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ABSTRACT. Catalan Numbers and their generalizations are found
throughout the field of Combinatorics. This paper describes their
connection to numbers whose digits appear in the number’s own pth
root. These are called Grafting Numbers and they are defined by a
class of polynomials given by the Grafting Equation: (x+y)P = b%z.
A formula that solves for x in these polynomials uses a novel extension
to Catalan Numbers and will be proved in this paper. This extension
results in new sequences that also solve natural extensions to previ-
ous Combinatorics problems. In addition, this paper will present
computationally verified conjectures about formulas and properties
of other solutions to the Grafting Equation.

1. INTRODUCTION

The concept of Grafting Numbers(GNs) is introduced by Parker (2012)
(7). In his article and video, he refers to integers where the digits of the
number appear in its square root hefore or just after the decimal point
(i.e. V98 = 9.89949...). To quote Parker, “the root grows out from the
number itself,” hence the name. These integers will be referred to in this
paper as Grafting Integers(Gls) and, since they involve square roots and
are represented in base-10, they are base-10 2nd-order Gls. A list of these
GIs that are less than 10,000 is shown in Table 1 (Note: 10,000 is also a
GI). OEIS [6] entry #A074841 by Lusch has code using string manipulation
to find Gls, although his criteria is more strict than what is described in
this paper.

A couple more 2nd-order Gls that illustrate an important pattern are
76,394 (276.394645...) and 7,639,321 (2763.932186...). Parker showed that
this sequence of digits corresponds to 3 — v/5 = 0.7639320225002..., which
makes sense because this number is a solution to the equation v/10z = z+2.
So 3 — /5 is a GN, and Parker showed that it generates GlIs using the
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n|vn n|vn

00 764 | 27.6405499. ..
1(1 765 | 27.65863. ..

8] 2.8284... 5,711 | 75.5711585. ..

77| 8.77496... | 5,736 | 75.7363849. ..

98 | 9.89949... [ 9,797 | 98.9797959...

99 | 9.94987... | 9,998 | 99.9899995. . .

100 | 10.0 9,999 | 99.9949987...
TABLE 1. The 2nd-order GIs in the range [0, 104).

following equation for k > 0.
1) [(3 - \/3) 102k+1]

The other solution, 3 + v/5 does not create any GIs because it is greater
than 1, so adding 2 to it changes its first digit. A similar equation, +/10z =
z + 1 yields another GN: 4 — /15 = 0.127016653792. . ., and investigation
into possible GIs using this number shows that /127 = 11.2694... and
V12,702 = 112.7031 ... don't work as GIs. The first GI in this sequence is
127,016,654 (11270.1665471...). So a generalization of Equation (1) will
only generate potential GIs because the rounding does not always work.

A first possible construction of an equation to define GNs is v/10z = z+y
or equivalently (z + y)2 = 10z using an integer constant y > 0. Upon inves-
tigation, for y > 2, this equation does not have any real solutions. Looking
at the GI, 77, and attempting to reverse engineer an equation to find the GN
yields (z+8)2 = 102z and another GI, 5,711, yields (z+75)? = 10*z. These
equations hoth have solutions (0.7689437...and 0.57109910. . .), and this
process leads to the following equation for a > 0:

(2) (z+y)* =10%

The parameter a is an integer that can be viewed to represent the amount
that the decimal point is shifted in base-10. This equation can then he
generalized to apply to any integer base, b > 1, and any integer power,
p > 1. So, in the most general form, GNs are defined as solutions to a class
of polynomials defined by the Grafting Equation:

(3) (z +y)? =b°z

When the number, z, represented in base b, is added to a constant, y, the
p** power of the result is equal to = with the decimal point shifted a units
to the right. If 0 < x < 1 then all the digits of x will appear in the results of
both sides of the equation, and z is called a Complete Grafting Number. If
2 > 1 then the digits to the left of the decimal point will be altered hut the
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remaining digits will appear on both sides, and z is called a Partial Grafting
Number. Equation (1) can be generalized as well to generate potential Gls
from =z, a solution to a specific Grafting Equation.

(4) Potential GIs = [bP*+°z] or |bP**ez| for k>0

In Table 1, 764 and 765 are both GIs and so are 99 and 98. So adding or
subtracting 1 to GIs sometimes yields another one. The presence or absence
of GIs is related to rounding error and will not be further discussed in this
paper. This paper will describe the link between Grafting Numbers and
Catalan Numbers. It will then use this relationship to prove one of the
solutions to the Grafting Equation and provide conjectures for two other
real solutions.

1.1. Catalan Numbers and generalizations. Described as the longest
entry in the Online Encyclopedia of Integer Sequences (OEIS #A000108)
(6], the Catalan Numbers, occasionally called Segner Numbers, are related
to a very diverse set of Combinatorics problems. The first few terms are as

follows:
1,1,2,5,14, 42, 132, 429, 1430, ...

The n** Catalan Number, C,, where n > 0, can be defined in a few equiv-
alent ways. Explicitly as:

1/ 2n 1 2n
Cn_;<'n—1) _n+1(n)

Co=1 Chu1= ZCkC —k
k=0

or recursively as:

Larcombe and Wilson [5] give a detailed look at the discovery of Catalan
Numbers and their relation to three famous problems. The first is the
number of ways to subdivide an (n + 2)-gon into n triangles using non-
intersecting diagonals. The second is the number of ways to apply n binary
operations on n+ 1 variables. The third is the number of lattice paths from
(0,0) to (n,n) without rising above the diagonal line that connects those
two points. The solution to each of these problems and countless more is
given by C,,.

Hilton and Pedersen (3] describe extensions to each of the three main
problems using a variable p > 2. Instead of subdividing into triangles,
they consider subdividing into (p + 1)-gons; instead of applying binary
operations, they apply p-ary operations; and instead of paths from (0,0)
to (n,n) they count from (0,~1) to (n,(p — 1)n — 1). The reason for the
seemingly odd use of (0, —1) instead of (0,0) is that it helps out with the
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proofs used in this paper. Using bijection proofs and previously shown
results by Klarner [4], who calculates the number of p-ary trees with n
source nodes, they show that these new problems are all equivalent and
can be counted by the following explicit formula:

=270 = g=o(n)

or recursively as:

pCo=1 pCny1= Z pCir - pCiz -+ pCi,

t1+iz+...+ip=n

Note that ,C, is equivalent to C,,. These generalized Catalan Numbers
are sometimes called Pfaff-Fuss-Catalan Numbers or p-Raney Sequences [9].
Hilton and Pedersen then show the following lemma:

Lemma 1. If a power series S (w) is defined as:

(5) S(w)=1+ i pCnuw™

n=1
then the following is true:

(6) wSP=9-1

Proof. The proof follows directly from the Lagrange Inversion formula in
Pélya and Szegé [8]. Equation (6) can be rewritten as follows:

Let z=5-1, and
Let (2) =SP =(z+1)P

Sow =

o(2)
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For f(z) = S =1 + z, the Lagrange Inversion formula states that:

n—1 ’:t T
7o) = f(0>+2 [d fdfv,,_[‘" L

n—2
fa)=1+ Z % [H [pn —i] (z + 1)Pn—n+1]
z=0

=0
f(Z _1+Z nHl—O [pn'—zl
f(z>—1+2—n_(p?m

f(z) =1+ Zanw" =5
n=1

2. CONNECTING GRAFTING NUMBERS AND CATALAN NUMBERS

Equation (2) can be solved using the quadratic formula to provide all of
the base-10 2nd-order GNs. The result is:

o o () fir ()

Table 2 provides the values for the smaller of the two solutions shown in
the equation above for 1 < y < 5 and 1 < a < 4. What becomes apparent
when looking horizontally across this table is that sequences of numbers
emerge. When looking at the actual square root form of the numbers on

the top row: 4—+/15, 49—+/2400, 499 —1/249000, and 4999 — /24990000, it

a=1 | a=2 a=3 a=4
0.127016653 | 0.0102051443 | 0.001002005014 | 0.0001000200050014
0.763932022 | 0.0416847669 | 0.004016080451 | 0.0004001600800448
0.0958424018 | 0.009054408433 | 0.0009005404053405
0.1742430504 | 0.016129294510 | 0.0016012812814353
0.2786404500 | 0.025253169417 | 0.0025025031293815
TABLE 2. The first several digits of the 2nd-order GNs in
the range y=[1, 5], a=[1,4].

OV W N =
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does not seem like these numbers should necessarily be related at all. When
considering the Grafting Equation though, it makes sense for GNs with the
same y value and different a values to be linked because b = 10,a = 2
is the same as b = 100, = 1. When base-100 is represented in base-10,
each number would be represented by two digits, and for base-1000, each
number would get three digits. The effect of this is a spreading out of the
emergent sequence allowing it to be recognized more easily.

Remarkably, for y = 1 the sequence that emerges is C,, for n > 1. This
is due to the property of the generating function of the Catalan Numbers
shown in Lemma 1 for p =2 and w = 3:

o0
Sw)=1+)Y Cow"

n=1
wS2=5-1

oo
Letx=S—1=Zan"

n=1
w(z+1) =
1
10= (x+1) =z
(z +1)* = 10°z

The final line is equivalent to Equation (2) for y = 1. For other values of
y, analysis of the emergent sequences yields the following formula for the
smaller solution to Equation (2) for y > 0.

® sots (@) = 3= [+ ) |

n=1

When extending to p > 2, a few of the solutions to the Grafting Equation
for y =1, a = 5, b = 10 are shown in Table 3. The emergent sequences
correspond to ,C, for n > 1. Some sequences for other values of p and y

p | y=1, a=5, b=10

3 | 0.00001 00003 00012 00055 00273...

4 | 0.00001 00004 00022 60140 00969...

5 | 0.00001 00005 00035 00285 02530...

6 | 0.00001 00006 00051 00506 05481...
TABLE 3. Solutions to the Grafting Equation for y = 1,
a=25,b=10, and p=(3,6].
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are shown in Appendix A. Analysis of these sequences led to the complete
formula fora >0,y >0,b>1,and p > 1:

=]

o 1\"
(9) Soly (a,3,5,9) = 3 [y‘*’ " “»Cn(,,—a) ]

n=1

Theorem 1. If = satisfies the Grafting Equation then one solution for x
can be calculated by Equation (9).

Proof. Rearranging the y term in Equation 9 yields:

(o) P—l n
SOII (aﬂ Y, ba p) =Yy Z [pcn (yb_a) :|
n=1

p—1
Let w = (yba )

oo
Soly (a,y,b,p) =y Y _ [pCaw™]

n=1

Comparing this formula to Lemma 1, it follows that S =1 + S—‘;”- and
wS? = S — 1. This yields:

P
w (1 + -——S"l‘) = (1 + ——S"l‘) -1
y y
(Soh +y)” Sol,
w =

y y
Sol1

w P _
7 (Soly +y)" =

ny‘j—l (Soly + y)P = Sol,

p=—1
( yLT) is then substituted bhack in for w:

(&)
i (Sohy + y)? = Sol,

-b—la- (Soly +y)* = Sol,
(SOll + y)p S b“Soll

The last line is equivalent to the Grafting Equation and completes the
proof. O
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3. DiscussION

3.1. Extension to Catalan Numbers. Equation (9) uses a new exten-
sion to Pfaff-Fuss-Catalan Numbers, referred to in this paper as y-p-Catalan
Numbers, to account for differing y values.

Definition 1 (y-p-Catalan Numbers). For integers y > 0, p > 1, and
n > 0, y-p-Catalan Numbers are defined in three equivalent ways below:

y'an = y(p—l)n+1an

y(p=Dn+l ( m )

n n—1

_ y(p—l)n+1 (pn)

T (p-1n+1\n
In addition to providing a solution to the Grafting Equation, this se-
quence can count new, yet natural, extensions to some of the Catalan Num-
ber problems discussed by Hilton and Pedersen [3]. All of these extensions
involve elements that can be any of y different values or colors with dupli-
cates being allowed. The repeated application of a p-ary operator problem
uses (p — 1)n + 1 variables (3]. If these variables are allowed to be any of

y different values, the number of ways to do this is ;, ,C». An example is
shown below for p = 2, y = 2 using @ and b to represent the different values.

]

(aa) (ba)
(ab) (bb)

() (o) (et et
aa a ala a
n=2 2202=16 (o) ((Bb)a)  (a(ba)) (b(ba))

((ab)b) ((B0)8)  (a(bh)) (b(bb))

n=1, 2,201 =4

n= 3, 2'203 =80

This problem provides a proof for the recursive definition for Pfaff-Fuss-
Catalan Numbers and can easily be extended to y-p-Catalan Numbers as
well.

Claim 1. y-p-Catalan Numbers can be defined recursively in the same way
as the original Pfaff-Fuss-Catalan Numbers with the initial term set to y.
Namely:

y.pCO =y y,an+l = Z y.pcix 'y.pciz tt y,PCip

i +i2+...+i,,=n
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Proof. Consider any ordering of n 4+ 1 applications of a p-ary operator,
P, with variables that are any of y different values. This ordering can be
written in the following form: P(G1,G2, -+ ,Gp), where G, through G, are
groups of applications of P. Since this form shows the 1 final application of
P, the groups must contain between 0 and n applications of P, which adds
up to n. If a specific group is just a single variable, hence the number of
applications of P is 0, then the number of combinations possible equals the
number of values that variable can take: y, which is the initial condition.
The total number of combinations for n+ 1 applications of P is the product
of the number of combinations of G} through G,. O

A related problem to the application of a p-ary operator is the number of
arrangements of a p-ary tree with n internal nodes. The bijection between
the two problems maps the internal nodes to the brackets and the leaf nodes
to the variables so these trees will have (p — 1)n + 1 leaf nodes. If each of
these leaf nodes can have one of y different values, this new problem is also
counted by y ,Cn. Lastly, a more strained example is the dissection of a
polygon into n (p + 1)-gons which uses ((p — 1)n + 2)-gons as the source
polygons (3]. If each edge other than the base of the polygon is colored any
of y different colors, the number of possible dissection+colorings is , ,Ch.

3.2. Occurrences of y-p-Catalan Numbers in Literature. Asalready
mentioned, the y-p-Catalan Numbers for y = 1 match the extended Catalan
numbers discussed by Hilton and Pedersen as well as in numerous other
papers. Very few of the sequences for greater values of y, shown in Appendix
A, are found in the literature. For y = 2 and p = 2, a paper by Guo and
Sit [2] shows that this sequence counts the number of Rota-Baxter words
with n pairs of brackets. Tarau and Luderman [10] prove that a formula
equivalent to , ,C, for p = 2 counts the number of Leaf-DAGs (directed
acyclic graphs where only the leaf nodes can have multiple incoming edges)
with n binary operation (internal) nodes and y primary inputs (possible
values for the leaves). This counting problem is equivalent to counting p-
ary trees as described above for p = 2. The OEIS entry numbers for some of
the sequences are shown in the table below. For y = 2 and p = 3, the OEIS
entry references a paper by Bousquet-Mélou {1] although the link hetween
the paper and the sequence is unclear.

y p | OEIS Number
2 2 A025225
3 A098272
3 2 A025226
TABLE 4. OEIS [6] entries for y-p-Catalan Number sequences.
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3.3. Other Solutions to the Grafting Equation.

Claim 2. The Grafting Equation for y > 0 has at most two positive real
solutions.

Proof. When converted into standard polynomial form and the binomial
theorem is applied, the Grafting Equation becomes:

a? + pzPly + (’2’) T (p P 2) 2272 + (pyP! —b%) z + yP

Every term is positive except for possibly the = term so using Descartes’
Rule of Signs:
if (py?~! — b*) < 0 then at most 2 positive real roots
if (py?~! — %) > 0 then no positive real roots
O

Extensive analysis of emergent sequences for the larger of the two positive
solutions has led to the following conjecture about an equation for the larger
positive solution, which defines an extension of binomial coefficient notation
to handle multifactorials:

Definition 2 (Multifactorials).

Wm) _ 1 fo<n<m
L ((n - m)!(m)) ifn>m

Definition 3 (Binomial Coefficients Using Multifactorials).

) (™ nlm)
k) KO (n— k)l

Conjecture 1. If x satisfies the Grafting Equation then a second solution
for x can be calculated by the following formula:

oo n4l (p—-1) n
_a_ Py Yy pn 1
Sol ,b,p) =brm1 — 2 —— T
ol2(a,y,b,p) = b p—1 Z[(n+1)(p—1)<n) (b»-l) ]

n=1

Analysis of the divergence of the infinite sums in Sol, and Sol; leads to
the following conjecture:

Conjecture 2. The infinite sums in Soly (a,y,b,p) and Sol; (a,y,b,p) di-
verge iff the respective solution to the Grafting Equation is non-real for
those values of a, y, b, and p.
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For odd values of p, there seems to always be a negative root and analysis
has led to the following conjecture about a formula for this third solution
which is nearly the same form as Sols:

Conjecture 3. If z satisfies the Grafting Equation and p is odd, then a
third solution for = can be calculated by the following formula:

n+1

s (p—1) n
TS <R o N A b -1
Sola (@,4,b,p) = —b7~T — 773 ,.Z;: [(n+l)(p—l)(n) (b_—r) ]

This equation does diverge for large enough values of y even though there
is always a negative root so it does not provide a complete solution.

4. CONCLUSION

Grafting Numbers are solutions to a class of polynomials defined by the
Grafting Equation: (z + y)? = b°z. A formula using a new extension to
Catalan Numbers is proved to provide a solution to the Grafting Equation.
This extension also counts new, yet natural, extensions to well-known Com-
binatorics problems. Finally, computational analysis of the patterns for two
other solutions to the Grafting Equation provide conjectured formulas for
these solutions.

5. FUTURE RESEARCH

Future research paths include predicting the occurrence of Grafting Inte-
gers and proving the conjectured formulas for the 2nd and 3rd real solutions
to the Grafting Equation. Also, the infinite sums in the solutions described
in this paper converge slowly for certain values of y. Performing a series
acceleration transformation to these sums could increase the speed at which
high precision Grafting Numbers are computed. Another avenue of research
involves extending the Catalan Triangle to include y-p-Catalan Numbers.
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APPENDIX A. SELECTED Y-P-CATALAN SEQUENCES

Sequences for p =2

Ot W N e

1,1, 2,5, 14, 42, ...
2, 4, 16, 80, 448, 2688, ...

3, 9, 54, 405, 3402, 30618, . ..

4, 16, 128, 1280, 14336, 172032, . ..
5, 25, 250, 3125, 43750, 656250, . . .

Sequences for p =3

G W N

1,1, 3, 12, 55, 273, ...
2, 8, 96, 1536, 28160, ...

3, 27, 729, 26244, 1082565, ...

4, 64, 3072, 196608, 14417920, ...
5, 125, 9375, 937500, 107421875, ...

Sequences for p =4

G W N =

1,1, 4, 22, 140, 969, ...

2, 16, 512, 22528, 1146880, ...

3, 81, 8748, 1299078, 223205220, ...

4, 256, 65536, 23068672, 9395240960, ...

5, 625, 312500, 214843750, 170898437500, ...

Sequences for p=5

[SARE- VU N B

1, 1, 5, 35, 285, 2530, ...
2, 32, 2560, 286720, 37355520, ...

3, 243, 98415, 55801305, 36804946455, . ..

4, 1024, 1310720, 2348810240, 4896262717440, ...
5, 3125, 9765625, 42724609375, 217437744140625, . ..

32]



