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Abstract

Given a graph G = (V, F) and A,, As,..., A;, mutually disjoint nonempty
subsets of V where |A;| < |V|/r for each i, we say that G is spanning equi-
cyclable with respect to A, A,,. .., A, if there exist mutually disjoint cycles
C1,Ca,...,Cy that span G such that C; contains A; for every i and C; con-
tains either ||V'|/r] vertices or [|V|/r] vertices. Moreover, G is r-spanning-
equi-cyclable if G is spanning equi-cyclable with respect to A, Aa,..., A, for
every such mutually disjoint nonempty subsets of V. We define the spanning
equi-cyclability of G to be r if G is k-spanning equi-cyclable for k = 1,2,...,r
but is not (r + 1)-spanning-equi-cyclable. Another approach on the restriction of
the A:’s is the following. We say that G = (V, E) is r-cyclable of order t if it
is cyclable with respect to Ay, Aq,..., A, for any r nonempty mutually disjoint
subsets A1, Az, ..., Ar of Vsuch that |[A; UA2U. . .UA,| < t. The r-cyclability
of Gis tif G is r-cyclable of order k for k = r,r+1, ..., ¢t butis not r-cyclable of
order t+ 1. On the other hand, the cyclability of G of order t is r if G is k-cyclable
of order t for k = 1,2,...,r but is not (r + 1)-cyclable of order t. In this paper,
we study sufficient conditions for spanning equi-cyclability and r-cyclability of
order t as well other related problems.

Keywords: Hamiltonian, cyclability

1 Introduction

Hamiltonicity is a well-studied problem. A number of variations have been developed.
Research efforts have been dedicated to pancyclicity 3, 10], super spanning connectiv-
ity (1, 16, 17] and Hamilton decompositions [2, 18, 19] among many other areas. Until
the 1970’s, the interest in Hamiltonian cycles had been centered on their relationship to
the 4-color problem. More recently, the study of Hamiltonian cycles in general graphs
has been fueled by the issue of complexity and practical applications. In particular,
Hamiltonian cycles is a major requirement to design an interconnection network. The
Hamiltonian condition can be adjusted in a number of ways. On the one hand, one can
strengthen the condition to include a prescribed k vertices in a specific order, this is

E. Cheng and L. Liptdk are with the Department of Mathematics and Statistics, Oakland University,
Rochester, MI 48309. Email: {echeng, liptak} @oakland.edu

L.-H. Hsu is with the Department of Computer Science and Information Engineering, Providence Uni-
versity, Taichung, Taiwan 43301, R.0.C. Email: hhsu@pu.edu.tw

C.-K. Lin is with the Institute of Information Science, Academia Sinica, Taipei City, Taiwan 11529,
R.O.C. E-mail: cklin@iis.sinica.edu.tw

JCMCC 95 (2015), pp. 33-46



the k-ordered Hamiltonian problem [7,8,12,13,15,20,23]. On the other hand, one can
relax the Hamiltonian condition to a union of r cycles.

In this paper, we study a variation that is a mixture of relaxation and strengthening
of the Hamiltonian problem. On the one hand, we allow the graph to be spanned by
several cycles. On the other hand, each must contain a prescribed set of vertices. This
concept can be applied to identify the faulty processors and other related issues in
interconnection networks [5,9,11, 14].

Given a graph G = (V, E) and A,, Aa, ..., A,, mutually disjoint nonempty sub-
sets of V, we say that G is cyclable with respect to A,, As, ..., A, if there exist mutu-
ally disjoint cycles C;, Cs, . . ., Cy such that C; contains A; for every <. If, in addition,
C,,Cs,...,C, span G, then G is spanning cyclable with respect to Ay, Az, ..., A,.
A natural question is to ask whether a graph G is (spanning) cyclable with respect to
Ay, Aa, ..., A, for every such mutually disjoint nonempty subsets of V, and to find
the largest . However, this is not a very good question unless restrictions are imposed.
For example, no graph can be cyclable with respect to A;, A2 for every such disjoint
nonempty subsets of V. To see this, we simply pick two vertices v and v and set Ay, A;
tobe {u,v} and V'\ {u,v}. So one may want the restriction |A;| # 2. However, even
with this restriction, no non-complete graph can be cyclable with respect to A;, Az for
every such disjoint nonempty subsets of V. What if we require | A;| > 47 Then unless
every four vertices is on a 4-cycle, it is not feasible for r = 2. Another fundamen-
tal problem is whether we treat the graph K; as Hamiltonian. If not, then again it is
not feasible as A; can be a singleton and A; = V' \ A;. However, it is common to
not consider K; as Hamiltonian. So we need some sensible conditions. In fact, after
imposing certain conditions, we may want to require cycles with more properties. We
now give one such definition. Given a graph G = (V, E) and A, Ao, ..., A, mutu-
ally disjoint nonempty subsets of V' where |4;| < |V|/r for each ¢, we say that G is
spanning equi-cyclable with respect to Ay, Ag, ..., A, if there exist mutually disjoint
cycles Cy, Cs, . .., C, that span G such that C; contains A; for every ¢ and C; contains
either | |V'|/r] vertices or [|V|/r] vertices. Moreover, G is r-spanning-equi-cyclable
if G is spanning equi-cyclable with respect to A;, Ag, . .., A, for every such mutually
disjoint nonempty subsets of V. We define the spanning equi-cyclability of G to be r
if G is k-spanning equi-cyclable for k = 1,2,...,r but is not (r + 1)-spanning-equi-
cyclable. Clearly the spanning equi-cyclability of G is at most |V|/3; otherwise, one
of the required cycle must have length 2, which is impossible.

Another approach on the restriction of the A;’s is the following. We say that G =
(V, E) is r-cyclable of order t if it is cyclable with respect to Ay, As, ..., A, for any
T nonempty mutually disjoint subsets Ay, As, ..., A, of V suchthat |[4; U A2 U... U
A;| £ t. Clearly 7 < t. Now, we have two parameters r and ¢. We can fix one of them
and find the optimal value for the other. The r-cyclability of G is t if G is r-cyclable of
order k fork = r,r + 1,...,t but is not r-cyclable of order ¢ + 1. On the other hand,
the cyclability of G of order t is r if G is k-cyclable of order ¢ for k = 1,2,...,r but
is not (r + 1)-cyclable of order t. This restriction removes the potential problem of K
and K not being Hamiltonian, This simply implies ¢ < |V| — 3. The spanning version
can be defined similarly as follows. A graph G = (V, E) is r-spanning-cyclable of
order t if it is spanning cyclable with respect to Ay, A2,. .., A, for any 7 nonempty
mutually disjoint subsets Ay, A2,...,Ar of V such that {4, UA2 U.. . UA,| <t
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The r-spanning-cyclability of G is t if G is r-spanning-cyclable of order & for k =
r,r +1,...,t but is not r-spanning-cyclable of order ¢ + 1. On the other hand, the
spanning cyclability of G of order t is r if G is k-cyclable of order t fork = 1,2,...,7
but is not (r + 1)-cyclable of order ¢.

Our goal is to study sufficient conditions for these types of problems and we aim
for statements that are similar to the classical results of Dirac (6], Ore [21] and Bondy—
Chvital [4]. For example, the following is a result that we will prove: Let G be a graph
withn > 6 vertices. If degg(u) + degg(v) > 2n — | 2| for every pair of nonadjacent
vertices u and v in G, then G is 2-spanning-cyclable of order 2. The statement of
Ore’s Theorem is: Let G be a graph with n 2> 3 vertices. If degg(u) + degg(v) > n
for every pair of nonadjacent vertices v and v in G, then G is Hamiltonian. Besides
sufficient conditions, one can also consider extremal cases. For example, if we delete
n ~ 2 edges from K,,, it is possible for the resulting graph to be non-Hamiltonian as
one can simply delete n — 2 edges incident to a singe vertex, leaving a vertex of degree
1 in the resulting graph. So we can delete at most n —3 edges. Indeed this is guaranteed
by Ore’s Theorem as in such resulting graph, deg(u) + deg(v) > n for every pair of
nonadjacent vertices u and v. Now if we delete n — 6 edges from K, is it still possible
for the resulting graph to be 2-spanning-cyclable of order 2? It certainly no longer
satisfies the condition deg(u) + deg(v) > 2n — |2 for every pair of nonadjacent
vertices u and v in the resulting graph if we delete n — 6 edges incident to a single
vertex, leaving a vertex of degree 5 in the resulting graph. However, one can show that
the resulting graph is 2-spanning-cyclable of order 2. We study these extreme cases in
this setting in Section 3.

2 Sufficient conditions of the classical type

In this section we give a number of sufficient conditions to the problems that we are
interested in. They are in the spirit of Dirac, Ore and Bondy-Chvital. These results are
generalizations of corresponding classical results. Indeed, one can modify the standard
book proof of these classical results to prove the new results. More interestingly, one
can prove these new results by applying the corresponding classical results directly,
and this will be our method of choice.

2.1 Dirac type results

We first state the classical sufficient condition on Hamiltonicity.

Theorem 2.1 (Dirac, [6]). Let G be a graph with n > 3 vertices and §(G) > n/2.
Then G is Hamiltonian.

Theorem 2.2. Let G be a graph with n vertices. Suppose |njr] > 3. If 6(G) 2
n — 1| 2|, then G is r-spanning-equi-cyclable.

Proof. Let Ay, Aa,. .., A, be mutually disjoint nonempty subsets of V' where |A;] <
n/r. Since |n/r] > 3, we can find a partition of V, {B,, B,,..., B, }, such that
A; C B; and |n/r| < |B;| £ [n/r]. We note that |B;| > 3. Now for each i, let
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G; be the subgraph of G induced by B;. We claim that G; has a Hamiltonian cycle by
applying Dirac’s Theorem. So we need to check that 6(G;) > |B;|/2. But

1n 1|n | B
. — o=l =(n=I1B:N=1|B:|l = = |=| > =,
5G)2n-5 |2 -(n-1BY=IBI-5 || 25
So each G; has a Hamiltonian cycle and the result follows. O

Corollary 2.3. Let G be a graph with n > 3 vertices. Then the spanning equi-
cyclability of G is at least ﬂn_-%(ﬂf

Proof. Let r < ;(n—_";@ﬁ We claim that G is r-spanning-equi-cyclable. If G is
complete, then the result is clearly true. So we may assume that G is not a complete
graph. Then §(G) < n — 2. Son/r > 2(n — 8) > 4. Thus |[n/r] > 4 and we may
apply Theorem 2.2 as §(G) > n— | 2]. O

Theorem 2.4. Let G = (V, E) be a graph with n vertices. Let Ay, A, ..., A, be
mutually disjoint nonempty subsets of V such that |A1| + |A2| + - -+ + |Ar| = B. Let
M= in{|A b, |A ba,...,|A be}.

b,+b,+'.l.1.f§,.=n_ﬁmm{| 1| +b1, |42 + b2, . |Anf + br}
by,ba,...,0. 20
IfM > 3andé(G) > n—-;-M , then G is spanning cyclable with respect to Ay, As, . . .,

e

Proof. We extend Ay, Aa,..., A to By, Bs,..., B, such that {B;, Bs,...,B;} is
a partition of V' and A; C B; for every i. (We note that the max—min definition is
simply to add the remaining vertices to A,, Az, ..., A, to form By, By, ..., By such
that the B;’s have about the same size as much as possible and M is the size of the
smallest B;.) Now for each ¢, let G; be the subgraph of G induced by B;. We claim
that G; has a Hamiltonian cycle by applying Dirac’s Theorem. So we need to check
that §(G;) > | B:|/2. But

|Bi|
=

So each G; has a Hamiltonian cycle and the result follows. a

5(G) 2 n - M ~ (n— |Bl) = B - 3M 2

As an example of using Theorem 2.4, we consider the following special case.

Corollary 2.5. Let G = (V, E) be a graph with n > 6 vertices and let t be an integer
with2<t<n-2

L Ift<[3]+1andé(G)>n - -121[-'21], then G is 2-spanning-cyclable of order
t. (In other words, if6(G) > n - 3
(3] +1)

2. Ift> (3] +1and8(G) 2 n— 3(1+ n —t), then G is 2-spanning-cyclable of
ordert.
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Proof. Let A and B be two nonempty disjoint subsets of V such that |A] + |B| < ¢
and we apply Theorem 2.4. If |A|,|B| < [%], then M = |n/2| and so we need
6(G) > n— 1| %]. Now suppose |A| < |B| and |B| 2 n/2 + 1. Sincen > 6 and
t < n-—2 |M|> 3 as required. Now, the minimum for M occurs when |A| =

and|B| =t-1.SoM = 1+n—tandweneed6(G) >n-11+n-t). Since
n — 2(1+ n — t) is the maximum among all pairs of A and B such that |4] +|B| < ¢,
wearedoneas(l+n—t)<|_"]1ft>|_-2-j+1 a

Corollary 2.6. Let G = (V, E) be a graph with n. > 6 vertices. If 6(G) > n - 31 2],
then the 2-spanning-cyclability of G is at least 26(G) — n + 1.

We now turn to the problem of fixing ¢, that is, we consider the (spanning)-cyclability
of order ¢.

Corollary 2.7. Let G = (V, E) be a graph with n > 6 verticesand2 <t < n - 3.
Then the spanning-cyclability of G of order t is at least

mi i n-t +1 n_t +1
"2n-06(G))’ 2 " "2m-28(C) -1
Proof. Given r and £, to minimize M in Theorem 2.4, we set |A;| = |Ag]| = -+ =

|[A._il=1and |A;| =t -7+ 1. Ift —r+1 < n/r, then it s sufficient to check that
8(G) 2 n—7| 2], whichistrue as r < § . Otherwise, M = 14| 251 | provided

that 2=% > 2. Now, 2=f > 2istrue as r < 25 t+1and6(G)>n—-(1+|_ )
lSll’ueaST<'2n—23T"'r+1 O

2.2 Ore type results

Theorem 2.8 (Ore, [21]). Let G be a graph with n > 3 vertices. If deg(u) +deg(v) >
n for every pair of nonadjacent vertices v and v in G, then G is Hamiltonian.

Theorem 2.9. Let G be a graph with n vertices. Suppose |nfr] > 3. If deg(u) +
deg(v) > 2n — | 2] for every pair of nonadjacent vertices v and v in G, then G is

r-spanning-equi-cyclable.

Proof. Let Ay, Aq, ..., A, be mutually disjoint nonempty subsets of V where |A4;| <
n/r. Clearly, we can find a partition {B;, Bz, ..., B,.} of V such that A; C B; and
In/r] < |B;] € [n/r]. We note that |B;] > 3. Now for each i, let G; be the
subgraph of G induced by B;. We claim that G; has a Hamiltonian cycle by applying
Ore’s Theorem. Let u and v be nonadjacent vertices in G;. We need to check that
degg, (u) + degg, (v) > | Bi|. But

degg, (u) +degg,(v) 2 2m—|2| —2(n—|Bi)

= 2B~ |7]
= 1B+ (1B~ |2])
> |Bil.



So each G; has a Hamiltonian cycle and the result follows. O

Corollary 2.10. Let G be a graph with n > 3 vertices. Let o be the minimum of

deg(u) + deg(v) over all pairs of nonadjacent vertices u and v. Then the spanning
equi-cyclability of G is at least 7=

2n-a’

Theorem 2.11. Let G = (V, E) be a graph with n vertices. Let Ay, Aa,..., A, be
mutually disjoint nonempty subsets of V such that |A;| + |Az2| + -+ + |A,| = B. Let

= ax in{|Ay| + b1, |A A+ B
M b,+b,+’f1.+b,=n-amm{| 1| + b1, |A2| + b2 [Ar| + b}
bl,b2y-~-vbr20

If M > 3 and deg(u) + deg(v) > 2 (n - —;-M ) for every nonadjacent vertices u
and v in G, then G is spanning cyclable with respect to Ay, A, ..., A,.

Proof. We extend A, Az, ..., Ar to By, Bs,..., B, such that {By, Bs,...,B,} is
a partition of V' and A; C B; for every i. (We note that the max min definition is
simply to add the remaining vertices to A, Az, ..., A, to form By, Bs,..., B, such
that the B;’s have about the same size as much as possible and M is the size of the
smallest B;.) Now for each i, let G; be the subgraph of G induced by B;. We claim that
G; has a Hamiltonian cycle by applying Ore’s Theorem. Let u and v be nonadjacent
vertices in G;; we need to check that dege (u) + degg, (v) > |B;. But

dogo, () + doo,(v) 2 2 (n = 3M ) = 2n - 1Bi) = 2B - M 2 |Bil.

So each G; has a Hamiltonian cycle and the result follows. O

Corollary 2.12. Let G = (V, E) be a graph with n > 6 vertices and let t be an integer
with2<t<n-2.

1. Ift < | 5| +1and deg(u) +deg(v) > 2n — | %] for every nonadjacent vertices
u and v in G, then G is 2-spanning-cyclable of order t. (In other words, if
deg(u) + deg(v) > 2n — | § | for every nonadjacent vertices w and v in G, then
G is 2-spanning-cyclable of order | § | + 1.)

2. Ift > | §] + 1 and deg(u) + deg(v) > 2n — (1 +n~t) = n+t — 1 for every
nonadjacent vertices u and v in G, then G is 2-spanning-cyclable of order t.

We note that the example given in Section 1 is the above corollary with ¢t = 2, One
may wonder whether Corollary 2.12 is tight; in particular, it may seem suboptimal that
fort < (3] +1

Corollary 2.13. Let G = (V, E) be a graph with n. > 6 vertices. Let o be the mininmum
of deg(u) + deg(v) over all pairs of nonadjacent vertices u and v in G. Then the 2-
spanning-cyclability of G is at least &« — n + 1.

Corollary 2.14. Let G = (V,E) be a graph withn > 6 vertices and 2 < t <
n — 3. Let o be the minimum of deg(u) + deg(v) over all pairs of nonadjacent
vertices u and v in G. Then the 2-spanning-cyclability of G of order t is at least

H n n—t n—t
min { et Ly + 1.
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2.3 Bondy-Chvatal type results

Theorem 2.15 (Bondy-Chvital, [4]). Ler u and v be nonadjacent vertices in a graph
G with n > 3 vertices such that deg(u) + deg(v) > n. Then G is Hamiltonian if and
only if G + uv is Hamiltonian.

Theorem 2.16. Ler G be a graph with n vertices. Suppose |n/r] > 3. If u and
v are nonadjacent vertices in G such that deg(u) + deg(v) > 2n — |2, then G is
r-spanning-equi-cyclable if and only if G + uv is r-spanning-equi-cyclable.

Proof. Letu and v be nonadjacent vertices in G such that deg(«)+deg(v) > 2n—| 2].
Clearly if G is r-spanning-equi-cyclable, then G + uv is r-spanning-equi-cyclable. So
we assume that G + uv is r-spanning-equi-cyclable. Let A;, A,,. .., A, be mutually
disjoint nonempty subsets of V where |A;| < n/r. Clearly, we can find a partition
{B1,Bs,...,B;} of V such that A; C B; and |n/r| < |B;| < [n/r]. We note that
|B;| > 3. Now for each i, let G; be the subgraph of G induced by B;. We consider
two cases. The first case is when u and v are in different G;’s, say, G and G3. Since
G +uwv is r-spanning-equi-cyclable and the B;’s partitioned V', each of G1, G2, ..., Gr
is Hamiltonian and we are done. The second case is when v and v are in the same G,
say, G1. Since G + wv is r-spanning-equi-cyclable, each of Gy + uv, Ga,...,G; is
Hamiltonian. Since

n
degg, (u) +degg, (v) 2 2m—|T|-2(n—|Bi)
n
- 201-[2
n

= 1B+ (1Bl - |2])

2 lBil’
we may apply the Bondy-Chvétal’s Theorem to conclude that G; is Hamiltonian, so
we are done. a

We can now define the closure of a graph G with n vertices and |[n/r] > 3 to be
the graph obtained from G by recursively joining pairs of nonadjacent vertices whose
degree sum is at least 2n — | 2| until no such pair remains.

Corollary 2.17. Let G be a graph with n vertices. Suppose |n/r| > 3. Then a graph
is r-spanning-equi-cyclable if and only if its closure is r-spanning-equi-cyclable. In
particular, if the closure of a graph is complete, then the graph is r-spanning-equi-
cyclable.

As an example of 2-spanning-cyclability, we have the following result whose proof
is the same as the proof of Theorem 2.16 since |A;| + |A2] < [5] + 1 implies
|A1], 42| < 3]

Theorem 2.18. Let G = (V, E) be a graph with n 2> 6 vertices. If u and v are
nonadjacent vertices in G such that deg(u)+deg(v) > 2n—| %], then G is 2-spanning-
cyclable of order | 5 | +1 ifand only if G +wuv is 2-spanning-cyclable of order | 3 ] + 1.

One can then define an appropriate closure to obtain a result similar to Corol-

lary 2.17.
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3 Sufficient conditions of the extremal type

In this section we study extremal cases that are not covered by our results in Section 2
and provide sufficient conditions based on the number of edges for a graph to be 2-
spanning-cyclable of order k for k < n — 1. We start with the following less well-
known result of Ore [22].

Theorem 3.1 (Ore, [22]). Let G be a graph n vertices. If G has at least (n — 1)(n —
2)/2 + 2 edges, then G is Hamiltonian.

One may feel that Theorem 3.1 is not a strong result as such a graph is almost
complete as only n — 3 edges are missing. However, this result is tight as there are
non-Hamiltonian graphs on n vertices with (n — 1}(n — 2)/2 + 1 edges. Our goal is to
find similar tight extremal result for 2-spanning-cyclable graph. We note that although
Theorem 3.1 can be proved easily from Theorem 2.8, the results in this section does
not follow from the Ore type result given in Section 2.2. First we have the following
easy bounds on 2-spanning-cyclability:

Theorem 3.2. Let G be a connected graph on at least six vertices. If G is 2-spanning-
cyclable of order t, then t < min{é6(G) — 1,x(G)}.

Proof. Clearly if G is 2-spanning-cyclable, then x(G) > 2. Henceforth, we may
assume that k(G) > 2. Let u be any vertex of G with degg(u) = &(G), where
6(G) > 2 since G is connected. Set A; = Ng(u) \ {w} for some w € Ng(u) and
Az = {u}. Since degg_ 4, (u) = 1, there is no cycle of G — A; containing Ay, thus
G is not 2-spanning-cyclable of order 6(G). Hence the 2-spanning-cyclability of G is
at most 6(G) — 1.

If G is isomorphic to the complete graph K, for some integer n, then k(G) =
§(G) = n — 1, thus 2-spanning-cyclability of G is at most §(G) — 1 < x(G). Assume
that G is not complete. Then G has a set S such that |\S| = x(G) and G — S has at least
two components. Pick one vertex each from two components, let these vertices be z
and y. Set Ay = {z,y} and Az = S\ {z} for some vertex z € S. Obviously, there is
no cycle of G — A, containing A, thus G is not 2-spanning-cyclable of order £(G) +1,
hence the 2-spanning-cyclability of G is at most x(G).

Thus the 2-spanning-cyclability of G is at most min{é(G) — 1, x(G)}. O

We also need the following easy result.

Lemma 3.3. If G is a graph on n vertices with | E(G)| > Q-‘-'—llé"—’zl + 2, then every
vertex of G is in a cycle with exactly three vertices.

Proof. Let u be a vertex of G, and suppose that u is not in a cycle of three vertices.
Let d be the degree of u. Since |[E(G)| > == 4 9 we have d > 2. Set
Ng(u) = {z1,z2,...,zq}. Since u is not in a triangle, we have (z:,z;) ¢ E(G)
forevery 1 < i < j < d. Thus |E(G)| < 2871 — (n -1 -q) - 40 =
Q’"ll@ 2 +d- d(d 1) Since d > 2, we have d Jg'—l < 1. Thus |E(G)| <
(n- l)i"’z) +1< ("'1)("'—22 + 2, whichis a contradlcnon O




It is clear that if = and y are two distinct vertices of G, and there are two disjoint
cycles in G such that one contains = and the other contains y, then we must have
|(Ne(z) U Ne(y)) — {z,y}| = 4, and G must have at least six vertices. Consider the
following example: Let G be the complete graph Kg with two adjacent edges deleted.
Then we have | E(G)| = 13 and |(Ng(z1) U Ne(22)) — {1, z2}| = 3, hence G is not
2-spanning-cyclable of order 2. However, G is Hamiltonian by Theorem 3.1.

Consider another example: Let G be the graph obtained from K, by deleting n — 3
edges incident to the same vertex v. Then degg(v) = 2, so Theorem 3.2 implies that
G is not 2-spanning-cyclable of order 2 even though it has M’é"—'ﬂ + 2 edges.

Thus the following result is tight:

Theorem 3.4. If G is a graph on n vertices where n > 7, and G has at least
Lﬁ:%("_ﬂl + 3 edges, then G is 2-spanning-cyclable of order 2.

Proof. Set Ay = {z} and A; = {y}, where z and y are any two distinct vertices of G,
and consider the following cases.

Case 1. min{deg(z), degs(y)} < n —38.

Without loss of generality we may assume that degg(z) < n — 3. Set H = G — {y}.
We have

Lo et e R AL LS Y

hence by Lemma 3.3, there is a cycle C; of length 3 in H containing z. Set Z =
G — V(C,). Then since degg(z) < n -3,

B2z EmE D) 5 gy 228,

Thus by Theorem 3.1, there is a Hamiltonian cycle Cs of Z, so C; and C; are the
desired cycles.

Case 2. degz(z) =n — 2 and deg(y) = n — 2.

Set H =G — {y}.

Case 2.1. (z,y) ¢ FE(G).

Set No(z) = {21, 22, ..., zn—2}. Since |[E(G)| > £=1422) 1 3, we have degc(z:)
> 3foreveryl < i < n— 2. Without loss of generality, we may assume that
degg(z1) < degg(z:) for every 2 < i < n — 2 and assume that (21, 22) € E(G).

If degg(z1) = n— 1, thendegg(z;) =n~—1foreveryl <i<n-2,thus G
is isomorphic to the complete graph minus an edge, hence the desired cycles can be
found easily. Now assume degg(z1) € n — 2. Set Cy = {(z, 21, 22, z) to be a cycle of
length 3, and let Z = G — V(C}). Then

PPt Lk B SR PP AL LA

2 3
50 by Theorem 3.1, there is a Hamiltonian cycle C; of Z, so C; and C; are the desired
cycles.
Case 2.2. (z,y) € E(G).
Set Ng(z) = {z1,22,...,2n—2} Where y = z,_2, and let z,,_; be the last vertex of G.
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Since |E(G)| > 52-'—12.‘,1"—'2)- + 3, degg(z:) = 3forevery 1 < < n — 2. Without loss
of generality, we may assume that deg(z1) < degg(z;) forevery2 < i <n—3.

In the case when degg(z1) = n — 1, the graph G is the complete graph minus two
edges. We can easily find the desired cycle.

Next let us assume that deg(z1) < n — 2. Since degg(z) = n — 2 and |E(G)| 2
S"—‘l)i("—'q + 3, we must have degg(z1) > 4. Thus z and z; must have at least one
common neighbor different from y, we may assume it is z2. Set Cy = (z, 21, 22, %)
and Z = G - V(C}). Then

(11—1)2(71-—2)+ (n—4)(n—5)_*_2

2

s0 by Theorem 3.1, there is a Hamiltonian cycle C; of Z, so C and C; are the desired
cycles.
Case 3. min{deg¢(x), degs(y)} 2 n — 2 and max{degq(z),degs(y)} =n - 1.
Without loss of generality, we may assume that degg(z) = n — 1. Let z be a vertex of
minimum degree in G excluding = and y. Since deg(2) > 3, vertex z has a neighbor
different from z and y.

If degg(2) = n —~ 1, then every vertex has degree n — 1 except maybe y, so we can
find the needed cycles as in Case 2.2. So let us assume degg(z) < n — 2.
Case 3.1. degg(z) < n —3.
Let w be a vertex adjacent to z different from z and y. Set C, = (z,z,w,z) and
Z=G- Cl. Then

(r=1)(n-2)
B(z)| > 2=hn =2

|E(Z)| 2 3-(2n—2)+(n—1)-3) =

)= (n — 4)(n - 5) +2,
2

so by Theorem 3.1, there is a Hamiltonian cycle C; of Z, so C} and C:, are the desired

cycles.

Case 3.2. deg(2) = n — 2.

If every neighbor of z apart from z and possibly y has degree n — 1, we can find the

needed cycles as in Case 2.2. So let us assume that there is a vertex w adjacent to z
such that dego(w) < n ~ 2. Set C) = (z,z,w,z) and Z = G — C}. Then

(n— 4)(n 5)

+3-(2(n-1)+(n-3)-3

|E(Z)| > ("‘—1)2("‘—2-) +3-((n-1)+2(n-2)-3) = +2,

so by Theorem 3.1, there is a Hamiltonian cycle C: of Z, so C and C; are the desired
cycles.
This covers all cases, finishing the proof. ad

To generalize Theorem 3.4 we need the following lemma:

Lemma 3.5. Ler A be a vertex subset of G such that 2 < |A| < |V(G)| — 1, and let
C be a cycle of minimum length in G among cycles containing A. If |V(C)| > 4 and
IV(O)l > Al then |E(C)| < MHQUELEN=D — (v(C)| - |4)).

Proof. LetC = (z1,%2,...,%c,71) Wherez; € A. Set S={i|z; € Aforl1 ¢ <
c}andlet S = {j1,72,...,7a} where a = |A] and j; < jiy) foreveryl <i<a-—1.
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Note that j; = 1. Set §' = {j; | zj,41 # zj;,, forl i< a -1} U {ja | Ja #c}.
Since |V(C)| > | A|, we have S’ # 0.

For some j; € S'—{ja}, suppose that there is an edge (z;, . ,,zx) € E(G) for some
Ji £k < jip1 — 2. Since the length of C'is at least 4, (z1,Z2,..., %k, Tj, 4y s Tjopr+1,
...,T¢, 1) is also acycle in G containing A, and it is shorter than C, which is a contra-
diction. Thus (z;,,,,z:) ¢ E(G) for every j; < k < jiy1 — 2. Similarly, (z;,,z¢) €
E(G) forevery jo < k < c—1. Thus |[E(C)| < KQIY@I-1 _ (v (C)|-|A)). O

Theorem 3.6. If G is a graph on n vertices where n > 7, and G has at least

5"—_%"—'22 +k edges for 4 < k < n—1, then G is 2-spanning-cyclable of order k — 1.

Proof. Let A and B be any two disjoint sets of vertices of G with |A| = a and |B| = b
and a+ b = k — 1. Without loss of generality, we may assume that a < b. Since k > 4,
we have b > 2. Set H = G — A. We have

|E(H)| > ("—'1)5(”—‘21%— (“(Lz‘l—)m(n-a))
(n-—a-1)n—a-2)
5 +k—-a
(n-—a-1)n—-a-2)
2 5 +2,

thus by Theorem 3.1, graph H is Hamiltonian. Let C; be a cycle of minimum length
among cycles in H containing B. Setc = |V(Cy)|,sob < c. Let Z = G - C;. We
consider the following cases.

Casel.c=b.

Sincea+b=k—1,wehavek —c=a+ 1, thus

IE(Z)I > (_n——].)2(7l_—2_)+k~ <C(n—c)+ C(C; 1))
("‘"C-—l)(n-—c—2)+k_c
2
2 (n—'c-l)z(n"’c—2)+2’

50 by Theorem 3.1, there is a Hamiltonian cycle C; of Z containing A, so C; and Cs
are the desired cycles.

Case2.c>bandc > 4.

By Lemma 3.5, |E(C))| < <51 — (¢ - b), thus

E@) > (71—~1—)é£2—_—2)+k-(C(n—-c)+(c(—c2:—ll—(c—b)))
- (n—C—I)(n—c—2)+k_b
2
_ (n—c-l)(n—c—2)+a+l
2
> (n—C—l)z(n—c—2)+2’
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so by Theorem 3.1, there is a Hamiltonian cycle C; of Z containing A, so C; and C»
are the desired cycles.

Case3.c>bandc=3.

Then we have b = 2, hence k = a + b+ 1 implies4 < k < 5.

Case3.1. k = 5.

We get

(n-1)(n-2)
2
(71,—4)(11,—5)_'_,‘;_3

2

|E(2)]

v

+k~—(3(n—-3)+3)

(n—c-1)n-c-2) +

2 a+1
5 (n—c41)2(n—c—2)+2,

so by Theorem 3.1, there is a Hamiltonian cycle C; of Z containing A, so C; and Cs
are the desired cycles.

Case 3.2. k = 4.

We have a = 1; set B = {p, q}.

Case 3.2.1. min{degs(p),degg(q)} <n—-2.

Then

(n~4)(n —5)
2

so by Theorem 3.1, there is a Hamiltonian cycle Cs of Z containing A, so C; and C;
are the desired cycles.
Case 3.2.2. degg(p) = degg(q) =n - 1.
If every vertex in G has degree n — 1, then the claim trivially holds. Otherwise there
is a vertex w in G — A with degg(w) € n — 2. Redefine Cy = (p,w,q,p) and
Z = G — C,. Then we can find the desired cycles just like in Case 3.2.1.

This covers all cases, finishing the proof. ]

) > EZUEZD L o34 (n- ) +3) = ‘o,

According to Theorem 3.1, Theorem 3.4, and Theorem 3.6, we have the following
result.

Theorem 3.7. If G is a graph on n vertices where n > 7, and G has at least

g"—_l)é"—_zl +k edges for 3 < k < n—1, then G is 2-spanning-cyclable of order k — 1.

If a graph on n vertices has 13'—11235:31 + k edges, then its minimum degree can be
k (if all missing edges are incident to one vertex), so Theorem 3.7 is best possible by
Theorem 3.2.

4 Conclusion

As noted earlier in this paper, the classical Ore’s Theorem 2.8 implies the extremal
version, Theorem 3.1, immediately. In this paper, we presented a number of results of



these types for the spanning-cyclable problem. It is worth noting that Corollary 2.12
is the 2-spanning-cyclable version of Theorem 2.8 and Theorem 3.7 is the 2-spanning-
cyclable version of Theorem 3.1. However, Corollary 2.12 does not imply Theorem 3.7
as the condition in Corollary 2.12 does not have ¢ as a parameter for Case (1). (In other
words, Case (1) is really a statement for ¢ = | 3] + 1) However, fort > 3 + 1,
Corollory 2.12 does imply Theorem 3.7.
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