 2: q is even r and s are odd. The construction is

{L6269(l_ J)C242@(g;2_)c462®044$(k,—10)P®M"® ®(k:—10)P®
M'e (M Po Ml e o (B Po M | & (X 724)P@ R}, where
M/ is as in Case 1 and

M = C’f's, i is even
: C¥®, iisodd,1<i<s—1.

Case 3: q and r are odd and s is even. The construction is
{L“e([ J)0242@(1'—1-)04eze(klll"—lq)PeC“ea(g-_—lg)PeaM”es —®
(k -IO)PQM”Q(M)PGBCIOG (EZ;M-)P@M"@ @ (R :-1 M)])@
M @ (kigM ~14)P®R} where

MY = {c;"“, i is odd

C’f”s, iiseven,2<i<r,
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6,6 . .
and M™ = C;”, iisodd
: C¥® iiseven, 2<i<s—1.

Case 4: q and s are odd and r is even. The construction is
{L62®(l J)C242e(g_)c462®(k‘—10)P$084®(k2-10)PeMﬂ® -

(k _1O)P®M"®(M)P®M'"@ @(_"-_d)PeMmle(k —14)1;,®
R}, where M/ is as in Case 3 and M/" is as in Case 2.

Type 30: Hy = (ky, ko ... kp, K, K, .o kD KL K KK R R,
kv k8, ..., k). In this type, define

R®, tisodd
R=1psa 4
1Y, tiseven

Case 1: q,r and s are even. The construction is

{LS® @ (|HL])CP*? @ (2)CP? o CH @ (M7 PO Ml @ - @
(Bt _m)PéBM"eB(EL{ﬁ)PeC}OGe(hg—M)PeM;’@...@(k’,”.g—M)P@
M2, ® (552)P @ R}, where

M = Cci4, iiseven
: CH®, disodd,1<i<r,

CH®, iisodd
Cf‘s, iiseven, 2<i<s-—1.

and My = {

Case 2: g is even r and s are odd. The construction is
{LS® & (1))CT** & (F)CP** o Ot @ (SgR)PO M{ @ -+ @

(550 Pe My e (S PoM e -8 (S Po My o (MY ‘”)PGB
R}, where M/ is as in Case 1 and

M — C1 . 1 is even
¢ C¥®, iisodd,1<i<s—1.

Case 3: q and 7 are odd and s is even. The construction is

{LS"“)GB(L%'—‘J)Cf""eB(%—‘)Cf’“’z69(—’-~'°"8'1°)P®Ci‘"e(—‘——k";“’)P@Mé'@
C® (k",_lO)P ® M” (k”’—l4)P ® 0}0,6 ® (k'z"8—14)P ® Mé// P YR

("a 1" p o M, @ (555)P @ R}, where M is as in Case 1 and

MY = Cy*, iisodd
! C%8, iiseven,2<i<r
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Case 4: g and s are odd and r is even. The construction is

(Ls® (5P 0 (5h) 01 0 (K5 Pect e (B5 ) Po My ®
oY Pe M e (MY Peo Ml e 0 (B Po M,
(EI'HT-I—“)P @® R}, where M/ is as in Case 3 and M!” is as in Case 2. 0O

Lemma 4.4. For m > 4, if H, is a bipartite 2-regular graph of order 2m
and Hy = Hj is a cycle of length 2m, then Jop, — {Hy, Ha, H3} with the
following possible exceptions: (i) Hy is a Cy-factor or (ii) more than one
component of Hy is Cy and all other components are of order r =0(mod
4)>4.

Proof. Replacing the terms L‘l"b, Ct ® Ct e R$®, R‘f’b’c in the proof of
Lemma 4.3 by L2®,C2®, C2*¢, R2*®, R3"™® respectively, we get the required
decomposition. a

Theorem 4.5. There exists a 2-factorization {H),Ho,H3} of
(Eo,El,Ez)_mi_,gzg ® K2 such that (i) Hy = Hj is a bipartite 2-factor (non
isomorphic to Cy-factor) (i) Ha is a Hamilton cycle .

Proof. We get the required 2-factorization of (Eo, Ey, E2) 2, ® K., by
Lemmas 3.2 and 4.3, except the case when at least two components of H; are
of order 4 and at least one component is of order greater than and divisible
by 4. The idea of the proof for the remaining cases is as follows. First we
decompose Jom — {a,b1,ba,...,b,c; c1,¢2 5 a,by,bo,.. ., b, c}, then by
contracting the vertices u; with u,;,, 4z With w42, v1 with vy, and vo with
Ym+2 in Jom, we get the required 2-factorization of (Eo, Ey, Ez) = ®K,.
Without loss of generality, we have Hy = Hz = [4,...,4,k1,ko,...,kp],
where p # 0 and k; = O(mod 4)> 8. Let ¢t be the number of C; in Hj;.
For convenience we write k; = 8, for some j, 0 < j < p. We consider the
remaining proof in 4 cases.

Case 1: t even, j odd: Then the construction is {(”—;—2)0'12’4’2 ® LR} g
(SH22P @ My, @ -+ © (2=i52=1)P @ M,_, @ (Y252)P o M, @
(7;—1)012’8’6}, where

a =[O ki=4(mod 8)
' C.lm,s, k; =0(mod 8),j+1<1i<p,

16, k; = 0(mod 8).

For example to get H, = H3 = [4,4,4, 4,8] and H; = [24] in (Ey, E}, E2)6,6®
K,, by the construction Cf""z @ LRf’“’G, first we decompose Jog +—>
{2,4,4,4,4,6; 18,6 ; 2,4,4,4,4,6}, then we contract the vertices u; with
u12, ug with uy4, vy with vyo and vy with vy4, see Figure 4.2.

and z = {12, k; = 4(mod 8)
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Figure 4.2. The graph Joyq = Js ® J16

Case 2: t even, j # p even: Then the construction is {(‘_;_2)012,4,2 ®
LRfAA,Ge(’_‘J}l_;zJ&_I)P@Mj_'_l@. . -e(’ft-‘,%‘tl)PeaM -169(5’{—&)Pea

(%)Cf's's}, where

|

M,y =

and z, =

C?‘G, k; = 4(mod 8)
C1*, ki=0(mod8),j+1<i<p-2,

b 12, k; =4(mod 8)
*7 116, k; =0(mod 8),

CY®,  k,—1 =4(mod 8) and k, = 0(mod 8)
CP1%, kp_1 = 4(mod 8) and k, = 4(mod 8)
C}%8, ky—1 = 0(mod 8) and k, = O(mod 8)
0110’2, kp—1 = 0(mod 8) and k, = 4(mod 8)
8, kp—1 = 4(mod 8) and k, = 0(mod 8)
12, kp—1 = 4(mod 8) and k, = 4(mod 8)
kp—1 = 0(mod 8) and k, = O(mod 8)
4, ky—1 =0(mod 8) and k, = 4(mod 8)
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If 7 = p, the construction is {(%—2)6’12’4’2 ® LR?**88 g (J;—Z)Cf’s’s}.
Case 3: todd, j # p odd: Then the construction is {(152)Cy**@ LR} **%0
(32 PO M;11©- & (T3 PO M, 0 ("2572) Po(151)C1 ™),
where M; and z; are as in Case 2. If j = p, the construction is {( %)012'4'269
LR>*482 g (i51)c288},

Case 4: t odd, j # 0 even: The construction is {(451)C3*? @ LRZ*%¢ @
(MEEE)P @ My @ - © (221522 )P @ M, © (252)P 0 M, @
(J;—I)Cf’s’s}, where M; and z; are as in Case 1. If j = 0 and 2, # 12, then
the construction is {(%)012'4’2 ® LRM*f g (Eﬁ‘;—zm)P OMip1®--- @
(fe=tz2e=1) P @ M,_, @ (X2522)P & M,}, where

v = JO% ki=4(mod 8)
PT101%%, ki=0(mod 8),j+1<i<p—1,

12, k; =4(mod 8)
16, k; = 0(mod 8),

M. = Ci%?, k; = 0(mod 8)
PTCi*?, ki = 4(mod 8),
16, k; =0(mod 8)

dz, =
and zp {20, k; = 4(mod 8).

If j = 0 and z, = 12, then the construction is {(-‘—;—1)03‘4‘2 ® LR¥ Y g
(p - 1)CP'%). O

Theorem 4.6. There erists a 2-factorization {H\,Ha, H3} of
(Eo, E1, E2) 2,2 ® K2 such that (i) Hy is a bipartite 2-factor (ii) Hy and
Hj are Hamilton cycles.

Proof. By Lemmas 3.2 and 4.4, we get the required 2-factorization of
(Eo, E1, Eg)p,p ® K,, except when (i) H; is a Cy-factor (ii) at least
two components of H, is of order 4 and all other components has order
greater than and divisible by 4. Also, we get the required factorization
of the missing cases for smaller values of m, from Lemma 3.3. Following
is the construction for the missing cases for larger values of m which is
similar to the one given in Theorem 4.5. Without loss of generality, let
Hy=[4,...,4,k1,ka,...,kp], where each k; = 0(mod 4)> 8 and p > 0. Let
t be the number of C4 in H;. For convenience, we write k; =8, 0 < j < p.
We consider the remaining proof in 2 cases.
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Case 1: p = 0. We observe that ¢ > 3. If ¢ is odd, the construction is
{LR¥**% g (%)03’4'2} and if ¢ is even, the construction is {LR%""“""2 ®
(5540242},

Case 2: p > 1. Then we consider the following subcases.

Subcase (i):t even, j odd: Then the construction is {(‘—;2-)6'3 ’4’2@LR§‘4‘4’6®

('f;'ilx;z;‘i:gp O M1 (.’Sz‘_'s’_za-_l)p & M,_ ® (E%;—z"-)P ®M,®
(57)C3™"}, where

M = C2°, ki =4(mod 8)
- Cgo,e, ; =0(mod 8),j+1<i<p,

12, k; = 4(mod 8)
d - ] 1
and = {16, k; = 0(mod 8).

Subcase (ii): Both ¢ and j are odd: Replace LR>**® by LR2*® in Subcase

(i), to get the required construction.
Subcase (iii): Both t and j # p are even: The construction is {(%)c;;’ A2

LRE S g (tizun)pe M;,, @---© (2215221 Po M,_,  (¥2522) Po
(%)03’8’6}, where

M C3®, ki =4(mod 8)
i= 10,6 — : i
C,"°, ki=0(mod8),j+1<i<p-2,

12, k; =4(mod 8)
Zi =
16, k; =0(mod 8),

C%8,  kp—1 =4(mod 8) and k, = O(mod 8)
CS1 k,_1 = 4(mod 8) and k, = 4(mod 8)

M,_,=
P C3%%,  kp—1 =0(mod 8) and k, = 0(mod 8)
Clo2 k,_; =0(mod 8) and k, = 4(mod 8)
8, kp_1 = 4(mod 8) and k, = O(mod 8)
and z, = 12, kp-y = 4(mod 8) and k, = 4(mod 8)

8, kp—1 = 0(mod 8) and k, = 0(mod 8)
4, kp—1 =0(mod 8) and k, = 4(mod 8)
If j = p, then the construction is {(%52)C3"*? @ LR}**%° @ (152)C2%}.
Subcase (iv): t odd, j # p even: Replace LR>**® by LR3*° in Subcase

3, to get the required construction. If j = p, then the construction is
(5903 @ LR & (4)03°°}. =
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Theorem 4.7. Letn > 3 and0 < j < n—1. The graph (E;, Ej41, Ej42)n,n®
K3, has a factorization into three 2-factors such that (i) two of them are
isomorphic to a given 2-factor (which is non isomorphic to a Cy-factor) of
Kopon and one is a Hamilton cycle, (ii) one of them is isomorphic to a
given 2-factor of Kon,on and two of them are Hamilton cycles, (iti) all the
three are isomorphic to a given 2-factor of Ko, on with components of order
divisible by 4 (non isomorphic to a Cy-factor, when n is odd).

Proof. Follows from Theorems 4.2, 4.5 and 4.6, by taking m = 2n, since
(Eo, B, E2)nn = (Ej,Ejy1,Ejp2)nn, forany j, 0<j<n-—1. O

Remark 4.8. Eristence of 2-factorization of (Ej, Ej+1,Ejt2)nn ® K,
such that (i) two of the 2-factors are Cy-factors and one is a Hamilton
cycle or (ii) all of the 2-factors are Cy-factors, when n odd, is unknown.

5 Bipartite Hamilton-Waterloo Problem

As a consequence of our results in the previous sections, we show the exis-
tence of Bipartite Hamilton-Waterloo Problem, when F; is a refinement of
Fy, with few exceptions.

Theorem 5.1. Suppose that Fy and Fy are bipartite 2-factors of order 4n,
with Fy a refinement of Fy and no component of Fy is a C4 or Cg, then
(o, /) € BHW P(2n,2n; F\, F3) whenever a + 8 = n, except possibly when
a =1 and (i) F; is a Cy-factor or (i1) Fao has more than one Cy with all
other components of an order r =0(mod 4)> 4 or (iii) F2 has components
with an order r = 2(mod 4), when n is even.

Proof. Case 1. n odd: For convenience we write K2n 2n = ({Eo, E1, E2)n,n®
(E3,Eq)nn ® (Es,Ee)nn ® -+ ® (En2, En_1)nn) ® K2. By taking each
component of Fy as H; in Lemmas 4.3 & 4.4 and by applying Lemmas 3.1
& 3.2, we get a factorization of (Eo, E1, E2)n,n ® K2, into three 2-factors
Hi{, H} and Hj such that H{ = F, Hj = F} and Hj is isomorphic to ei-
ther F; or F3 as required. Further by Lemma 2.1, (E;, Ej;1)n,n ® K, has
a decomposition into two 2-factors isomorphic to a given 2-factor of Ko, 2n.
Case 2. n even: For convenience we write Konon = ({Eo, E1, E2)nn ®
(E:h E4, E5)n,n ® (ES) E7)n,n () (EB, EQ)n,n oD (En-21 En—l)n,n) ® K2-
By Theorem 4.2 and Lemmas 3.1,3.2,4.3 & 4.4, we get the required factor-
ization of the graphs (Eo, E1, E2)nn @ K3 and (E3, B4, Es)nn @ K2, as in
Case 1. Further by Lemma 2.1, {Ej, Ej+1)nn ® K2, has a decomposition
into two 2-factors isomorphic to a given 2-factor of Kap 2n. a

Theorem 5.2. If Fy is a Hamilton cycle and F5 is any 2-factor of Kan 2n,
then (a,B) € BHW P(2n,2n; F1, F2), ezcept possibly the case a = 1 when
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(i) Fy is a Cy-factor, where n is odd or (i) F> is a Cy-factor or order of
the components of Fy are congruent to 2(mod 4), when n is even.

Proof. Follows from Theorems 4.7 and 5.1. O
Lemma 5.3. (1,1) € BHWP(4,4;[4,4],[8]),

Proof. The result follows immediately as the graph K4 4 cannot be decom-
posed into a Hamilton cycle and a Cy-factor. O

In the sense of non-existence, we also prove the following.
Lemma 5.4. (2,1) ¢ BHWP(6,6;[4,4,4], [12]).

Proof. We prove the result by contradiction. Assume that Kgg has a 2-
factorization { F, G, H}, such that F and G are Cy-factors and H is a Hamil-
ton cycle. Let U = {u;, u2,us, uq,us, ug} and V = {v;,v2,v3,v4,vs,v6} be
the partite sets of K¢ 6. Consider u; € U. Let v; and v2 be the neighbors
of u; in G. Since G is a Cy-factor, there is another vertex, say ug € U
such that Ng(ug) = {v1,v2}. Let Np(uz) = {vs,vs}. If Np(u1) = {v3,v4},
then H can not be a Hamilton cycle. Therefore, there is some vertex,
say ug € U, such that Np(u3) = {vs,vs}. Since Ng(u1) = {v1,v2} and
Np(uw1) = {vs, v}, we have Ny (u1) = {vs,va}. Now Ng(uz) = {vs,ve}
and there is some vertex, say uq4 € U, such that (us3,vs,uq,v) is a cycle
in G. All these facts imply that v3 and vq will be adjacent to u4 in H,
contradicting the fact that H is a hamilton cycle. Hence K¢ g can not have
a such 2-factorization. O

The possible exceptions in Theorems 5.1 and 5.2 and actual exceptions
in Lemmas 5.3 and 5.4 leads one to wonder whether it is ever possible to
have a decomposition of K3p, 2, into a single Hamilton cycle and Cy-factors.

We conjecture that Lemmas 5.3 and 5.4 are the only exceptions.
Conjecture: For every n > 4, (1,n — 1) € BHWP(2n,2n; H, F), where
H is a Hamilton cycle of K2, 2, and F is a Cys-factor of K2n,2n.
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