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Abstract

A d-angulation of a surface is an embedding of a 3-connected graph on
that surface that divides it into d-gonal faces. A d-angulation is said to be
Griinbaum colorable if its edges can be d-colored so that every face uses all
d colors. Up to now, the concept of Griinbaum coloring has been related
only to triangulations (d = 3), but in this note, this concept is generalized
for an arbitrary face size 4 > 3. It is shown that the face 2-colorability of a
d-angulation P implies the Griinbaum colorability of P. Some wide classes
of triangulations have turned out to be face 2-colorable.
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1 Terminology and notation

In this note we consider only simple graphs—that is, graphs without loops or
parallel edges, and we embed the graphs only on closed surfaces—that is, surfaces
without boundaries, such as a sphere. We mainly follow the standard terminology
and notation of graph theory ([10]).

A d-angulation P of a surface means a d-gonal embedding of a 3-connected
graph G = G(P) on that surface—that is, an embedding each face of which is
bounded by a simple cycle of G with fixed length d > 3. Combinatorially, P is
defined by the triple of sets V(P),E(P), and F(P) of vertices, edges, and faces,
respectively. The dual graph G*(P) is defined to be the graph the vertex sets of
which corresponds to F(P) and in which two vertices are adjacent if and only if
the corresponding faces of P are adjacent. Notice that G*(P) is d-regular—that
is, the degree of each vertex is equal to d.
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In this note we only consider d-angulations P whose dual graphs are simple
graphs, and therefore we will suppose that G(P) is 3-connected, which ensures
the simplicity of G*(P) in the following two important cases:

(i) d=3,
(it) the carrier surface is a sphere.

In case ii, by Steinitz’s Theorem, every 3-connected planar graph G is the
1-skeleton of a convex polytope (in 3-space) with boundary complex P, and the
dual graph G*(P) appears to be the 1-skeleton of the dual polytope with boundary
complex P*.

A vertex, edge, or face k-coloring of a d-angulation P is a surjection of the
set V(P), E(P), or F(P) onto a set of k distinct colors such that the images of
adjacent vertices, edges, or faces are different, respectively. Especially, any edge
3-coloring of a 3-regular graph is called a Tait coloring. The vertex, edge, and
face chromatic numbers of P are defined to be the smallest values of & possible to
obtain corresponding k-colorings, and are denoted by x(P), x'(P), and x"(P), re-
spectively. The numbers y(P) and x’(P) are also called the vertex and edge chro-
matic numbers of the graph G(P) itself and denoted as ¥(G(P)) and x'(G(P)),
respectively.

Clearly, any face k-coloring of an arbitrary d-angulation P corresponds to
some vertex k-coloring of the dual graph G*(P), and conversely, whence

2" (P)=x(G"(P)).
Interestingly, since G*(P) is d-regular, it follows that
x(G*(P)) € {2,3,...,d,d+1},

and that
x'(G‘(P)) €{3,...,d, d+1}

by Vizing’s Theorem [18].

2 Griinbaum colorings

A Griinbaum coloring is a coloring of the edges of a d-angulation P with d colors
such that for each face f all d colors occur at the edges incident to f. Up to now,
the concept of Griinbaum coloring has been related only to triangulations—that is,
the case d = 3, but in this note we will generalize this concept for an arbitrary face
size d > 3. If T is a triangulation, then x'(G*(T)) € {3,4} by Vizing’s Theorem.
The equality x'(G*(T)) = 3 means that G*(T) is Tait colorable, which, in the dual
form, means that T is Griinbaum colorable.
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Conjecture 1 (Griinbaum [9], 1969). Every triangulation T of an orientable sur-
face is Griinbaum colorable—that is, ¥'(G*(T)) = 3.

Conjecture 1 stood for 40 years, until Kochol [11] constructed infinite fami-
lies of counterexamples on orientable surfaces with genus g for all g > 5. Here
we put forward another conjecture about triangulations by strengthening the vac-
uous restriction ¥”(T) < 4 (which obviously holds for any T') to the restriction
(1)< 3

Conjecture 2. Every triangulation T of an orientable surface with x”(T) < 3 is
Griinbaum colorable.

Conjecture 2 is false if extended to the nonorientable case. For instance, it
is not hard to verify that the minimal triangulation Tpy, of the projective plane
by the complete 6-graph G = Kj is face 3-colorable. However, for this particu-
lar instance, G*(Tpin) turns out to be the Petersen Graph [15] which cannot be
decomposed into the sum of three 1-factors (see [10], [14], [15]). Therefore, by
Lemma 1 below, G*(Tiin) has edge chromatic number at least 4. (This number
is in fact equal to 4, which, by the way, easily implies the non-Hamiltonicity of
the Petersen Graph—these are excellent creative exercises for a college course on
Discrete Mathematics!)

In Section 3 we establish (Theorem 2) that for Griinbaum colorability of a
d-angulation P (that is, for the equality x'(G*(P)) = d to hold), it suffices that
x"(P) = 2, without the orientability restriction. In Sections 4 and 5 we establish
the face 2-colorability in some known, and quite wide, classes of triangulations.

3 Key Theorem

Let P be a d-angulation of an orientable or nonorientable surface (whose dual
graph is a simple graph). Since the dual graph G*(P) is d-regular, the following
lemma is obvious.

Lemma 1. In order for the equality ¥'(G*(P)) = d to hold, it is necessary and
sufficient that the graph G*(P) be 1-factorable—that is, be the sum of d one-
factors.

In a classical article, Konig [12] (also see [14]) proved that each bipartite
d-regular graph expands to the sum of d one-factors. Since a graph is bipartite if
and only if it is vertex 2-colorable, we get the following reformulation of Konig’s
Theorem:

Theorem 1 (Konig). If x(G*(P)) =2, then G*(P) is I-factorable.
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By a combination of Lemma 1 and Theorem 1, we obtain our key theorem
which states that each face 2-colorable d-angulation of an orientable or nonori-
entable surface is Griinbaum colorable:

Theorem 2 (Key Theorem). If x(G*(P)) =2, then x'(G*(P)) =d.
Dual formulation: If x"(P) = 2, then P is Griinbaum colorable.

As a particular case of Theorem 2, when d = 3, we can state that Conjecture 1
certainly holds for all face 2-colorable triangulations of orientable and nonori-
entable surfaces. Notice that in Theorem 2 the face chromaticity condition is only
minimally strengthened in comparison to that in Conjecture 2.

4 Triangulations by complete graphs

In this section, we establish the existence of Griinbaum colorable triangulations
on orientable and nonorientable surfaces by complete graphs K, for at least half
of the residue classes in the spectrum of possible values of n.

We begin with the orientable case, in which there exists a triangulation by K, if
and only if n = 0,3,4 or 7 (mod 12); see [16). Grannell, Griggs, and Siréii [6] no-
ticed that, when n = 0 or 4 (mod 12), such triangulations are not face 2-colorable
because for face 2-colorability it is necessary that all vertex degrees should be
even, that is, n should be odd. Furthermore, they established that the orientable tri-
angulations constructed by Ringel [16] for all n = 3 (mod 12) are face 2-colorable.
Finally, they established that there exists a face 2-colorable triangulation for each
n =7 (mod 12) among the orientable triangulations constructed by Youngs [19].
We summarize these results in the following theorem.

Theorem 3 (Ringel [16]; Youngs [19]; Grannell, Griggs, Siran [6]). There
exists a face 2-colorable triangulation of an orientable surface by the complete
graph K, if and only if n =3 or 7 (mod 12).

If one triangulation is face 2-colorable and the other is not, the two triangu-
lations are certainly nonisomorphic—that is, there is no bijection between their
vertex sets that extends to a homeomorphism between the surfaces carrying the
triangulations.

Historically, the first examples of pairs of nonisomorphic orientable triangula-
tions with the same complete graph were constructed [19] in 1970. In those exam-
ples, the non-isomorphism follows immediately from the fact that one of the trian-
gulations is face 2-colorable while the other is not; see review [3]. After a quarter
of a century, in [13], there was constructed an example of more than two non-
isomorphic orientable triangulations with the same complete graph, namely: there
were constructed three such triangulations, only one of which is face 2-colorable.
In 2000, it was shown [2] (also see [3]) that the number of nonisomorphic ori-
entable triangulations with graph K, actually grows very rapidly as n — oo even
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within the class of face 2-colorable triangulations; for instance, when n =7 or 19

(mod 36), that number is at least 27°/54~0(""),
The following corollary can be proved by a combination of Theorems 3 and 2.

Corollary 1. For each n =3 or 7 (mod 12), there exists a Griinbaum colorable
orientable triangulation by the complete graph K,,.

To turn to the nonorientable case, recall [16] that K, triangulates a nonori-
entable surface if and only if n=0or I (mod 3), n > 6 and n % 7. Thus, under
these conditions, n is odd if and only if n =1 or 3 (mod 6), n > 9. For all these
values of n, face 2-colorable triangulations of the corresponding nonorientable
surface by the graph K, are constructed in [16] and [8].

Theorem 4 (Ringel [16]; Grannell, Korzhik [8]). There exists a face 2-colorable
triangulation of a nonorientable surface by the complete graph K, if and only if
n=1or3(mod6),nz=9.

The following corollary can be proved by a combination of Theorems 4 and 2.

Corollary 2. For each n=1 or 3 (mod 6), n > 9, there exists a Griinbaum col-
orable nonorientable triangulation by the complete graph K,,.

Theorems 3 and 4 guarantee that we have not missed any face 2-colorable
triangulations when applying Theorem 2 for obtaining Corollaries 1 and 2 (re-
spectively).

5 Triangulations by tripartite graphs

Firstly, we notice that the existence of an orientable triangulation by the com-
plete tripartite graph K » » was established by Ringel and Youngs [17] for each n.
Secondly, the face 2-colorability of each such triangulation was established by
Grannell, Griggs, and Knor [4] (also see [3]). A combination of these two results
with Theorem 2 leads to the following statement: For each n 2 2, all triangu-
lations of the corresponding orientable surface by the complete tripartite graph
Ky nn are Griinbaum colorable. However, as observed by Archdeacon [1], it is
very easy to prove this fact directly, even without using the completeness or ori-
entability conditions: if the vertex parts are A, B, C, then color the edges between
A and B red, those between B and C blue, and those between A and C green, and
we are done!

At first sight, the statement of the preceding paragraph may seem to be sub-
jectless; however, as shown in [5] (see also [3]) in the case n is prime, there exist
at least (n — 2)!/(6n) nonisomorphic orientable triangulations by Ky n,». Further-
more, [7] provides improved bounds on the number of such triangulations; for
instance, when n = 6 or 30 (mod 36), there exist at least n"*/144-0(n’) ponisomor-
phic orientable triangulations by K n.n-

305



Acknowledgment

We wish to thank the anonymous referee for useful comments and suggestions.

References

[1] ArchdeaconD. Personal communication to the first author, November 6,
2014.

[2] Bonnington C. P, Grannell M. J., Griggs T.S., Sir4i J. Exponential families
of non-isomorphic triangulations of complete graphs, J. Combin. Theory Ser.
B 78 (2000), No. 2, 169-184.

(3] Grannell M. J., Griggs T.S. Designs and Topology. In Surveys in Combina-
torics (A.J. W. Hilton, J. Talbot, Eds.), pp. 121-174, London Math. Soc.
Lecture Note Series 346, Cambridge: Cambridge Univ. Press, 2007.

[4] Grannell M. J., Griggs T.S., Knor M. Biembeddings of Latin squares and
Hamiltonian decompositions, Glasgow Math. J. 46 (2004), No. 3, 443457,

(5] Grannell M.J., Griggs T.S., Knor M., Sir4ii J. Triangulations of orientable
surfaces by complete tripartite graphs, Discrete Math. 306 (2006), 600-606.

[6] Grannell M. J., Griggs T.S., Siréii J. Face 2-colourable triangular embed-
dings of complete graphs, J. Combin. Theory Ser. B 74 (1998), No. 1, 8-19.

(7] Grannell M. J., Knor M. Dihedral biembeddings and triangulations by com-
plete and complete tripartite graphs, Graphs and Combin. 29 (2013), No. 4,
921-932.

(8] Grannell M. J., Korzhik V.P. Nonorientable biembeddings of Steiner triple
systems, Discrete Math. 285 (2004), 121-126.

[9] Griinbaum B. Conjecture 6. In Recent Progress in Combinatorics (W.T.
Tutte, Ed.), p. 343, New York: Academic Press, 1969.

[10) Harary F. Graph Theory, Reading, MA: Addison-Wesley, 1972.

[11] Kochol M. Polyhedral embeddings of snarks in orientable surfaces, Proc.
Amer. Math. Soc. 137 (2009), 1613-1619.

[12) Kénig D. Gréfok és alkalmazésuk a determindnsok Zs a halmazok elméletére
(Hungarian], Matematikai és Természettudoményi Ertesité 34 (1916), 104—
119 [German translation: Uber Graphen und ihre Anwendung auf Determi-
nantentheorie und Mengenlehre, Mathematische Annalen 77 (1916), 453~
465.]

306



[13] Lawrencenko S., Negami S., White A.T. Three nonisomorphic triangula-
tions of an orientable surface with the same complete graph, Discrete Math.
135 (1994), No. 1-3, 367-369.

[14]) Lovasz L., Plummer M. D. Matching Theory, Providence, Rhode Island:
AMS Chelsea Publishing, 2009.

[15]} Petersen J. Die Theorie der reguldren Graphen, Acta Math. 15 (1891), 193-
220.

{16] Ringel G. Map Color Theorem, New-York/Berlin: Springer-Verlag, 1974.

[17]) Ringel G., Youngs J. W. T. Das Geschlecht des symmetrischen vollstindigen
dreifirbbaren Graphen, Comment. Math. Helv. 45 (1970), 152-158.

[18] Vizing V.G. On an estimate of the chromatic class of a p-graph [Russian],
Diskret. Analiz, Novosibirsk 3 (1964), 25-30.

[19] Youngs J. W.T. The mystery of the Heawood conjecture. In Graph Theory
and its Applications (B. Harris, Ed.), pp. 17-50, New York: Academic Press,
1970.

S. LAWRENCENKO

Russian State University of Tourism and Service,
Lyubertsy, Moscow Region, Russia,

e-mail: lawrencenko@hotmail.com

A.M. MAGOMEDOV

Dagestan State University, Makhachkala, Dagestan, Russia,
e-mail: magomedtagiri@yandex.ru

307



