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Abstract

For n > 1 we call a sequence si, 32,...,3,» an up-down sequence
of length n when (i) s1 = 1; (ii) s: € {1,2,3,4}, for 2 < i < n; and,
(iii) |8i — si—1| = 1, for 2 < 7 € n. We count the number of inversions
and coinversions for all such up-down sequences of length n, as well
as the sum of the major indices for all these sequences of length n.

1 Introduction

For n > 1, we call a sequence sy, s3,. .., S, an up-down sequence (of length
n) if

e (i)s1=1;
o (ii) s; € {1,2,3,4}, for 2 < i < n; and,
o (iii) |81 — si—y| =1, for2<i < m.

(This example appears in [5] where it was contributed by Clark Kimberling

and Neven Juric.)
If we let a, count the number of up-down sequences of length n we find

that
e a; = 1, for the sequence 1;

e aj = 1, for the sequence 1, 2; and,
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e a3 = 2, for the sequences 1,2,1 and 1,2, 3.

In Table 1 we find the up-down sequences for when n = 4,5, 6, 7. (From
this point on, we omit the commas between the consecutive entries of a
sequence.) Here the sequences for n = 6 are obtained by (i) appending
'2’ at the end of each sequence for n = 5; and, (ii) appending ’34’ at the
end of each sequence for n = 4. The situation is similar for n even, n > 4.
When n = 7, the sequences are now obtained by (i) appending '3’ at the
end of each sequence for n = 6; and, (ii) appending '21’ at the end of each
sequence for n = 5. This situation is similar for n odd, n» > 3. In general
we find that

Qpn =0Qn_1+0n_2, n>3,a1=1, as =1,

S0 a, = F},, the nth Fibonacci number.
[The Fibonacci numbers are defined recursively by Fo =0, F; =1, and
for n > 2,F, = F,,_; + F,_,. Further, for n > 0,F, = %, where

[s3
a = 1—"’-23@, the golden ratio, and 8 = _1_—2;/_3_. This form is referred to as
the Binet form for F,, and one finds that a2 = o+ 1, 82 = f+1, and

a-B=+5]

n=4 n=5 n=6 n=17
1212 12123 121232 1212323
1232 12323 123232 1232323
1234 12343 123432 1234323
12121 121212 1212123
12321 123212 1232123
121234 1212343
123234 1232343
123434 1234343

1212321

1232321

1234321

1212121

1232121

Table 1

2 Counting the Numbers of 1's, 2's, 3's, and 4's

For n > 1, we let
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e w, = the number of 1’s that occur among the F;, sequences;
e t, = the number of 2’s that occur among the F,, sequences;
e h, = the number of 3’s that occur among the F,, sequences; and,
e f. = the number of 4’s that occur among the F,, sequences.

In Table 2 we have the values of wy,t,, hn, and f,, for 1 < n < 10.

n | Wn tn hn  fn
1 1 0] 0 0
2 1 1 0 0
3 3 2 1 0
4 4 5 2 1
5 9 9 6 1
6 13 19 11 5
7 27 33 25 6
8 [ 40 65 44 19
9] 8 111 80 25
10 | 120 210 155 65

Table 2
In (3] the following general results are derived. [Here L, denotes the

nth Lucas number, where Lo =2,L; =1,and L, = L,,_1+ L, forn > 2.
Further, the Binet form for the Lucas numbers is L, = a™ + 8", for n > 0.]

1 27 1 1 1 1
wn = "Ln + —Fn - EanLn + ZnFn + (_l)n (""§Ln "I' §Fn) ’ n Z l

8 40
1)
1 7 1 1 (1 3
tn = §Ln - EFn + %nLn + ZnFn + (—1) (—gLn + §Fn) , > 1
2)
1 17 1 1 1 3
hn = —§Ln - EFn + 2—0nLn + ZnFn + (—l)n (§Ln - §Fn) ,yn2>1
(3)
1 3 1 1 1 1
= —= - — - — - -1)*| = - = >
fu==3Ln = 25Fn = ggnbn+ Pt (D" (gha = gFn), n 21
(4)
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Further, one finds the following relationships among wy, t,, hn, and f,.

tp = fn+2 + (%’) (1 + (—l)n—l) Fn—l, n Z 1

(5)

tn=hn+( )(1+( M F, +(%) QA+ ()Y Fuo, n21
(6)

wn—tn_2+(2)(1+( " F, +(%)(1+( -1)"" Y Lpy, n>3
(M)

Wn = hn —2+( )(1+( n") n_1+(%) QA+ (-1)"*) Froy1, n>3
(8)

w,,=fn+( )(1+( )™ F, +1(1+( 1)"*1) Fry, n>3

9

fatz =ha +< )(1+( DY Fo, n>1

(10)

Finally, if we let ey, ; count the number of up-down sequences of length
n that end in 4, for 1 < i < 4, we find that

en1=¢€n3=0, eno=F,_1, €nq = Fy_2, neven, (11)
e =1, (12)

en2 = €n4 = 0,7 odd, (13)

en1 = Fn_2,n0dd,n >3, (14)

ens=Fo_1,nodd,n > 1. (15)

3 Inversions

Following the development in Definition 6.11 on p. 216 of [4], if 1, z2,...,Zn
is a sequence of length n (whose elements are taken from a totally ordered
set), an inversion occurs for all 7, j where 1 <i < j <n, but z; > z;.

For example, consider the up-down sequence 12321 of length 5. Here
the 2 in position 2 and the 1 in position 5 provide an inversion for the
sequence. Likewise, the 3 in position 3 and the 2 in position 4 is another
example of an inversion. The 3 in position 3 and the 1 in position § provide
a third inversion, while the 2 in position 4 and the 1 in position 5 provide
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the fourth and final inversion. In total, there are four inversions for the
up-down sequence 12321.

In this section our objective is to count, for a given n > 1, the total
number of inversions that occur among the F;, up-down sequences of length
n. We designate this number by ¢nv, and find, for example, that

inny =0 invg=0 invg =1 nuy =2 invs = 10
invg =20 inuy; =63 inug =119 invg =309 invye =562

To motivate the recurrence relation for inv,,, we examine the following
special cases—one for when n is even and the other for when n is odd.

Case 1: invg = invg + f4 + invs + (fs + hs)
(i) Here the summand f; accounts for the inversions that arise for the 3 in
34 that follows each of the fy 4’s that occurs in the Fy sequences of length
4.
(ii) The summand (fs + hg) accounts for the inversions that result from
. the 2 that now follows each of the fs 4’s and hs 3’s that occur in the Fy
sequences of length 5.

Case 2: invy = invg + fo + invs + (fs + hs) + (fs + hs +t5) + F5

(i) Here the summand fg¢ accounts for the inversions that arise for the 3
that follows each of the f¢ 4's that occur in the Fg sequences of length 6.
(ii) The summand (fs + hs) accounts for the inversions that arise for the
2 in 21 that follows each of the fs 4’s and hs 3's that occur in the Fj se-
quences of length 5.

(iif) The summand (fs + hs + t5) accounts for the inversions that arise for
the 1 in 21 that follows each of the f5 4s, hs 3’s, and t5 2’s that occur in

the Fy sequences of length 5.
(iv) Finally, the summand F5 accounts for each inversion that arises when
21 is appended at the end of each of the Fy sequences of length 5.

Consequently, to consider both the even and odd cases simultaneously,
we arrive at the recurrence relation

. 1
invﬂ = invﬂ—l + nv,-2 + (E) (1 + (_1)1!) (fu—l + hn—l + fn—2)

+ (%) (1 + ("1)"_1) (fn—l + 2f11—2 + 2hu—2 + -2+ ‘Fn—Z) 3

n>2 invy =0, invg =0.
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Using the results from Section 2 this recurrence relation takes the form

NV, = iNVs—1 + iNUR_2

1 T 3 1
+ ('2') [1 + (”1) ] i - gLn—l - ‘4-6Fn—1 - Ea(n - l)Ln_l
1 1 L\
+ e DFas + (1 (gLn_l _ §Fn_1) |
1 1 17 1
+ (’2') 1+ (=17 - §Ln—1 - EF"'I + %(n —1)Lny

1 1 3 T
+ Z(n - I)F -1+ (—l)n_l (gLn—l - §Fn_1) |

1 N 3 1
+ (5) [1+(=1)"] - ’§Ln—2 - Z—O-Fn_z - %(n —2)Lp_2

8

+ %(n - 2)Fn—2 + (—l)n-2 (%Ln_z - lF _2)

1 n—1 1 3 1
+ (5) [1 + (_1) ] [_ §Ln—l - EFn—l - aa(n et I)Ln—l
+ o )R+ (1) (s - 2P|
4 n -1 - 8 n—1 8 n—-1 ]
1 a1l /0] 1 3 1
+ (5) [1 +(-1) ] (2) i - 'S'Ln—»2 - EFn—z - %(n —2)L,o

1 1 1
+ Z('"- - 2)Fn—2 + (_l)n—2 (an~2 - -Fn—2)

8 8
1 a1 gon| 1 17 1
+ (5) 1+ (=112 - §Ln—2 - EFn—2 + %(n —2)L,_s

1 1 3
+ Z(’n - 2)Fn_2 + (—l)n_2 (‘gLn_z - § n—2) ]

1 aen 1 7 1
+(3) 1+ q&“*'ﬁ“**ﬁm—”%ﬂ
1 1 3
+ Z(Tl - 2)Fn_2 + (_l)n—2 (_gLn_z - §Fn—2) ]

+ (%) [1+ (=1)*1] Fucs.

Using the Binet forms for the Fibonacci and Lucas numbers, now the
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recurrence relation becomes

NV, = NUy-) + NUR—2

29 n 29 n, 7 n, 7 n
+ (—m\/g) o + (i—ﬁa\/g) B+ —(—1 + VB)na™ + E-(—l - V5)ng

+(3 - 105v8) s+ (3 + 755V8) o
( f)n( a)+( +z \/') (-B)".
Using the techniques presented in Chapter 7 of [1] and Chapter 10 of [2],
we learn that the homogeneous part of the solution has the form
aa®+ ",
while the particular part has the form
Ajna™+Binf"+Agn®a™+Ban?f"+ As(—a)"+Bs(—B)" + Aan(—a)" + Ban(—B)".

To determine A;, A; we substitute inv, = Ajna™ + Aan?a™ into the
recurrence relation

. . , 29 w7 n
INVUp = tNVUp_1 + tNUp_2 + (_T(E\/g) a” + 0 (—1 + \/5) na

Upon dividing through by a™~2 this then leads to
Aina® + Agn?a® = Aj(n - 1)a+ Az(n? - 2n + 1)a + Ay (n — 2) 4+ Az2(n® —4n + 4)

+<—120%\/_) 2+-—-—( 1+ v5)na?.

Comparing coefficients for n2,n, and n°(=1), we have
n?: Aya® = Agsa + Ay, which reduces to 0 =0 because a?=a+1l;
n:A1o? = Aja—24Aa+ A) — 4Ay + — (—1 + \/5) o?;

40
n°(= 1):0=—Aja+ Asa — 24, + 44, — %—f&z.

Solving the last two equations simultaneously we arrive at

Al—_sl__AC Ay = T8

40 200 °

Then a similar calculation yields
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Bi= g+ 45 =

Turning now to Az and A4, we substitute inv, = Az(—a)™ + Agn(—a)”
into the recurrence relation

. . . 1 174/5 9 5
NV, = iNVy_1 + iNUpe2 + (5 - E\(/)—_) (=)™ + (— — %) n(—a)™.

We divide the result by (—a)*~2 to find that
Az(—a)? + Ayn(—a)? = Az(—a) + Ag(n — 1)(—a) + Az + As(n — 2)
1 17 .
+ (5 - 100‘/-) (=)™ + (_ —"/_) n(-e
Comparing the coefficients for n and n%(= 1) we find that
Ag(—a)? = Ay(—a) + Ag + (% - % 5) (—)? and

A3(=0)? = Ag(—a) + Agar + Ag — 244 + (-;— V5 ) (—a)®.

From these equations it follows that

1 63 1 1
As——‘z'*‘m\/g, A4——'E+ZO'\/§,

and a similar calculation provides

1 63 1 1
Bs=—3-q"> Bi="15 V>
Consequently,
inv, = 1o’ + " + (— —\/_) na™ + (_36 + \/'-)
— 20
+ 200‘/_" 200f" p
1 1 63 .
+(“+m‘f) "+ (-3~ 26 VE) )

1 1
( —t f)n( o) + ( T 4\/5)71( B)".
Then from the initial conditions—namely inv; = 0, inve = 0, we find that

1 o7t 1 o7
e1=7%3005Y> =7~ 3006
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Consequently, for n > 1,

inv, = (l + ﬂlﬁ) o+ (1 277 \/_) o

4 2000 4 2000
+ (—-5% - 4%\/5) na® + (—— + %\/5) np"
+ m\/_n - 20—0\/_712ﬁ"
oo (4- B

+ (—— + —\/5) n(—a)™ + (_2—[-6 - 715\/5) n(=B8)"
= (@ -5+ doo) B+ (5o 1) B
+(=1)" (;n+ gg) Fp+(-1)" (—l—lon— %) Ln.

4 Coinversions

Referring this time to Exercise 6.84 on p.239 of (4], if z1,22,...,Zn is &
sequence of length n (whose elements are taken from a totally ordered set),
a coinversion occurs for all ¢,j where 1 < i< j <n and z; < z;.

If we consider the up-down sequence 12321 of length 5, the 1 in the
first position and the 2 in the second position provide a coinversion for the
sequence. Likewise, the 1 in the first position, together with the 3 in the
third position or the 2 in the fourth position, provide two more coinversions.
Finally, the 2 in the second position and the 3 in the third position provide
a fourth (and final) coinversion.

In this section we shall determine, for a given n > 1, a formula that
counts the total number of coinversions that occur among the F,, up-down
sequences of length n. We shall designate this number by coinv, and we
find, for example, that

coinv; =0 coinvg =1 coinug = 4 coinvg = 13 coinvs = 29
coinvg = T4 coinvy = 144 coinvg = 328 coinvg = 604 coinvp = 1287.

To motivate the recurrence relation for coinv,, we consider the follow-
ing special cases—one for when n is even and the other for when n is odd.

Case 1: coinvg = coinuvs + ws + coinvy + 2(wy +t4) + he + Fy
(i) Here the summand wg arises from when the sixth (last) entry in the
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sequence is 2, which when appended to each of the Fy sequences, provides
ws coinversions.

(ii) When 34 is appended to each of the F; sequences, two coinversions
are created for each occurrence of 1 or 2 in the Fy sequences. These are
accounted for by the summand 2(w4 + t4).

(iii) In addition to the coinversions in (ii), the final 4 (in position 6) also
provides a coinversion for each 3 that occurs in the Fj sequences.

(iv) Finally, when 34 is appended to each of the Fy sequences, this also
provides a new coinversion —namely, 34 itself.

Case 2: coinvy = coinve + (we + te) + coinvs + ws
(i) When 3 is appended to each of the Fg sequences, the summand (wg +1¢)
counts the coinversions for each occurrence of 1 or 2 in the Fg sequences.
(i) The summand ws accounts for the coinversions that arise when we
append 21 to each of the Fs sequences. Each occurrence of 1 in these se-
quences provides a coinversion with the 2 in 21.

The observations for these two cases now lead us to the following recur-
rence relation:

coINY, = COiNU,_) + COINU,p_2

+ (%) 1+ (=1)"] [wn-1 + 2wn—2 + tn—2) + Az + Fr2

+ (-;-) [1 + (—1)""1] [Wn—1 +tn—y +wn_2],

n > 2, coinvy =0, coinvs = 1.
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From the results in Section 2 this recurrence relation becomes
CotnY, = COiNUp1 + COINU,_o
1 1 27 1
+ (5) L+ (=17 [gL,._l + 2 Fact — a5(n = 1)Ly
1 wr 1 1 ]
+ Z(n - 1)1+ (-1) """Ln—l + —F -1

+ (%) 1+ (-1)"(2) .%Ln—2 + 20Fn—2 210( —2)Ln-2

1 n=-2{_ - et ]
+ Z(n —2)Fh_2+(-1) ( 8Ln—2 + 8Fn—2) |

+ (%) [+ (1) (2) _%LM ~ ooz + (0= 2)Las

+ l(n — ) Fa_g + (—1)"2 (—-;—Ln_z + an-z) }

( ) 1+ (1)) [ §Ln-2= g Faz+ 55(n = ln-s
+ Z(" = 2) g+ (-1)" 72 (%Ln—z - an—2) ]
+ (%) 1+ (=1)"] Fa-2

1 N E S S D
+ (E) [1 + (—1) ] [SLn—l + 40F -1 20 (n I)Ln—l

F O DFa+ (-1 (—1Ln_1 1R 1)]

+ (%) 1+ (-] [%L - Fn_1 + 210( —=1Ln

1 _ 1 1
+ Z(n - l)F -1+ (—l)n 1 (—'S-Ln_l + 'S'F _1) ]

L LY
+ (5) [1+ (-1)"] [SLn—2 + 52— 55(n = 2La-z
+1
4

1 1 ]
(n —2)Fpoz + (=1)"2 (—gLn_z + 35 _2) .

Using the Binet forms for the Fibonacci and Lucas numbers once again,
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this recurrence relation now becomes
COINVy, =COINUp—1 + COMNUp_2

3 13 . (3, 13 n
+(— 200\/5)& +(§-|~20 \/')ﬂ

— 4 — \/_)na"-{-( ! l\/g)nﬁ"

( 01
et
(-2

+

2-55) o
+(— 5+ §V8) nt-o + (— g5 - 5V nl-B"

for which the homogeneous part of the solution has the form
cia” + c3p",
while the particular part has the form
Ajna"+Binf"+Azn*a”+Bin? "+ A3 (-a)"+ B3 (- B)"+ Ain(—a)"+Bin(~B)".

Computing as we did in Section 3, we substitute coinv, = Ajna™ +
Ajn2a™ into the recurrence relation

. . . 3 13
COtNVp, = COLNUp_1 + COIMUp—2 + (§ - -20—0\/5) a™ + (_E + — \/—) no®

After dividing through by a®~2 and comparing the coefficients for n and
n%(= 1), we find that

. (3 3 LT
Al_ (25-}-40\/5) and A2— 200\/-5-,

and a similar calculation yields

. _ 3 3 ,,__L
B} = (25 - 40\/5) and B} = 200\/5.

To determine A3 and A}, we substitute coinv, = A3(—a)” + Ajn(—a)*
into the recurrence relation

3 29 Wl 9 1 .
coinv, = coinv, - 1+comv,,_2+( =+ 200\/—) (—a) (—40 + 8\/5-) n(-a)".
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From here we learn that

«_ (1 83 1
Aa—(4—400 ) and A} = ( \/‘)
and a similar calculation yields
. 1 53 « (1 1
B; = (Z + 266\/5) and B} = (10 + 40\/5) .
Then the initial conditions—namely coinv; = 0 and coinvy = 1, lead us to

. (1 343 L[ 1, 343
cl‘( 1 2000‘/5) a“dc""( 4+2ooo‘/g)'

Consequently, for n > 1,

o= (=3 - 2?30 V) e+ (<3 +aev5)
(235 )nan+('§‘——\/_)n6"+%\/_n (™ —B™)
+(i ﬁ)“”(i V5 (A"
+ (110 1 \/5) n(—a)™ + (E + 4_\/5) n(=B)"
(4(1)0) [70n? + 150n — 343] F,, +(100) [12n — 25| L,

+ (=1)nH! (Sio) [10n + 53] F, + (—1)" ( ) [2n + 5] Ln.

5 The Sum of Major Indices

Following the development in Definition 6.27 on p. 221 of [4], this final time
we consider a sequence z1,T3,...,Z, of length n (with elements taken from
a totally ordered set). If z; > z;4.,, we say that a descent occurs at position
i, for 1 <1 <n—1. The descent set of the sequence is then the set of all
1 € i < n-—1where z; > z;41. The major index of the sequence is the sum
of the elements in its descent set.

For example, the up-down sequence 123434 (of length 6) has descent set
{4} and major index 4. The up-down sequence 1234321 (of length 7) has
descent set {4, 5,6}, so its major index is 15.

If we consider the five up-down sequences of length 5, we find the results
in Table 3. Consequently, the sum of the major indices for the up-down
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Sequence Descent Set Major Index

12123 {2} 2

12323 {3} 3

12343 {4} 4

12121 (2,4} 6

12321 {3,4} 7
Table 3

sequences of length 5 is 22.

In this final section we shall solve a recurrence relation for the sum of
the major indices of the F,, up-down sequences of length n. This result will
be denoted by sum,, and we find, for example, that

sumy; =0 sumg =0 sumg = 2 sumg =95 sumg = 22
sumg = 46 sumq =131 sumg =251 sumg =606 sumio = 1110.

As we did in the previous two sections, we’ll motivate the recurrence rela-
tion for sum,, by considering the following two cases.

Case 1: sumg = sumsg + (6 — 1)Fy + sumy + (6 — 2)F>
(i) Here the summand (6 — 1)}F} accounts for the descent that arises at po-
sition 5(= 6 — 1), when we append 2 to each of the Fy up-down sequences
of length 5 that end in 3.
(if) The summand (6 — 2) F» accounts for the descent that arises at position
4(= 6 — 2), when 34 is appended to the one (= F,) up-down sequence of
length 4 that ends in 4.

Case 2: sumy = sumeg + (7 — 1)Fy + sums + (7 — 2)Fy + (7T - 1) F3
(i) Here the summand (7 — 1)Fy counts the Fy descents that arise at posi-
tion 6(= 7 — 1) when 3 is appended to each of the F; up-down sequences
of length 6 that end in 4.
(ii) The summand (7 —2)Fy accounts for the descents that arise at position
5(= 7 — 2) when 21 is appended to each of the Fy up-down sequences of
length 5 that end in 3.
(iii) The summand (7—1)Fs accounts for each additional descent that arises
at position 6(= 7 — 1) when 21 is appended to each of the F5 up-down se-
quences of length 5.

284



In general, for n even, with n > 4,
SUMy = SUMp_) + SUMp_2+ (N —1)F_2+ (n — 2)F,—y,
while, for n odd, with n > 3,

SUMy = SUMp_1 + SUMp_2+ (R —1)Fr_3+ (n—1)F_o+ (n —2)Fn_3
= Sump_1 + sump_o+ (n—1)Fp_; + (n — 2)Fr—3.

Consequently, for n > 3,
sSumy, = SuMyp_) + SuMp_2

+ (%) [14(-1)"] [(n = 1)Foe1 + (n — 2)Fa_3]
* (%) L+ (1" {(n = DFa_z + (n ~ 2)Facd],

with sum; = sumgy = 0.
Using the Binet form for the Fibonacci numbers, this recurrence relation

becomes

SUMp = SUMp_) + SUMp_2
1 1 n 1 1 n
(e 8o (4= 3)
1 2 n 1 2 n
+<§‘g 5)a +(§+5\/5)ﬂ
+ (—Z + ?,‘/g) n(—a)" + (—'Zz - %\/E_)) n(-B)"

(3 - % 5) (—a)" + (s + %\/5) (-8)".

Consequently, the solution has the form
sumy, = ¢ a" +c3* A"
+ (A7” + A2"n)na™ + (By" + B;™n)nf"™
+ (A3" + APn)(—a)" + (B3" + By"n)(—B)".

Continuing with the methods we used in Sections 3 and 4, we now find

that
Aj ——-2—0 5 and AZ" 0\/5

while

1 —‘_\/5_3» dB;‘:——\/-
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Further similar calculations tell us that
w_(1_3 w_(1_1
with

w_ (1, 3 w_ (1.1
B3 _(Z+E\/g) and B} —(2-1-4\/5).

Therefore,

sumy = cf*a”™ + c3* "

_1_ n _1_ 2.n
+ (—20\/5) no” + (20\/5) n“oa
1 n __1_ 290
+(55v8) o+ 20\/5)71 5
1 1 n 1 3 n
+ (5 - Z\/E) n(—a)® + (4 - 216*/5) (—a)
11 . (1 3 n
+ (5 + Z\/S) n(—B)" + (Z + E‘/g) (-B)",
and from the initial conditions it follows that
w_ (1 1 o _ (1,1
¢ —( 1 8\/3) and ¢ —-( 4+8\/g).
Consequently, for n > 1,

11 n 11 ,
——-—gx/g)a +(—Z+§~/5)B

4
1 n 1 2.n
—-—\/5 no” + -2-6\/5 n‘"«

4 40

$V8) nt=pr + (1 5vB) (-

VE) n(-a)" + (3 - 5V5) (-a)"

- (-) [=5 — 2n + 2n% — 3(=1)" — 10(~1)"n] F,

+ (%) =1+ (=1)" + 2(~1)"n] L.
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