The existence of 3 pairwise additive B(v, 2, 1) for any $v \ge 6$

K. Matsubara Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan d122307@hiroshima-u.ac.jp

S. Kageyama

Hiroshima Institute of Technology, Hiroshima 731-5193, Japan s.kageyama.4b@it-hiroshima.ac.jp

Abstract. The existence of additive BIB designs and 2 pairwise additive BIB designs has been discussed with direct and recursive constructions in [6, 9]. In this paper, by reorganizing some methods of constructing pairwise additive BIB designs from other combinatorial structures, it is shown that 3 pairwise additive B(v, 2, 1) can be constructed for any integer $v \ge 6$.

Keywords: incidence matrix; balanced incomplete block (BIB) design; pairwise additive BIB design; nested BIB design; self-orthogonal latin square.

1 Introduction

Let s = v/k, where s need not be an integer unlike other parameters. A set of ℓ BIBD (v, b, r, k, λ) is called ℓ pairwise additive BIB designs if ℓ $(2 \le \ell \le s)$ corresponding incidence matrices N_1, \ldots, N_ℓ of the BIB design satisfy the condition:

(A) $N_{i_1} + N_{i_2}$ is the incidence matrix of a BIBD $(v^* = v = sk, b^* = b, r^* = 2r, k^* = 2k, \lambda^* = 2r(2k-1)/(sk-1))$ for any distinct $i_1, i_2 \in \{1, 2, ..., \ell\}$.

This is especially called additive BIB designs [5, 9] if $\ell = s$.

Additive BIB designs and pairwise additive BIB designs have been introduced by Matsubara et al. [5] and Sawa et al. [9]. In pairwise additive $B(v, k, \lambda)$, it is known [9] that $2\lambda/(k-1)$ is a positive integer, which implies k=2 or 3 when $\lambda=1$. In pairwise additive B(v,2,1), it is finally shown [6] that there are 2 pairwise additive B(v,2,1) for any integer $v \geq 4$. A problem of constructing 3 pairwise additive B(v,2,1) is more difficult than that of 2 pairwise additive B(v,2,1), because incidence matrices N_1, N_2, N_3 of 3 pairwise additive B(v,2,1) possess the property that all of $N_1+N_2, N_2+N_3, N_3+N_1$ are incidence matrices of BIB designs respectively. Furthermore, it is shown that $N_1+N_2+N_3$ is an incidence matrix of a BIB design. This construction is combinatorially a challenging problem.

The purpose of this paper is devoted to show the existence of 3 pairwise additive B(v, 2, 1) for any integer $v \ge 6$, by reorganizing some methods which are somehow similar to [9] of constructing some class of ℓ pairwise additive B(v, 2, 1) through self-orthogonal latin squares and nested BIB designs for some $\ell \le v/2$, though the terms SOLS and nestedness are not used in [9].

2 Construction by self-orthogonal latin squares

In this section, some constructions of pairwise additive BIB designs through self-orthogonal latin squares are presented.

Let $A=(a_{ij})$ and $B=(b_{ij})$ are two latin squares of order v. The latin squares A and B are said to be orthogonal if all ordered pairs (a_{ij},b_{ij}) are distinct. Latin squares $A_1, ..., A_\ell$ are called mutually orthogonal latin squares of order v, denoted by MOLS(v), if they are orthogonal in each pair. A self-orthogonal latin square of order v, denoted by SOLS(v), is a latin square that is orthogonal to its transpose. A set $\{L_1, ..., L_\ell\}$ of self-orthogonal latin squares of order v is called ℓ SOLS(v), if $\{L_1, L_1^T, ..., L_\ell, L_\ell^T\}$ is a set of 2ℓ MOLS(v). A latin square $A=(a_{ij})$ is said to be idempotent if $a_{ii}=i$ where $1 \leq i \leq v$. It is here known [4] that any latin squares in ℓ SOLS(v) can be made idempotent by renaming the symbol.

Lemma 2.1 [1] There are 2 SOLS(v) for all $v \ge 7$ except possibly for $v \in \{10, 12, 14, 18, 21, 22, 24, 30, 34\}$.

In [9], additive B(2^n , 2, 1) are essentially constructed through $2^{n-1} - 1$ SOLS(v) for any integer n. Similarly, $\ell + 1$ pairwise additive B(v, 2, 1) will be obtained through ℓ SOLS(v) as follows.

Theorem 2.2 The existence of ℓ SOLS(v) implies the existence of $\ell+1$ pairwise additive B(v,2,1) for a positive integer ℓ .

Proof. Let a set of 2ℓ idempotent $\mathrm{MOLS}(v)$ be $\{L_h, L_h^T|1 \leq h \leq \ell\}$, where $L_h = (a_{ij}^{(2h-1)})$ and $L_h^T = (a_{ji}^{(2h-1)}) = (a_{ij}^{(2h)})$, derived from the ℓ SOLS(v). Let $\ell+1$ incidence matrices of $\mathrm{B}(v,2,1)$ be

$$egin{array}{lll} N_0 & : & \{i,j\} \ N_h & : & \{a_{ij}^{(2h-1)}, a_{ij}^{(2h)}\} \end{array}$$

where $1 \leq i < j \leq v$. Then, for $1 \leq h < h' \leq \ell$, the v(v-1)/2 ordered pairs of $\{a_{ij}^{(2h-1)}, a_{ij}^{(2h'-1)}\}$ and $\{a_{ij}^{(2h)}, a_{ij}^{(2h')}\}$ are distinct from each other, because of the property of orthogonality of idempotent latin squares L_h and $L_{h'}$. Similarly, the v(v-1)/2 ordered pairs of $\{a_{ij}^{(2h-1)}, a_{ij}^{(2h')}\}$ and $\{a_{ij}^{(2h)}, a_{ij}^{(2h'-1)}\}$ are distinct from each other, because of the property of orthogonality of idempotent latin squares L_h and $L_{h'}^T$. Hence it follows that $N_h + N_{h'}$ forms a B(v, 4, 6). Finally, for $1 \leq h \leq \ell$, $N_0 + N_h$ can also form a B(v, 4, 6), because of the property of idempotent latin squares. Hence the $\ell + 1$ incidence matrices N_0, N_h , for $1 \leq h \leq \ell$, can yield the required designs. \square

Thus, Lemma 2.1 and Theorem 2.2 with $\ell=2$ can produce the following.

Theorem 2.3 There are 3 pairwise additive B(v, 2, 1) for all $v \ge 7$ except possibly for $v \in \{10, 12, 14, 18, 21, 22, 24, 30, 34\}$.

3 Construction by nested BIB designs

In this section, some constructions of pairwise additive BIB designs through nested BIB designs with a perpendicular array are presented.

Preece [7] introduced the concept of a nested BIB design (NBIBD), denoted by NB(v; b_1 , b_2 ; k_1 , k_2). An NB(v; b_1 , b_2 ; k_1 , k_2) is a triple (V, \mathcal{B}_1 , \mathcal{B}_2) with v points, |V| = v, and two systems of blocks, $|\mathcal{B}_i| = b_i$, i = 1, 2, such that (i) the first system is nested within the second, i.e., each block in \mathcal{B}_2 is partitioned into u subblocks of size k_1 and the resulting subblocks form \mathcal{B}_1 , here, $b_1 = ub_2$ and $k_2 = uk_1$, (ii) (V, \mathcal{B}_i) is a BIB design with v points and b_i blocks of k_i points each.

A perpendicular array (PA), denoted by $PA_d(g, s)$, is a matrix with g rows and $d\binom{s}{2}$ columns with entries from an s-set S such that (i) each column has g distinct entries, and (ii) each set of 2 rows contains each set of 2 distinct entries of S as a column precisely d times [2]. When d = 1, it is simply written as PA(g, s).

Lemma 3.1 [9] There exists a PA(p,p) for any odd prime power p.

In [9], a construction of additive $B(v = sk, k, [s(s-1)/2]\lambda)$ by use of PA(s, s) and resolvable $B(v = sk, k, \lambda)$ is given. Similarly, pairwise additive $B(v = sk, k, \lambda)$ can be obtained through nested BIB designs as follows.

Theorem 3.2 Let $s'(\leq s)$ be an odd prime power and an NB($v = sk_1; b_1 = s'b_2, b_2; k_1, k_2 = s'k_1$) exist. Then s' pairwise additive BIBD($v = sk_1, b = (s'-1)b_1/2, r = (s'-1)b_1/(2s), k = k_1, \lambda = (k_1-1)(s'-1)b_1/[2s(sk_1-1)]$) exist.

Proof. Since s' is an odd prime power, a PA(s',s') of size $s' \times [s'(s'-1)/2]$ exists on account of Lemma 3.1. Let the symbols in this PA(s',s') be from the set $\{1,\ldots,s'\}$. For convenience of representation, let (m,n)-entry of PA(s',s') be p(m,n) $(1 \le m \le s', 1 \le n \le s'(s'-1)/2)$. For two systems of blocks, $|\mathcal{B}_i| = b_i$, i = 1, 2, in the NBIBD, blocks are $B^{(h)} \in \mathcal{B}_2$ $(1 \le h \le b_2)$, and subblocks are $B_f^{(h)} \in \mathcal{B}_1$ $(1 \le h \le b_2, 1 \le f \le s')$. Here $\bigcup_{1 \le f \le s'} B_f^{(h)} = B^{(h)}$. Now let

 $\mathcal{B}_j^* = \left(B_j^{(1)}: \cdots: B_j^{(b_2)}\right)$

where $B_j^{(h)}$ are the juxtaposition of subblocks in $B^{(h)}$ with indices being entries of PA(s', s'), i.e.,

$$\boldsymbol{B}_{j}^{(h)} = \left(B_{p(j,1)}^{(h)}: \dots: B_{p(j,s'(s'-1)/2)}^{(h)}\right), 1 \leq h \leq b_2, 1 \leq j \leq s'.$$

Then it follows that (V, \mathcal{B}_{j}^{*}) is s' pairwise additive BIBD $(v = sk_{1}, b = (s' - 1)b_{1}/2, r = (s' - 1)b_{1}/(2s), k = k_{1}, \lambda = (k_{1} - 1)(s' - 1)b_{1}/[2s(sk_{1} - 1)])$. \square

The following example illustrates Theorem 3.2 with NB(12; 66, 22; 2, 6).

Example 3.3 Developing the following blocks on Z_{11} gives an NB(12; 66, 22; 2, 6) over $Z_{11} \cup \{\infty\}$:

$$\{\infty, 4|1, 3|5, 9\}, \{0, 6|7, 8|2, 10\} \mod 11$$

and take the following PA(3,3):

1 2 3 3 1 2

2 3 1

Now, by associating the symbols 1, 2 and 3 in this array with the first, second and third subblocks respectively in each of base blocks of the above NB(12; 66, 22; 2, 6), 3 pairwise additive B(12, 66, 11, 2, 1) can be obtained by taking the following incidence matrices:

 $m{N_1}: \{\infty,4\},\{1,3\},\{5,9\},\{0,6\},\{7,8\},\{2,10\} \mod 11$ $m{N_2}: \{5,9\},\{\infty,4\},\{1,3\},\{2,10\},\{0,6\},\{7,8\} \mod 11$ $m{N_3}: \{1,3\},\{5,9\},\{\infty,4\},\{7,8\},\{2,10\},\{0,6\} \mod 11$ The existence of some nested BIB designs with specific parameters is known below.

Theorem 3.4 [3] The necessary and sufficient condition for the existence of NB $(v; b_1 = v(v-1)/2, b_2 = v(v-1)/6; k_1 = 2, k_2 = 6)$ is that $v \equiv 0, 1 \pmod{3}$ and $v \geq 6$.

Thus, Theorems 3.2 and 3.4 can show the following.

Theorem 3.5 There are 3 pairwise additive B(v, 2, 1) for all $v \equiv 0, 1 \pmod{3}$ and $v \geq 6$.

4 Main result

In this section, the existence of 3 pairwise additive BIB designs will be shown for all $v \ge 6$.

The methods discussed here do not cover a case of v=14. Hence it is individually constructed.

Lemma 4.1 There are 3 pairwise additive B(14,2,1).

Proof. A development of the following initial blocks on Z_{13} can yield three incidence matrices N_1, N_2, N_3 of the required BIB design:

 $\begin{array}{lll} \boldsymbol{N_1} &:& \{0,\infty\}, \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\}, \{0,6\} \mod 13 \\ \boldsymbol{N_2} &:& \{2,3\}, \{2,\infty\}, \{4,6\}, \{6,9\}, \{8,12\}, \{10,2\}, \{12,5\} \mod 13 \\ \boldsymbol{N_3} &:& \{4,5\}, \{4,6\}, \{10,\infty\}, \{12,2\}, \{3,7\}, \{7,12\}, \{11,4\} \mod 13 \end{array}$

In fact, it can be confirmed that $N_1 + N_2$, $N_2 + N_3$, $N_3 + N_1$ (and also $N_1 + N_2 + N_3$) are incidence matrices of BIB designs, respectively.

Finally the main result of this paper is established.

Theorem 4.2 For any $v \ge 6$, there are 3 pairwise additive B(v, 2, 1).

Proof. When $v \neq 6, 10, 12, 14, 18, 21, 22, 24, 30, 34$, Theorem 2.3 shows the existence of 3 pairwise additive B(v, 2, 1). When v = 6, 10, 12, 18, 21, 22, 24, 30, 34, Theorem 3.5 shows the existence of 3 pairwise additive B(v, 2, 1). When v = 14, the 3 pairwise additive B(v, 2, 1) are given in Lemma 4.1. Hence the proof is completed. \square

Acknowledgement. The authors wish to thank the referee for the constructive comments and suggestions to improve the readability of the paper.

References

- [1] R. J. R. Abel and F. E. Bennett, Existence of 2 SOLS and 2 ISOLS, Discrete Math. 312, 854-867, 2012.
- [2] J. Bierbraner, Ordered designs, perpendicular arrays, and permutation sets, In: C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs (2nd ed.), CRC Press, Boca Raton FL, 543-547, 2007.
- [3] T. Feng, Y. Chang and K. Shi, The existence of NBIBDs with $k_1 = 6$ and $\lambda_1 = 5$, Math Aeterna. 1, 587-598, 2011.
- [4] N. J. Finizio and L. Zhu, Self-orthogonal latin squares, In: C. J. Colbourn and J. H. Dinitz (eds.), *The CRC Handbook of Combinatorial Designs (2nd ed.)*, CRC Press, Boca Raton, 211-219, 2007.
- [5] K. Matsubara, M. Sawa, D. Matsumoto, H. Kiyama and S. Kageyama, An addition structure on incidence matrices of a BIB design, Ars Combin. 78, 113-122, 2006.
- [6] K. Matsubara and S. Kageyama, The existence of 2 pairwise additive BIB designs for any v, Journal of Statistical Theory and Practice, 2013, December, to appear.
- [7] D. A. Preece, Nested balanced incomplete block designs, *Biometrika* 54, 479-486, 1976.
- [8] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Dover, New York, 1988.
- [9] M. Sawa, K. Matsubara, D. Matsumoto, H. Kiyama and S. Kageyama, The spectrum of additive BIB designs, J. Combin. Des. 15, 235-254, 2007.