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Abstract

Das (4], Feng et al. (5], and Li et al. [13] obtained upper bounds
for the number of spanning trees of a connected graph. Using some
ideas in [4], [5], and [13] and other established results, we obtain new
upper bounds for the number of spanning trees of a connected graph.
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1. Introduction

We consider only finite, undirected, connected graphs without loops or
multiple edges. Notation and terminology not defined here follow those in
[2]. Let G be a graph of order n. We use G° to denote the complement of G.
We assume that the vertices in G are ordered such that d; > dy > ... > d,,
where d;, 1 < © < n, is the degree of vertex v; in G. For vertex v;, we
use N(v;) to denote its neighbors. Grone and Merris in [8] introduced
the definition of d}(G). They defined d}(G) as [{v € V(G) : d(v) = i}
For two distinct vertices © and v in G, we define ¢, ,, as |[N(u) N N(v)|; if
d(u) = dy and d(v) = dg, we further define

- “’*’W if wv € E(G),
U,V T
da+1+ (d,2+1)z—4c.,.u if wv ¢ E(G).

and a := max{ay, : where d(u) = d;,d(v) = d, and v # v}. Notice
that a,, follows from [3]. We use t to denote the number of spanning
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trees of a labeled graph G. G V H is defined as the join of the vertex-
disjoint graphs of G and H. The Laplacian of a graph G is defined as
L(G) = D(G) — A(G), where D(G) is the diagonal matrix of the degree
sequence of G and A(G) is the adjacency matrix of G. The eigenvalues
A1(G) 2 X2(G) 2 ... 2 M(G) = 0 of L(G) are called the Laplacian eigen-
values of the graph G. We use S,, to denote the star graph K; ;. We
also use K, — e to denote the graph obtained by removing one edge e from
K,. Finally, we use S, + e to denote the graph obtained by adding one
edge e to Ky p—j.

Using the Matrix Tree Theorem, i.e., tn = Aj Aa... Ap_;, several au-
thors obtained upper bounds for the number of spanning trees of a graph.
In particular, Das in [4] proved the following theorem.

Theorem A Let G be a connected graph with n vertices and e edges.
Then a2
2e — dl -1 -
< | —- .
= (552
Equality holds if and only if G is K, or S,.
Feng et al. in [5] proved the following theorem.

Theorem B Let G be a connected graph with n vertices and e edges.

Then s
t<<d1+1)(2e—d1—1> .
- n n—2

Equality holds if and only if G is K, or S,.

Li et al. in [13] proved the following theorem.

Theorem C' Let G be a non-complete connected graph with n > 4 vertices
and e edges. Then

n-3
tsdn<2e—d1—1—dn) )
n—3
Equality holds if and only if G is S,,, K, — e, or K; V (K1 U Kp_2).
Notice that Theorem C is a corrected version of Theorem 3.1 in [13]. Us-

ing some ideas in [4], [5], and [13], we in this note will present a new upper
bound for the number of spanning trees of a connected graph of order n > 5.
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Theorem 1 Let G be a non-complete connected graph with n > 5 vertices
and e edges. If G # S, then

2e—d1—1-a-d,,)"“‘

tS(n+d;—d1—1)dn< —

with equality if and only if G is K, —e, Ko VKS_o, KoV SS_o, K1V S5_y,
Sp+e, or Ky V(K USp_2).

2. Proofs of Theorem 1

In order to prove Theorem 1, we need several established results. The-
orem 2 below is Lemma 13.1.3 on Page 280 in [7].

Theorem 2 Let G be a graph of order n. Then A\(G) = n — An—i(G€) for
each 7 with 1 € i < n - 1. In particular, A\;(G) < n.

The following Theorem 3 was proven by Fiedler in [6].

Theorem 3 Let G be a non—-complete graph of order n. Then A,_;1(G) <
k(G) < ¥'(G) £ dn, where kK(G) and £'(G) are the connectivity and edge-
connectivity of G, respectively.

Kirkland in (10} and Li and Fan in [11] characterized the graphs with
An—1(G) = &(G). Their results are stated in Theorem 4 below.

Theorem 4 Let G be a graph of order n with 1 < ¥(G) £ n — 2. Then
An-1(G) = K(G) = k if and only if there exists a vertex subset S C V(G)
with |S| = k, such that G = G[S]V(G1 UG U---UGp), m > 2, and
k(G[S)) 2 2k —n if | ] < k < n — 2, where Gy, Gy, ..., G, are the com-
ponents of G[V(G) — 9].

Theorem 5 below was proven by Grone and Merris in [8].
Theorem 5 Let G be a graph containing at least one edge. Then
A(G) 2 d1(G) + 1. Moreover, if G is connected on n > 1 vertices, the
equality holds if and only if d;(G) =n - 1.

The statement in Theorem 6 was conjectured by Grone and Merris in
(8]. Bai in [1] proved that the conjecture is true.

Theorem 6 Let G be a graph of order n. Then "%, X:(G) < Zle d; (G)
for each k with 1 < k < n.
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Both Theorem 7 and Theorem 8 below were proven by Das in [4].

Theorem 7 Let G be a simple connected graph of order n. Then Ay(G) =
A3(G) = ... = A—1(G) if and only if G is K, or S, or K4, 4,.

Theorem 8 Let G be a simple connected graph of order n. Then A,(G) =
A2(G) = ... = Ap—2(G) if and only if G is K, or K,, —e.

Theorem 9 below follows from results obtained by Das in (3].

Theorem 9 Let G be a simple connected graph of order n > 2. If G is
not S,, then A; > a.

Now we will prove Theorem 1.
Proof of Theorem 1. Let G be a non—complete graph connected graph
with n > 5 vertices and e edges. Suppose that G # S,,. We assume that z
and y are two distinct vertices in G such that ez, = a with d(z) = d; and
d(y) = d». Notice first that 0 < c,y < dy—1ifzy € E,and 0 < ¢z y < d2
if zy ¢ E. By the definition of a, we can easily verify that dy < a <dy+1.

From Theorem 6, we have that A\; + X2 < df +d3 = n+d3. Theorem 5
then implies that A <n+d; —d; — 1.

From Theorem 2, Theorem 9, and the AM—-GM inequality, we have that
LT A
t=p =" HA

n—2 n—4
Ai
<(n+dy—dy — 1A (%—-‘;34—)

< (n+d; —dl - I)An_l (

n—4
n—4
< (n+dy—dy — Doy (2e dy n1_4a )\n-l)

Now consider the function

ﬂd=z<%
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where 0 < z < d,,. It is easy to see that

oy (e—di—1—a—2)""%2e—d —1—a—(n—3)
fi(2) = - (n— 4)n—4l ’

Notice first that 2e —~dy —1—a—2z>dy+dy+ds+ds+---+dp_1 +
dp—dy—1-dy—-1-d, >0.

If ds > 2, then2e—d1—-1—a—(n—3)z2d1+d2+d3+d4+---+
dn14+dp—dy—1—dy—1—(n-3)dp, >d3 —22>0.

Ifd; =1, thends =dy =+ - =d, = 1. Obviously, d; # 1. Otherwise
by the assumption that G is connected we have that v;u; & E, where
2 <1 # j < n, which implies that G is S,,, a contradiction. Now we assume
that d2 > 2. Again since G is connected, we have that v;v; ¢ E, where
3 <i 3 j < n. Hence, for each i with 3 < i < n, v; is adjacent to exactly one
of vy; and va. Since d(v1) =d; 2 d(v2)=do=2>dg=dy=---=d, =1,
we have that {z,y} = {v1,v2}. Since G is connected, zy € E. Clearly,
¢z,y = 0. Hence, by the definition of a, we have that a = d;. So

2e—di—1—a—(n—-3)z
>di+de+dy+ds+---+do—1+dp—di—1—dy—(n—3)d,
>ds3—12>0.
Thus f(z) is increasing when 0 < z < d,,. So
t<(n+d; —di ~1)f(Aa-1) < (n+dj —d1 —1)f(dn)

2¢e—dy—1—a—d,\"*
n—4 ’

=m+@—a—n¢(

Suppose that

% —dy—1—a—d,\"*

t= 3 —di — 1)dy, )

(n+d;—d; l)d( 1 )
In review of the proof above, we have that

/\1=n=d1+1,)s2=n+d§—d1—1=d§=a,/\3=---=)\,,_2,/\,,_1=dn.

Since A1 2 Ag, A2 = A3, and Ap—2 > An.1, we have the following eight
cases.

Case 1. /\1 = )\2 = )\3, and )\n_2 = /\n—I'
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This implies dy +1 = Ay = A3 =--- = A\,_y = d,. This is contrary to
d; > d,. Hence this case is impossible.

Case 2. A\ = /\2 = Ag, and /\n_.z > ’\n—l-

By Theorem 8 and the assumption that G # K,, we have that G is
K, —e withn > 5.

Case 3. A\ = Ay > A3, and A2 = A1

Fromdy +1 2> a =X = A\; =d; +1, we have that (a — 1) = d; =
dy = (n —1). Thus d(z) = d(y) = (n —1). Hence N(z) =V — {z} and
N(y) =V — {y}. In particular, zy € E.

Since G # K, and A,—1 = d,, Theorem 4 implies that G is the same
as the graph G[S]V (G1 UG U --- U Gp), where |S| = d, and m > 2.
In fact, from the proof of Theorem 1 in {11}, we can see that S is a cut-
set of G and G1,Ga,--+,Gy, are the components of G[V(G) — S]. Since
d(z) =d(y) =(n—1), bothz and y are in S.

We claim that |S| = 2. Suppose, to the contrary, that |S| > 3. Since
N(z)=V —{z} and N(y) =V — {y}, G has at least four components.
Notice that the Laplacian eigenvalues of G are

(nyn, A3,y An—1,0).
Thus the Laplacian eigenvalues of G¢ are
((n = An=1), (n = An—2), -+, (n — A3),0,0,0)
and G° has three components, a contradiction. Hence |S| = 2.

Now we have that A3 = --- = A, = d = |S| = 2. Therefore G¢ —
{ z,y} has Laplacian eigenvalues

(n-2),(n-2),-,(n-2),0).
By Theorem 8, we have that G¢ — {z,y} is Kn_2 or Kn_2 — e. Since
G® — {z,y} and K,_; — e have different sets of Laplacian eigenvalues,
G°—{z,y} # Kn-2—e. Thus G°—{z,y} = Kn—2. Hence G is Ko VK;_,
with n > 5.

Case 4. \} = Ao > A3, and A\p—2 > An—1.
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Using arguments similar to those in Case 3, we have that (a — 1) =
di=d() =dy =d(y) = (n—-1), N@z) =V - {z}, Ny) =V - {v},
and zy € E. Moreover, S = {z,y } is a cutset of G and G is the same as
the graph G[S]V(G1UG2U- - \UG,,), where |S| = dp = Ay =2and m > 2.

Therefore G¢ — {z,y } has Laplacian eigenvalues
((n - Aﬂ—l): (n - ’\n—2)1 Tty (n - )‘3)s 0)'

By Theorem 7, we have that G¢—{ z,y } is Kn_2, Sp—2, Or Kg;_g' n53. Since
(n = An-1) > (n = An_2), G° — {z,y } cannot be K,_5. If G° — {z,y} is
K ns2 no3, the minimum degree of G is %, which is not equal to d,, = 2 when

n > 5. Thus G¢ — {x,y} cannot be K%g'g;_g. Therefore G° — {z,y} =
Sp—2. Hence G is Kp V S¢_, with n > 5.

Case 5. A\; > Ay = A3, and A\_2 = Ap_1.

By Theorem 7 and the assumptions that G # K,, and G # Sp, we have
that G is Kg,,4,. Since d; = (n — 1), G must be K, contradicting the
assumption that n > 5. Hence this case is impossible.

Case 6. \; > = /\3, and \,_2 > An—l-
From d; = (n — 1), we have that d(z) = (n — 1) and N(z) =V - {z}.
Since G is not K, and A\,_; = d,,, Theorem 4 implies that G is the same as

the graph G[S)V (G, UG U---UGr,), where |S| = d, and m > 2. Clearly,
zisin S.

We claim that |S| = 1. Suppose, to the contrary, that [S| > 2. Since
N(z) = V — {z}, G° has at least three components. Notice that the
Laplacian eigenvalues of G are

(na AZ: )‘3) "ty )\n—l, 0)
Thus the Laplacian eigenvalues of G° are
((n - /\n-l), (n - An—?), T (n - ’\2): 01 0)

and therefore G° has two components, a contradiction. Hence |S| = 1.

Now we have that A\, = d, = |S| = 1. Therefore G — {z} has
Laplacian eigenvalues

((n - l)a (n - A11.—2)1 A (n - Ag), 0)
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By Theorem 7, we have that G° - {z } is K,,_1, Sp—1, Or KL;_n a1 Since
(n=1)=(n—=Ap1) > (n—Ap—2), G°—{x } cannot be K,_;. If G°—{z}
is K 251 21, the minimum degree of G is 23!, which is not equal to
d, = 1 when n > 5. Thus G° — {z} cannot be K Bl nod Therefore
G*—{z}=Sn-1. Hence G is K; V §_, with n > 5.

Case 7. A1 > A2 > A3, and Ao = Apy.

Again, since d), = (n — 1), we have that d(z) = (n — 1) and N(z) =
V — {z}. Since G is not K,, and A,_, = d,, Theorem 4 implies that G
is the same as the graph G[S]V (G UG U ---U Gy), where |S| = d,, and
m > 2. Clearly, z is in S.

We claim again that |S| = 1. Suppose, to the contrary, that |S| > 2.
Since N(z) = V — {2}, G° has at least three components. Since the
Laplacian eigenvalues of G are

(ny A2, A3+, An1,0),
the Laplacian eigenvalues of G° are
((n—dn), (n—dn), -, (n = dn), (n — X2),0,0).

Since n— Ay = A1 — Az > 0, G° has two components, a contradiction. Hence
|S| =1.

Now we have that A,_; = d,, = |S| = 1. Therefore G¢ has Laplacian
eigenvalues

((n=1),(n = 1)+, (n = 1), (n = X2),0,0),
and G° — { z } has Laplacian eigenvalues
((r = 1), (r = 1), (1= 1), (n = ), 0).

By Theorem 8, we have that G° — {z} is Kn—1 or K,_; —e. Since
(n—1) = (n-4d,) > (n - A), G° — {z} cannot be K,,_;. Therefore
G°—{z}=K,_1 —e. Hence Gis S, +e withn > 5.

Case 8. A\; > A2 > Az, and A2 > Ay,
Using arguments similar to those in Case 7, we have that d(z) = (n—1),

N(z) =V —{z}, G is the same as the graph G[S]V (G1 UG2U---UG)
with |S|=d, = A1 =1andm>2,and zisin S.
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Since d,, = 1, vy, is only adjacent to z in G and v, is adjacent to each
vertex of V — {z } in G°. Since the Laplacian eigenvalues of G are

(ny A2, +, An—2, An-1,0),
the Laplacian eigenvalues of G¢ are
((n=1),(n = An_z), -, (n = A3), (n — A2),0,0).
This implies that the Laplacian eigenvalues of G° — {z } are
((n=1),(n = An=2),- -+ (n = A3), (n = A2), 0).
Therefore the Laplacian eigenvalues of (G¢ — { z })°¢ are
(n=1)=(n=X),(n—-1)—(n—=A3),-+,(n— 1) — (n — An_2),0,0),

which further implies that the Laplacian eigenvalues of (G¢—{z })°—{ v, },
e, G- {z,v,}, are
(()\2 - l)a ()‘3 - 1)’ Tt ()“n—2 - 1)’0)'
Since (A3 - 1) = = (An—2 — 1), we, by Theorem 7, have that (G¢ —
{ De—{vn}= G {:c Up } is Kn—2, Sn—2, or K,.;z n—2. Since A3 —1 >
A3 — 1, G —{z,v,} cannot be K,—5. If G~ {z,v,} is K.._z 252 then
M=dj=(n—-1)#5%+1=awhenn>5 Thus G- {a:,v,,} cannot bhe
Kn-2 n_2, Therefore G —{z,vn } = Sn—2. Hence G is K; V (K; U Sp_2)
== 5
with n > 5.

Next we show that if G is K, —e, Ko VK _,, KoV SS_,, K1V S5_,
S, +e,or Ky V(K;US,_2), then

2¢e—~d—1—a—d,\"™*
n—4 ’

t=(n+d;—d, —1)d, (
If G is K, — e with n > 5, then the Laplacian eigenvalues of G¢ are
(2,0,---,0,0,0).
Thus the Laplacian eigenvalues of G are
(n,n,---,n,(n—2),0).

Hence the number of spanning trees of G is t = H::'ll Ai/n = (n—2)n"3.
Now

n—4
(n+d} —dy —1)dn (2e‘d‘n_14 “‘d") = (n - 2n""3,
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which is the number of spanning trees of K,, — e with n > 5.
If G is KV KS_, with n > 5, then the Laplacian eigenvalues of G¢ are
((n-2),(n-2),---,(n-2),0,0,0).
Thus the Laplacian eigenvalues of G are
(nyn,2,2,--+,2,0).

Hence the number of spanning trees of G is t = H?____ll Ai/n =n2"3. Now

-4
2e—d1;1‘:a—dn)" =n2n_3,

(n+d;—dy —1)d, (
which is the number of spanning trees of Ko V K5_, with n > 5.
If Gis Ko v 8;_, with n > 5, then the Laplacian eigenvalues of G° are
((n - 2)11” * ’v1$0a010)'
Thus the Laplacian eigenvalues of G are

(n,n,(n-1),---,(n —1),2,0).

Hence the number of spanning trees of G is t = [[13' Ai/n = 2n(n—1)"~4.
Now

2e—-dl—1—-a—d,1)"_4

— __1\n—4
— 2n(n — 1)"74,

(n+d3 —dy —1)d, (
which is the number of spanning trees of Ky vV S5_, with n > 5.
If Gis Ky v S5_, with n > 5, then the Laplacian eigenvalues of G¢ are
((n-1),1,---,1,0,0).
Thus the Laplacian eigenvalues of G are
(n,(n-1),---,(n—1),1,0).

Hence the number of spanning trees of G is t = H?_;'ll Aifn = (n-1)""3
Now

n—4
% — dy —1—a—d,,) (1),

(n+d2—d1_1)dn( n—4
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which is the number of spanning trees of K; V S;;_, with n > 5.

If Gis S, + e with n > 5, then
2e—d1—1—a—dn)"_4

n-—-4 =3

(n+d; —dy —1)d, (
which is the number of spanning trees of S, + e with n > 5.

If Gis K; V(K US,_3) with n > 5, from the above proof of Case 8,
we have that the Laplacian eigenvalues of G — { z,v, } are

(M2 =1),(A3—=1),++,(An—2 — 1),0).

Since G—{z,vp }is Sp—2, Aa—1=n—-2and \3~-1=-.- =X, _2—-1=1.
Thus \i=n, Aa=n—1, 3=+ =A_o =2, and A\,—; = 1. Hence the
number of spanning trees of G is t = [[75] Mi/n = (n — 1)2"~4. Now

n—4
2e—d1—l—a—dn) =(n_1)2n_4’

(n+d2—~d1—-1)dn( —

which is the number of spanning trees of Ky V (K, U S,_2) with n > 5.

This completes the proof of Theorem 1.

Obviously, if Gis KoV KS_o, KoV SS_5, Sn+e, 0or K1V (KyU S,_2)
with n > 5, then the upper bound in Theorem 1 is less than the upper
bounds in Theorems A, B, or C.

Recall that Li and Pan in [12] proved that A(G) > da(G) for a con-
nected graph of order n > 3 and Guo in [9] proved that A3(G) > d3(G) — 1
for a connected graph of order n > 4. Using those results, we can present
another upper bound for the number of spanning trees in a connected graph
of order n > 6.

Theorem 10 Let G be a non-complete connected graph with n > 6
vertices and e edges. Then

n—>5

n—>5
t < (n+dy—dy —1)(n+dj+ds—dy—da—1)dy, (23 —dy—da —ds — d") .

The proof of Theorem 10 is similar to the proof of Theorem 1. It can
be fulfilled as long as we realize that A3 = A + Ag + A3 — A1 — A2 <
d} +dj+dy—dy —1—dy = n+dj +d3 —dy —dy — 1. The complete proof
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Theorem 10 is skipped here. It is interesting to decide if the upper bound
in Theorem 10 is attainable for some graphs.
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