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Abstract

Let G be a claw-free graph of order 4k, where k is a positive
integer. In this paper, it is proved that if the degree sum d(u)+d(v) is
at least 4k —2 for every pair of nonadjacent vertices u,v €V(G), then
G has a spanning subgraph consisting of k— 1 quadrilaterals and a 4-
path such that all of them are vertex-disjoint, unless G is isomorphic
to Kak,+2 U Kaky+2 or Kaxy+1 U Kaky+3, where k1 > 0,k2 2 0,k1 +
ks = k — 1. We further showed that the requirement about claw-free
is indispensable and the degree condition is sharp.
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1 Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined
notation follows that of Bondy and Murty [1]. Let G = (V, E) be a graph.
We use V(G), E(G), §(G) to denote the vertex set, edge set and mini-
mum degree in G respectively. Besides, 02(G)=min{d(z) + d(y) | =,y €
V(G),z # y,zy € E(G)} is the minimum degree sum of nonadjacent ver-
tices. The order of G is |G| and its size is e(G)=|E|. A set of graphs is
said to be vertex-disjoint if no two of them have any common vertex. An
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independent set of the graph G is a set of vertices with no edge between
them. For x € V(G), Ng(z)={y € V(G) | zy € E(G)}. If H is a subgraph
of G, then Ny(z)=Ng(z)NV(H) and d(z, H)=|Ng(z) |. Suppose X and
Y be two vertex-disjoint subgraphs of G or two disjoint subsets of V(G).
We define G[X] to be the subgraph of G induced by X and e(X,Y’) to be
the number of edges between X and Y. A k-cycle is a cycle of order %, and
a m-path is a path of order m. Particularly, a quadrilateral is a cycle of
order 4 and a triangle is a cycle of order 3. For a k-cycle C=x;x3...zr 21,
z:Zi+1(1 € © < k is an integer) is an edge in C, where the subscript is
reduced modulo k& when it is larger than k.

For two vertex-disjoint graphs G and H, GU H is the union of G and H
without adding any edge between G and H. A claw is a complete bipartite
graph K; 3. A graph is said claw-free if it does not contain an induced
subgraph isomorphic to a claw. For two graphs G and H, we use G ~ H
to denote that G is isomorphic to H.

A long-standing conjecture on quadrilaterals comes from Erdds [2],
which has been proved by Wang [6] recently.

Theorem 1.1 (Erdés (2], Wang [6]) For a graph G of order n = 4k, where
k is a positive integer, if the minimum degree 8(G) > 2k, then G contains
k vertez-disjoint quadrilaterals.

There are many results related to this theorem(see (3, 4, 7, 8, 9, 10]).
Among all the results, Yan and Liu [7] showed the following theorem in
2003.

Theorem 1.2 (Yan and Liu [7]) Let G be a graph with | G |=4k, where
k > 0. Ifoo(G) > 4k—1, then G contains k—1 vertez-disjoint quadrilaterals
and a 4-path such that all of them are vertez-disjoint.

We improve the above result by reducing the degree condition by 1
for claw-free graphs. Before giving our result, we define two types of ex-
ceptional graphs: M(k), k2) =Kuk,12|) Kar,+2 and N(ky, k2)=Kax, 11 U
K4k, +3, where ky > 0,k > 0. Our main result is as follows.

Theorem 1.3 Let k be a positive integer. If G is a claw-free graph with
|G|=4k and 02(G) > 4k — 2, then G has a spanning subgraph consisting of
k — 1 quadrilaterals and a 4-path such that all of them are vertez-disjoint,
unless G ~ M(ky,k3) or G ~ N(k1,ky), where ky > 0,k 2> 0,k; + ko =
k—1.

To illustrate that the condition of G being claw-free is indispensable, we
consider a graph isomorphic to the complete bipartite graph Kogi1,2x-1-
Obviously, | Kak+1,2k—1 |= 4k, 02(Kaks1,2k-1) = 4k — 2 and Koky1,26-1
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contains a claw. Since any quadrilateral and 4-path must contain two ver-
tices of each partite set, Kox41,2k—1 does not contain a spanning subgraph
consisting of k¥ — 1 quadrilaterals and a 4-path such that all of them are
vertex-disjoint. Since Kok1,2k—1 contains an independent set with at least
three vertices, it follows that Kax41,2k—1 does not belong to the two types
of graph M (ky, k2) or N(ky, k2).

Furthermore, the degree condition of our result is sharp, just considering
the graph (Kyk, +2 — €) U K4k, +2, denoted by S(k), where e is an edge in
Kk, 42, ky + ko =k —1,k1 > ko > 0. Obviously, | S(k) |= 4k, 02(S(k)) =
4k—3 and S(k) is claw-free. Furthermore, S(k) does not contain a spanning
subgraph consisting of kK — 1 quadrilaterals and a 4-path such that all of
them are vertex-disjoint and S(k) does not belong to the two types of graph
M(ky, k) or N(ki,k2).

In the next section, we give some useful lemmas. Then we prove our
main result in Section 3.

2 Technical lemmas
In this section, G is a graph of order n > 3.

Lemma 2.1 (see [5]) Let C be a quadrilateral and let z and y be two dis-
tinct vertices of G not on C. Suppose d(z,C)+d(y,C) > 5, then G[V(C) U{z, y}]
contains a quadrilateral C’ and an edge e such that C' and e are vertez-

disjoint and e is incident with exactly one of z and y.

Lemma 2.2 (see [5]) Let C be a quadrilateral and let Py and P2 be two
paths of order 2 in G. Suppose C, P, and P, are vertez-disjoint and
e(C,PAUP:)> 9. Then G{CUP,UP2] contains a quadrilateral C' and a
path P of order 4 such that C' and P are vertez-disjoint.

Lemma 2.3 (see [5]) Let Py, Py be two vertez-disjoint paths of order 4 in
G. Ife(P, P;) > 6, then G[V(P,) UV (P,)] contains a quadrilateral.

Lemma 2.4 (see [5]) Let C be a quadrilateral and P, and P; be two
paths of order 4 in G. Suppose C, P, and P, are vertez-disjoint and
e(C,PLUP) > 17, then GIV(CUPIUP:)] contains two vertez-disjoint
quadrilaterals.

Lemma 2.5 (see [4]) Let P, and Pp be two vertez-disjoint paths of order
4 in G. If GIV(P,|J P,)] doesn’t contain a quadrilateral, then V(P P,)
can be partitioned into four pairs of nonadjacent vertices.
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Proof. Denote P, = z1z3z374 and Po = y1y2y3ys. Since P; and P
do not contain a quadrilateral, we have z,z4 ¢ E(G) and y1y4 € E(G).
If e({zx2,z3}, {v1,¥4}) = 1, without loss of generality, say zoy1 € E(G),
then z3y2 ¢ E(G) and zoyzs & E(G). So {zi,zs}, {y1,va}, {z2,y3}
and {z3,y2} are four pairs of nonadjacent vertices. We can get the sim-
ilar result if e({y2,y3}, {z1,24}) > 1. However, if e({z2,z3}, {v1,¥4}) =
e({y2)y3}’{$11x4}) =0, then {$21 yl}’ {3?3,!/4}, {y2,$1} and {y3’1:4} are
four pairs of nonadjacent vertices. In each case, V(P |J P;) can be parti-
tioned into four pairs of nonadjacent vertices.

Lemma 2.6 Let |D|=4. If G|D)] does not contain a path of order 4, then
e(D) < 3.

Proof. Assume to the contrary that e(D) > 4. Denote the four vertices
of D to be z, y, z, w. Since e(D) > 4, without loss of generality(simply de-
noted by w.l.o.g. hereafter), assume zy € E(G[D]). Suppose zw €E(G|[D]).
Since e(D) > 4, it follows that e(zy, zw)> 2. Thus G[D] contains a path
of order 4, a contradiction. Hence 2w ¢E(G[D]). Since e(D) > 4, we
have e(zy, zw)> 3. W.l.o.g., suppose {zz,zw,yz} CE(G[D]). Then G[D]
contains a 4-path zyrw, a contradiction. B

The following lemma is obvious.

Lemma 2.7 If ab,cd are two vertez-disjoint edges in G, e(ab,cd) > 3,
then Gla,b, ¢, d] contains a quadrilateral.

Lemma 2.8 Let ab, cd be two vertex-disjoint edges and Q = T1x2T3T4T) be
e quadrilateral in G such that all of them are vertex-disjoint. Furthermore,
suppose G[QJablJcd] does not contain a quadrilateral and a 4-path such
that they are vertez-disjoint and e(ab,z;z;41) = 2, e(ed, xxj41) = 2 for
all j € {1,2,3,4}. The following two statements hold:

(?) If {az1,az3} C E(G), then {azx3,az4} C E(G).
(#3) If {az1,bz1} C E(G), then {azxs,bz3} C E(G).

Proof. (i) Suppose {az;,az2} C E(G). Since e(ab, z112) = 2, it follows
that e(b, z1z2) = 0 and therefore bz; € E(G). If bz € E(G), then abrazsa
is a quadrilateral. Since e(z1z4,cd) = 2, G[z1,Z4, ¢, d] contains a 4-path.
Therefore, G[Q|J{a,b,c,d}] contains a quadrilateral and a 4-path such
that they are vertex-disjoint, a contradiction. Hence bz3 ¢ E(G). Since
e(ab, za23) = 2, it follows that azs € E(G). With the same proof, azy €
E(G).

(ii) Suppose {az;,bz1} C E(G). Since e(ab, z1z2) = 2 and e(ab, z1z4) =
2, it follows that e(ab, z2) = 0 and e(ab, z4) = 0. Since e(ab, x2x3) = 2, we
have e(ab, z3) = 2. Thus, {az3,bz3} C E(G).
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Lemma 2.9 Let G be a claw-free graph with |G|=4k and 02(G) > 4k —
2, where k > 1 is an integer. Suppose G contains k — 1 quadrilaterals
Q1,Q2,...,Qk-1 and two vertez-disjoint edges e;, ey such that all of them
are vertez-disjoint. If there exists Q; = T1Z223%4x) such thate(e1,z;Tj41) =
e(ez,z;z;+1) = 2 for all j € {1,2,3,4}, then G has a spanning subgraph
consisting of k — 1 quadrilaterals and a 4-path such that all of them are
vertez-disjoint.

Proof. Suppose on the contrary that G does not contain a spanning
subgraph consisting of £ — 1 quadrilaterals and a 4-path such that all
of them are vertex-disjoint. Denote e; = zy, ez = 2w, D = Gle1 Jez]
and H = ::11 Q. By symmetry, assume e(z,z;z2) 2e(y,zi1z2) and
e(z,T1T2) 2e(w, z1z2). Obviously, e(D) = 2 and there is no edge between
e; and e2. We have Gle; | J{z;,%;4+1}] does not contain a quadrilateral for
every ! € {1,2} and j € {1,2, 3,4}, otherwise, G[D | JQ:] contains a quadri-
lateral and a 4-path such that they are vertex-disjoint, a contradiction.

Suppose e(z,r122) = 2. By Lemma 2.8, e(z,Q;) = 4 and e(y,Q:) =
0. Thus, 7123 €F and z2z4 €F for otherwise G contains a claw. If
e(z,z1z2) = 2, then e(z,Q;) = 4 and e(w, Q;) = 0 from Lemma 2.8. This
implies that e({y,w}, H — Q;) > 4k — 2 — 2 = 4(k — 2) + 4. Hence, there
is Q1 CH — Q; such that e({y,w}, @) > 5. By Lemma 2.1, G[Q; U{y, w}]
contains a quadrilateral Q] and an edge e such that Q] and e are vertex-
disjoint and e is incident with exact one of y and w, w.o.l.g., let e = ya,
where a € V(Qi). Then G[D|JQ:UQ;] contains two quadrilaterals Qj,
21175232 and a 4-path ayzz4 such that all of them are vertex-disjoint, a
contradiction. Thus, e(z,z1z2) = e(w,z1z2) = 1. Since Glez | J{z1,z2}]
does not contain a quadrilateral, w.l.o.g., assume 2z; €F and wz; €E.
This implies e(z1, z2w) = e(z3, 2w) = 2 and e(z2z4, 2w) = 0 from Lemma
2.8. Then G|D|J Q;] contains a quadrilateral zwz3z; z and a 4-path yzzaz4
such that they are vertex-disjoint, a contradiction.

Thus, e(z,z1z2) = e(y,z122) = 1. By the symmetry of e; and ey,
e(z,z172) = e(w,z1z2) = 1. Since Gley U{z1,z2}] does not contain a
quadrilateral, w.l.o.g., let z;z €F and z;y €E. By Lemma 2.8, e(z3,e;) =
e(z1,e1) = 2. Since GleaJ{z1,z2}] does not contain a quadrilateral,
it follows that either e(r;,e2) = 2 or e(zg,e0) = 2. If e(zs,e2) = 2,
then e(z4,e2) = 2 from Lemma 2.8, which implies that G[D|JQ;] con-
tains two vertex-disjoint quadrilaterals zzsyz;x and zzowz4z, a contra-
diction. Hence, e(z1,e2) = 2. By Lemma 2.8, e(z3,e2) = 2. Since
e(e1,@:) = e(e2,Q;) = 4, it follows that e(z2,zy) = e(z4,zy) = 0 and
e(z2, zw) = e(x4, zw) = 0. Hence G[{z1} U{y, z2, w}| is a claw, a contra-
diction. [ |
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3 Proof of Theorem 1.3

Let G be a claw-free graph with |G|=4k and 02(G) > 4k — 2. Suppose
on the contrary that neither G contains a spanning subgraph consisting of
k — 1 quadrilaterals and a 4-path such that all of them are vertex-disjoint,
nor G ~ M (ky, k3) or G =~ N(ky,kz) for any ky > 0,kz > 0,k1 +k2 = k—1.
Let G be a maximal counterexample, that is, for any zy €E(G), either
G + zy contains a spanning subgraph consisting of k — 1 quadrilaterals and
a 4-path such that all of them are vertex-disjoint, or G + zy ~ M (ky, k3)
or G+ zy ~ N(ki, k2) for some k1 > 0,k2 > 0,k; + ko =k — 1.

Claim 1. G contains k — 1 vertex-disjoint quadrilaterals.

Proof. If G+ xzy ~ M(ky, k) or G + xy ~ N(ky,k2) hold for any
zy ¢E(G), obviously G contains k—1 vertex-disjoint quadrilaterals. There-
fore, we only need to consider the case that G + zy contains a spanning
subgraph consisting of £k — 1 quadrilaterals and a 4-path such that all of
them are vertex-disjoint for any zy €FE(G). So G either contains k — 2
quadrilaterals and two 4-paths such that all of them are vertex-disjoint or
contains k—1 vertex-disjoint quadrilaterals. Assume on the contrary that G
doesn’t contain k — 1 vertex-disjoint quadrilaterals. Then G contains k — 2
quadrilaterals and two 4-paths such that all of them are vertex-disjoint.
Let Q1,Q2...Qx—2 be the k — 2 quadrilaterals and P,, P> be the two
4-paths such that all of them are vertex-disjoint. Denote H = Uf,_ff Q;,
P, = 11257324 and P> = 419Y2y3ys. Since P, and P, do not contain a
quadrilateral, we have e(P;) < 4 and e(P2) < 4. Furthermore, (P, P2) <5
from Lemma 2.3. So erV(& UPs) d(z, P, |JP2) <8+ 8+ 10 = 26. Since
G[V(P1UP,)] doesn’t contain a quadrilateral, by Lemma 2.5, it follows
that V(P; |J P2) can be divided into four pairs of nonadjacent vertices. So

Y d(z,H) > 4(4k - 2) — 26 = 16(k — 2) — 2.
zeV(AUP)

By Lemma 2.4, zzGV(Pl UP) d(z,Q;) <16 for all Q; in H. Therefore

16(k-2)-2< Y d(z,H) <16(k - 2).
zeV(P1UP2)

So we have 3 < e(P)) < 4, e(P,) = 4, e(P,,P;) =5o0ore(P;) =4,3 <
e(P) £4,e(P,P)=50r e(P) =4, e(P) =4,4<e(P,R) <5
Assume e(P)) = 4, e(P2) = 4 and 4 < e(P,P;) £ 5. Without loss
of generality, say {zi1z3,y1y3} € E(G). Since G|V (P, |JP.)] does not
contain a quadrilateral, we have e(z12273,y1y2y3) < 1, e(zq, 1y2ys) < 1
and e(y4,z12273) < 1. Since e(Py, P2) > 4, it follows that z4ys € E(G),
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e(z4,1192y3) = 1 and e(ys,z12223) = 1. Obviously, yuz1 & E(G), yaz2 €
E(G) and so y,z3 € E(G). With the same proof, z4y3 € E(G). Now
T3Z4Y3YaZ3 is a quadrilateral, a contradiction.

Therefore, by symmetry, we have 3 < e(P;) < 4, e(P,) = 4 and
e(P,, P») = 5. Without loss of generality, say y;y3 € E(G). Since e(P}, P») =
5, there exists a vertex z; € V(P;) such that d(z;,P,) = 2. By sym-
metry, say ¢ = 2 or i = 1. If i = 2, then {z2y3,z2y4} C E(G) and
d(z1, P;) = d(z3,P;) = 0. Since d(z4, P2) < 2, we have e(P},P;) < 4, a
contradiction. If i = 1, we can get a contradiction by a similar argument.
Therefore, G contains k — 1 vertex-disjoint quadrilaterals. [ |

By Claim 1, G contains k — 1 vertex-disjoint quadrilaterals, denoted by
Q1, Q2.+, Qr_1. Denote H = U2} Qi, D = G — H. Obviously, D does
not contain a 4-path. Now we choose k — 1 quadrilaterals @1, @2, - Qr-1
such that the number of vertex-disjoint edges of D is maximum.

Claim 2. e(D) > 2.
Proof. By contradiction, suppose e(D) < 1. Then we can choose two
vertices z,w € V(D) such that d(z,D) + d(w,D) = 0. So d(z,H) +
dw,H) > 4k — 2 — 0 = 4(k — 1) + 2. Therefore, there exists Q; € H
such that d(z,Q;) + d(w, Q;) > 5. By Lemma 2.1, G[Q; U{z, w}] contains
a quadrilateral Q} and an edge e’ such that they are vertex-disjoint. Re-
placing Q; with @}, we get H'=(H - Q;) U Q}, D' = G- H'. Now D’
contains more vertex-disjoint edges than D, contradicting our choice of @,
Q2+ Qr-1.

In the following, let V(D)={z,y, 2,w} and zy be an edge in D.

Since D does not contain a 4-path, we have e(D) < 3 from Lemma 2.6.

Hence,
2<e(D)<3. (1)

Now we divide the proof into the following two cases: e(D) = 2 or e(D) = 3.

Case 1. e(D) = 2.
In this case, we first prove that D contains two vertex-disjoint edges.

Claim 3. zw € E(D) and therefore E(D) = {zy, zw}.

Proof. Suppose zw & E(D). Since e(D) = 2, w.o.l.g.,say zz € E(D), we
have d(z, D)+d(w, D) = 1. Sod(z, H)+d(w, H) > 4k—-2-1 = 4(k—1)+1.
Therefore, there exists Q; C H such that d(z,Q;) + d(w,Q;) > 5. By
Lemma 2.1, G[Q; |J{z,w}] contains a quadrilateral Q; and an edge e’ such
that they are vertex-disjoint. Replacing Q; with Q}, we get H'=(H — Q;)
U Qi D' =G - H'. D contains two vertex-disjoint edges zy and €,
contradicting our choice of Q1, Q2, -+ Qk—1. [ |

For simplicity, denote e; = zy, e2 = 2w hereafter. By Claim 3, E(D) =
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{zy, zw}. Thus d(z, D)+d(w, D)+d(z, D)+d(y, D) = 4. Since zz ¢ E(D)
and yw ¢ E(D), we have

(D, H) > 2(dk — 2) — 4 = 8(k — 1). (2)

Claim 4. e(D, Q;) = 8 for each Q;, wherei =1,2... ,k —1.

Proof. If there is a Q; in H such that e(D,Q;) > 9, by Lemma 2.2,
G|V(Q:) U D] contains a quadrilateral and a 4-path such that they are
vertex-disjoint, a contradiction. So e(D,Q;) < 8 for each Q; and therefore

k—1
e(D,H) =) e(D,Q:) <8(k—1).
=1
By (2), e(D, H) = 8(k — 1). Thus, e(D, Q;) = 8 for each Q; C H. [ |

By Claim 4, for each Q; C H,e(e;, Q;) + e(e2,Q;) = 8.

Claim 5. For each Q; C H, either e(e;,Q;) = 8 and e(e2,Q;i) = 0 or

e(e2,Q:) = 8 and e(e1,@;) = 0.

Proof. Suppose there exits Q; € H such that e(e1, @;) = e(e2,Q:) = 4.
Denote Q; to be 122737471, Assume that e(e;, 1z2) > 3. By Lemma
2.7, Gle1 U{z1,x2}] contains a quadrilateral. Thus, Gles | J{z3,z4}] does
not contain a 4-path, which implies e(ez, z3z4) = 0. Since e(ez,T1z2) =
e(e2, Qi) = 4, GleaU{z1,z2}] contains a quadrilateral from Lemma 2.7.
Hence e(e1, z3z4) = 0 and therefore e(ey, z122) = 4. Now we get a claw
G[{z2} Ny, w,z3}], a contradiction. Hence e(e;,z3z2) < 2. By sym-
metry, e(e1,z;Z;41) < 2 and e(eg,z;z;41) < 2 for every j € {1,2,3,4}.
Since e(ey, Qi) = e(e2,Q;) = 4, it follows that e(e;,z;z;41) = 2 and
e(e2,T;zj41) = 2 for all j € {1,2,3,4}. By Lemma 2.9, G contains k — 1
quadrilaterals and a 4-path such that all of them are vertex-disjoint, a
contradiction.

Hence, either e(e;, Q;) > 5 or e(eq, Q;) > 5 foreveryi € {1,2,...,k—1}.
By symmetry, say e(e;,Q:) = 5. Denote Q; to be z1z9z324z). Then ei-
ther e(e1,z1z2) > 3 or e(e;,z3x4) > 3 holds. Without loss of generality,
say e(e1,z1z2) = 3. By Lemma 2.7, Gle, | J{z1, z2}] contains a quadrilat-
eral. This implies e(ez,z324) = 0 for otherwise G[V(Q:)|J D] contains
a quadrilateral and a 4-path such that they are vertex-disjoint. Since
e(e1,z172) < 4 and e(e;, Q;) > 5, it follows that e(e1, z3r4) > 1. Hence
Gle1 U{x3,z4}] contains a 4-path. By Lemma 2.7, e(ez, z122) < 2. Thus,
e(es,Q;) < 2 and e(eq,Q;) = 6. If e(e;, z3z4) = 3, then similarly as before,
e(es,7172) = 0. Hence, e(e2,Q:) = 0 and e(e1, Q;) = 8, we complete our
proof. Now assume e(e1,z3z4) < 2. Since e(e1, Q:) + e(e2,Q:) = 8, then
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e(e;,z1T2) = 4, e(e1,z3z4) = 2 and e(eq, z112) = e(ez, @:) = 2. W.lo.g,
say zz), €E. Then zx3 ¢E and yz3 ¢E for otherwise Gle; J{z2,z3}]
contains a quadrilateral, which is vertex-disjoint with the 4-path wzziz4.
Since e(e1, z3z4) = 2, we have e(e1,z4) = 2. Hence yz4 €F and therefore
G[DQi] contains a quadrilateral z2z3z,yz; and a 4-path zzi2w such
that they are vertex-disjoint, a contradiction. [ |

Now we will complete the proof of Case 1 by proving that G is isomor-
phic to M (ky, kz), where k; > 0,k2 > 0,k; + k2 = k — 1. By Claim 5,
w.l.o.g., there exist k; > 0, ko > 0,k1 + k2 = k — 1, such that e(e;, Q:) =
e(es, Q;) = 8, e(e1,Q;) = e(e2,Q:) = 0, where i € {1,2,--- ,k1}, j €
{ky + 1,ky +2,-- k1 + kp}. Denote H; = G[(UF_, Qm)Uei), Hz =
Gl(Urey 1 @) Ueal.

We firstly show that e(H;,Hs) = 0. If ky = 0 or kp = 0, then
e(Hy,H;) = 0 clearly. Now assume k; > 1 and k; > 1. Obviously,
e(e1, H2) = 0 and e(ez, H) = 0. Suppose there is an edge e between
Hy -z -y and Hy — 2z — w, w.lo.g, say e = pyq1, where p; € V(Q,),
g € V(Qj), i € {1,2,--- ,kv}, 7 € {k1 + 1,ky + 2,--+ ,k1 + k2}. De-
note Q; = p1p2papap1, @5 = 0192939491 Then G[DJQ:JQ;] contains
two quadrilaterals zypspqz, 2wq3qsz and a 4-path pop;¢1¢2 such that all of
them are vertex-disjoint. Therefore, G has a spanning subgraph consisting
of k—1 quadrilaterals and a 4-path such that all of them are vertex-disjoint,
a contradiction. Thus e(H,, H3) = 0 holds.

Now choose two vertices v € V(H;) and u € V(H,) arbitrarily. Since
e(H,,H,;) = 0, we have d(v,G) = d(v,H;) <| H, | =1 = 4k; + 1 and
d(u,G) = d(u, Hs) <| Hs | —=1 = 4k + 1. Therefore, d(v,G) + d(u,G) <
4k — 2. On the other hand, Since vu ¢ E(G), it follows that d(v,G) +
d(u,G) > 4k — 2. Therefore, d(v, H1) =|H; | =1 and d(u, H) = |H2 | -1.
Since we choose v € V(H;) and u € V(H;) arbitrarily, H; is isomorphic to
K4k, +2 and Hj is isomorphic to K4k, +2. So G is isomorphic to M (ky, k3),
a contradiction, which completes the proof in Case 1.

Case 2. e¢(D) = 3.

As we denoted before, D = G— H, V(D)={z,y, 2, w} and zy is an edge
in D. If zw € E(G), then e(zy, zw) = 1. Obviously, G[D)] contains a 4-path,
a contradiction. Therefore, 2w ¢ E(G) and we have e(zy, {z,w}) = 2. If
{zz,zw} C E(G), then G[D] is a claw, contradicting the condition G is
claw-free. Therefore, we have {zz,yz} C E(G) by symmetry. Then G[D]
contains a triangle zyzr and a vertex w, where e(zyz,w) = 0. Note that
D has exactly one vertex-disjoint edge in Case 2.

Obviously, d(w, D) + d(z, D) = 2. Since wz ¢ E(G), we have

d(w, H) +d(z, H) > 4k — 2 - 2 = 4(k — 1). 3)
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If there exists Q; such that d(w, Q;)+4d(z,Q;) > 5, then by Lemma 2.1,
G(Q: | J{w, z}] contains a quadrilateral Q; and an edge e such that they are
vertex-disjoint. Replacing @; with Q}, we get H' = (H — Q;)UQ;, D' =
G - H'. Now D' contains two vertex-disjoint edges zy and e, contradicting
our choice of @y, @2, ++ Qr—1. Therefore d(w, @;) + d(z, Q;) < 4 for each
Q: € H. Then

k-1

d(w, H) +d(z,H) =) _(d(w, Qi) + d(z,@Q:)) < 4(k—1).  (4)

i=1

By (3) and (4), we have e({w, z},Q;) = 4 for any @; C H. With the
same proof, e({w,z},Q;) = 4 and e({w,y},Q:) = 4 for each Q; C H.
Therefore for each Q; C H

e({w,z}, Qi) = e({w, v}, Qi) = e({w, 2}, Qi) = 4. ()

Claim 6. For each Q; C H, either d(w, @;) = 4 or d(w,@;) = 0.

Proof. Suppose on the contrary that 1 <d(w,Q;) < 3 for some Q; C H.
Denote @; to be z1z9z3z47,. We firstly claim there exist two vertices p,
g €V(D — w) and a vertex h €V(Q;) such that ph €E and gh €E. If
d(w, Q;) < 2, then e(D — w, Q;) > 6 by (5) and the claim holds obviously.
Now assume d(w, Q;) = 3, w.lo.g., say {z2,%3,24} CNg,(w). Then e(D —
w, z)z3) = 0 for otherwise G[D |JQ;] contains a quadrilateral and a 4-path
such that they are vertex-disjoint. By (5), d(z, Q;) =d(y,Q:) = d(2,Q;) =
1. Therefore, e(D — w, z2z4) = e(D — w, Q;) = 3, which implies that there
exist two vertices p, ¢ in V(D — w) and a vertex h € {x2,z4} such that
ph €E and gqh €F.

Since ph €E and gh €F, it follows that G[D + h — w] contains a quadri-
lateral, denoted by Q. If d(w,Q; — h) > 0, then G[Q; + w — h] either
is a claw or contains a 4-path, which is vertex-disjoint with the quadri-
lateral Qj, a contradiction. Hence wh €F and d(w,Q;) = 1. By (5),
d(pri) = d(q’ Qt) = 3. Thus e(pQ)Qi - h’) 2 6-2 =4, which im-
plies there exists a vertex b €V(Q; — h) such that pb €E and gb cE.
Therefore, G[D + b — w] contains a quadrilateral, denoted by Q7. Since
d(w,Q; — b) =1 > 0, we have G[Q; + w — b] either is a claw or contains a

4-path, which is vertex-disjoint with the quadrilateral QY, a contradiction.
|

Now we will show that G is isomorphic to N(k;,k2) and complete our
proof. By Claim 6, w.l.0.g., there exist two integers ky > 0,k > 0, k) +k2 =
k — 1 such that d(w,Q,) = 4 and d(w,Qj;) = 0, where t € {1,2,--- ,k},

j € {kl + lakl + 2,"' )kl + k2} Let H, = G[(Ufr::l Qm) U{w}la H2 =
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ClUjzk,+1Q5) Uiz, v, 2}

W?e firstly show that e(H;,Hz) = 0. If k; = 0 or k2 = 0, then
e(H;,H2) = 0 obviously. Now assume k; > 1 and k2 > 1. By (5),
d(z,Q;) = d(y, QJ) = d(z2,Q;) = 4 and d(z, Q:) = d(y,Q:) = d(z,Q:) =0,
wheret € {1,2,--- ,k1}, 7 € {ki+1,k1+2,--- , k1 +ko}. Thuse(w,Hz) =0
and e({z,y,z}, H1) = 0. Suppose there exists an edge e between H; — w
and H; — {z,y,2}, w.olg., say e = p1q1, where p; € V(Q,), 1 € V(Q;),
te{1,2,---,k1},j € {k1+1,k1+2,--- ,k1+k2}. Denote Q; = p1p2p3pap1
and Q; = ¢192¢394g1- Then G[DJQ:|JQ;] contains two quadrilaterals
WP2P3P4W, T¢2g3qsT and a 4-path p1gyz such that all of them are vertex-
disjoint. Therefore, G contains a spanning subgraph consisting of £ — 1
quadrilaterals and a 4-path such that all of them are vertex-disjoint, a
contradiction. Thus e(H;, H) = 0 holds.

Now choose two vertices v € V(H;) and u € V(H;) arbitrarily. Since
e(H,, Hy) =0, we have d(v,G) = d(v, H1) <| H | -1 = 4k, and d(u,G) =
d(u, Hp) <| Hy | =1 = 4ky + 2. Thus d(v,G) + d(u,G) < 4k — 2. On the
other hand, Since vu € E(G), it follows that d(v,G) + d(u,G) 2> 4k — 2.
Therefore, d(v, H,) =| Hy | —1 and d(u, H) =| Hp | —1. Since we choose
v € V(H;) and u € V(H,) arbitrarily, H; is isomorphic to K4, +1 and Hp
is isomorphic to Kyk,+3. Note that e(H, Hz) = 0, then G is isomorphic to
N(ky, kq), a contradiction. This completes the whole proof.
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