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Abstract

Recently introduced invariants copoint pre-hull number and con-
vex pre-hull number are both numerical measures of nonconvexity
of a graph G that is a convex space. We consider in this work both
on the Cartesian and the strong product of graphs. Exact values in
terms of invariants of the factors are presented for the first mentioned
product. For the strong product it is shown that such a result does
not exists, but but an exact result for trees is proved.
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1 Introduction and preliminaries

The (geodetic) convex hull of some subset of vertices of a finite graph G can
be achieved in finite number of steps in which at each step the new set is the
union of intervals between all pairs of vertices of a set of previous step. The
number of these steps is a numerical measure of nonconvexity of a starting
set in a convex space (which is a graph G). The general approach was
introduced by Harary and Nieminen in [5] with geodetic iteration number
ginG of G. Similar approach was taken recently by Polat and Sabidussi
in [9] with an additional restriction to sets: they observed the union of a
vertex v and its copoints C C V(G), this are maximal convex sets with
the property that they do not include v —the (copoint) pre-hull number.
An approach that is structurally between both mentioned was taken in (7],
where the restriction to copoints was omitted and the union of a vertex
v with all convex sets have been treated. Such an invariant is a natural
upper bound for the copoint pre-hull number.

Graph products are by now well studied procedures of graph enlarge-
ment. They have been investigated with respect to their structure, (non)uni-
queness of their factors as well as the decomposition algorithms and their
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complexity. For general results see the book [4]. Other standard approach
to graph products is to find some properties of the product with respect to
the properties of factors. This approach is used also in this work. For a col-
lection of convexity related results of this type see recent papers [1, 7, 8]. In
particular, in [7] the exact convex and copoint pre-hull numbers are given
for the lexicographic product.

In the next section we give the exact result for the convex and the co-
point pre-hull number of the Cartesian product of graphs with respect to
the copoint and the convex pre-hull numbers of both factors. The last sec-
tion is devoted to the copoint and the convex pre-hull number of the strong
product. Only partial results are given for the strong product, despite the
new characterization of convex sets of this product, see [8]. In the remain-
der of this section we give a formal definition of the convex and the copoint
pre-hull number.

All graphs considered are simple, undirected, and finite. The shortest
path between two vertices u and v of a graph G is called a u,v-geodesic.
The distance dg(u,v) between u,v € V(G) is the length of a u, v-geodesic.
An interval I(u,v) between u,v € V(G) consists of all vertices that belong
to u,v-geodesics in G.

In general a converity on a set X is an algebraic closure system C on
X and elements of C are called conver sets. For general convexities see the
book of van de Vel [11]. If we concentrate on graphs we can define the
(geodesic) convexity in terms of intervals. Namely, a subset C of V(G) is
(geodesic) convez if I{u,v) C C for all u,v € C. Convexity can also be
defined with respect to other path properties, see [3] and references there
in. In this work we concentrate only on (geodesic) convexity and we omit
the term geodesic from now on. Note that if C C V(G) induce a complete
graph in G or if C = V(G), then C is convex for any graph G. We call such
sets trivial convex sets. Let A be a subset of V(G). The convex hull ch(A)
is the smallest convex set that contains A. Clearly ch(A) = A if and only
if A is convex. For v € V(G) let C be a maximal convex set with respect
to inclusion and with the property that v ¢ C. We call C a copoint of v
and v is an attaching point of C. The set of all attaching points of C is
denoted by Att(C).

We now define the pre-hull operator ¢ : P(V(G)) — P(V(G)) for a
connected graph G with

(A= |J Iwv).

u,vE€EA

for every A in a power set operator P(V(G)). Clearly ¢(A) = A if and only
if A is a convex set. Thus £ is more interesting for nonconvex sets and we
can measure with him “how far” is A from being a convex set in G. For
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this observe that we can express the convex hull of A with

ch(4) = (] £*(4),

neN

where ¢*(A) is defined inductively Z"(A) = £(¢"~1(A)). Let v be an ar-
bitrary vertex of G and let C be any convex set in G. Then £*(C U {v})
must be convex for some n € Ny since we deal only with finite graphs. De-
note by r(v; C) the smallest such number. In particular 7 ¥i€)(CuU {v}) =
r(vi€)+1(C U {v}). Note that r(v;C) =0ifve€ Corv ¢ C and CU {v}
is a convex set already. The conver pre-hull number of a convex set C is
then
¢ph(G; C) = max{r(v;C) : v € V(G)}
and the convex pre-hull number of a graph G is
cph(G) = max{cph(G; C) : C is convex in G}.

Polat and Sabidussi have an additional restriction in [9] where they
defined the pre-hull number only for copoints C. We will use the term
copoint pre-hull number for this. More precisely, let G be a connected
graph on at least two vertices and let C be a copoint in G. The copoint
pre-hull number of C is

ph(G; C) = max{r(v; C) : v € Att(C)}
and the copoint pre-hull number of a graph G is
ph(G) = max{ph(G;C) : C is a copoint of G}.

In addition note that we can use maximums in the definition since we are
interested only in finite graphs. In case of infinite graphs one must replace
maximums with supremums.

The obvious bounds are 0 < ph(G) < cph(G) < |V(G)| —2. Indeed, the
first inequality is a direct consequence of the definition, the second is due
to the fact that copoints are convex sets as well, and the third inequality
must hold if C is a singleton and at each step of the pre-hull operator we
add exactly one vertex. Also the middle inequality can be strict. Namely,
it is easy to see that cph(T) = 1 > 0 = ph(T') for every tree T on at least
3 vertices. This already asserts that the above upper bound is not very
accurate.

2 The Cartesian product

The Cartesian product GOH of graphs G and H has V(GOH) = V(G) x
V(H). Two vertices (g,h) and (g’,h’) are adjacent if g = ¢’ and hh' €
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E(H), or g¢’ € E(G) and h = k'. For h' € V(H) is G¥ = {(g,h') €
V(GOH) : g € V(G)} a G-fiber in GOH and for ¢ € V(G) is YH =
{(¢',h) € V(GOH) : h € V(H)} an H-fiber. Note that subgraphs of GOH
induced by G* and 9" H are isomorphic to G and H, respectively. A map
pc : V(GOH) — V(G), defined by pg((g, h)) = g is called the projection
of GOH to the first factor G. Similarly we define the projection py to the
second factor H. Projections pc and py can be in a natural way extended
from maps on vertices to maps p; and py, respectively, between graph
GUOH and G and H, respectively. The distance formula is

deon((9,h), (9's 1)) = da(9,9) + du(h, h').

Convex sets behave very natural in GOH with respect to both factors
as can be seen from the next well-known result from [6].

Theorem 2.1 Let G and H be connected graphs. A subset C C V(GOH)
is convez if and only if C = Cg x Cy where Cg and Cy are convez subsets
of V(G) and V(H), respectively.

Similar holds also for intervals
Icon((9,h), (g, 1)) = Ic(9, ') x Iu(h, '), (1)

and the next technical lemma is no surprise.

Lemma 2.2 Let G and H be connected graphs. If A is a subset of V(GOH),
then

tean(A) = Le(pc(A)) x Lu(pr(A)).

Proof. If (g, k) € £gon(A), then (g, k) € Icou((¢', h'), (¢", h")) for some
(¢', /'), (¢",h") € A. By (1) we have g € Ig(¢’,g”) and h € Ig(h',h").
Thus g € £a(pc(A)), h € Lu(pu (A)), and (g, k) € Le(pc(A)) X Lu(pH(A)).
Conversely, if (g, h) € £a(pc(A)) x Lu(pu(A)), then g € Ic(g1,92) and
h € Ig(hy, hy) for some vertices g;, g2 € pa(A) and hq, ho € py(A). Hence
(gl,ul), (gl,ug),(vl,hl), (ve, ho) € A for some uy,us € V(H) and v;,v; €
V(G). But then, again by (1), (g, h) is in at least one of Icnu ((g:, ui), (v;, h;))
for 1,7 € {1,2} and thus (g, k) € Leon(A). O

With this result we can derive both copoint and convex pre-hull numbers
of the Cartesian product with respect to their copoint and convex pre-hull
numbers of their factors.

Theorem 2.3 If G and H are connected graphs with at least two vertices,
then

ph(GOH)
cph(GOH)

max{1, ph(G), ph(H)} and
max{1, cph(G), cph(H)}.

]
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Proof. First note that a copoint C of a vertex (g, k) is either of the form
C=CyxV(H) or C =V(G) x Cp, for some copoint C, of g in G or some
copoint C}, of h in H, respectively. Indeed, by Theorem 2.1 a copoint is a
subproduct and if one factor is not the whole vertex set and the other not
a copoint, then we violate the maximality of a copoint.

Graphs G and H have more than one vertex and {(g,h)} U C is not
convex by Theorem 2.1 for any vertex (g,h) € V(GOH) and its copoint
C. Hence ph(GOH) > 1 and we may assume without lost of generality
that ph(G) > ph(H) > 1. Suppose that ph(G) is achieved by vertex g
and its copoint C, and let U;, for i € {1,...,ph(G)}, be subsets of V(G)
that are added at the i-th step of the pre-hull operator for g and C;. Thus
C = Cy x V(H) is a copoint of (g,h) in GOH for any h € V(H). In
the first step of the pre-hull operator for (g,h) and C in GOH all vertices
in Uy,ev, “H U (9H — {(g,h)}) are added to {(g,~)} UC. In i-th step,
1> 2 all vertices in Uy,cu, "' H are added by Lemma 2.2. Hence the set
ch({ g} UC,) x V(H) generated by the pre-hull operator for (g,h)UC is a
convex set and we have ph(GOH) > max{1,ph(G), ph(H)}.

Conversely, let C be any copoint in GOH and (g, h) its arbitrary at-
taching vertex. Either C = C, x V(H) or C = V(G) x Cp, where C; and
C}, are copoints of g in G and h in H, respectively. By the description
of the pre-hull operator from the previous paragraph and by Lemma 2.2
again, we have £7@C)((g,h) U C) = @O+ ((g, h) U C) for z € {g,h},
whenever r(z; C) > 0. If r(z; C) = 0, we have £((g, k) UC) = £2((g, k) UC)
for z € {g,h}. Since r(h;C) < ph(H) and r(g;C) < ph( ) for any g, h,
and C, we have ph(GOH) < max{1, ph(G), ph(H)} and the equality holds.

For the convex pre-hull number we have immediately cph(GOH) >
ph(GOH) > 1. Since the Cartesian product is commutative, we may as-
sume that cph(G) > cph(H). Observe a vertex g and a convex set Cg
for which cph(G) is achieved. For a convex set C = C; x V(H) and
a vertex (g,h), h € V(H), we have the same construction by the pre-
hull operator as for the copoint pre-hull number. Thus cph(GOH) >
cph(G) > cph(H) and together cph(GOH) > max{1,cph(G), cph(H)}.
For the other inequality, let C be any convex set of GOH and (g,h)
an arbitrary vertex. We may assume that r(g;pg(C)) = r(h;pu(C)).
But then we have £r(9:P¢(©)((g,h) U C) = ¢r9irc(CD+1((g,h) U C) by
Lemma 2.2 again whenever r(g; pc(C)) > 0. If r(g;pc(C)) = 0, we have
£((9,h) U C) = £3((g, h) U C). Since r(g;pc(C)) < cph(G) for any g and
any C, we have cph(GOH) < max{l,cph(G),cph(H)} and the proof is

]

complete.
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3 The strong product

The strong product G ® H of graphs G and H has GOH as a spanning
subgraph. All edges of GOH in G X H are called Cartesian edges. In
addition (g, h)(g’, ') is also an edge in GRH if g¢’ € E(G) and hh' € E(H)
and is called a non Cartesian edge. Fibers and projections are defined
similarly as in the case of the Cartesian product. It is not hard to see
that intervals of G & H do not form subproducts of intervals of the factors
in contrast to the Cartesian product. Consequently, the convex sets in
strong product are not subproducts. In general, not more than the distance
formula

dG@H((gv h)r (g,) h’)) = max{dG(g) g')’ dH(h'? hl)}

was known about metric properties of the strong product. Recently this
starts to change rapidly. The hull number is discussed in {2] and [10],
geodetic number and behavior of boundary sets also in [2], and intervals
and convex sets have been characterized in [8]. We recall the latest result,
since it is important for our discussion.

For this we need some local properties of the strong product. First we
need a well known relaxation of convexity, namely 2-convexity. A subset
C € V(G) of a graph G is 2-convez if I(g,g') C C for any g,¢' € C with
de(g,g') = 2. Clearly every convex set is also 2-convex. It is clear by the
distance formula that for a fixed vertex h € V(H) the set {(g,h) : g €
Ic(d’,¢")} must be in a convex set C C G® H for every pair of vertices
(¢',h), (¢",h) € C. By comutativity of the strong product also the set
{(g,h) : h € Ig(K,h")}, where g € V(G) is a fixed vertex, must again
be in C for any pair of vertices (g,h’), (g,h”) € C. We say that a fiber
condition for G X H is fulfilled if this holds for every pair of vertices of C
that belong to the same (G- or H-) fiber. Again, by the distance formula,
we see that Iemu((g, h), (¢',h’)) must be in a convex set C for every pair of
vertices (g, h),(g’, ') € C with additional property dg(g,g’) = dg(h, h').
This is called a diagonal property. Finally recall that we denote with pf; and
Py the projection maps between graphs GR H and G and H, respectively.
The following characterization is from [8].

Theorem 3.1 Let C be a subset of V(G® H) for graphs G and H on at
least two vertices. Then C is convez if and only if the following conditions
hold: [(3)]
(i) C is 2-convez,
(it) the fiber condition hold,
(iit) the diagonal property is fulfilled, and
(iv) both pa(C) and py(C) are conver in G and H, respectively.
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Unfortunately this characterization does not help to describe the co-
points of the strong product. Thus we can not derive the exact values of
the copoint pre-hull number. Also it is not very helpful for deriving the
convex pre-hull number with the respect to the convex pre-hull number
of the factors either. Namely, if we try to have a similar construction as
in the Cartesian product, we would obtain a convex set C¢ C V(G) in a
certain G-fiber. But in general we cannot observe some box Cg x Cy, for
Cy C V(H), since this box is usually not convex. If we insist to have Cg
in G as a subset of some convex set C C V(G R H), we must have, by
2-convexity of C, also all vertices of the form (¢’, k') where k' is any neigh-
bor of h in H and g’ € C has two nonadjacent neighbors in Cg. On the
other hand this observation is helpful for many classes of graphs since every
vertex of an induced cycle Ck, k > 4, has such a property. Hence if we
choose a convex set and a vertex in a right way we will have V(Ci) x V(H)
as a subset of the pre-hull operator and this may yield many steps of that
operator. This observation can be used to show the next theorem.

Theorem 3.2 If G and H are connected graphs, then convex and copoint
pre-hull numbers of G® H are not bounded from above by any function of
convez and copoint pre-hull numbers of their factors, respectively.

Proof. We need to construct an example of the strong product where
convex and copoint pre-hull numbers have fix numbers, but their strong
product has unbounded convex and copoint pre-hull number. For this we
observe a product P, ®Cy. Clearly, cph(C4) = ph(Cy) = cph(FP,) =1 and
ph(P,) = 0 for n > 3. For the convex pre-hull number let C = {u} where
u is any vertex of the C,-fiber with respect to the end vertex of P, and let
v be the antipodal vertex of u in *C,. In the next scheme the positions
present the vertices of P, ® C4 and the numbers at each position present
the smallest number k for which that vertex is in £({v} U C):

0 2 2 4 4 6
1 1 3 3 5 5
0 2 2 4 4 6
1 1 3 3 5 5

From the pattern it is easy to see that n = r(v; C) < cph(P, B Cy).

For the copoint pre-hull number we use the same product P, & Cy4, we
only need to take a copoint for C. For this note that in a copoint of P,KCy
there can not be three or more vertices of the same P,- or Cy-fiber. Indeed,
if a copoint C would have three vertices of some Cy-fiber, then this whole
fiber would be in C by the fiber condition. But this yields by 2-convexity
that C = V(P, R C,), contrary to the definition of a copoint. If some three
vertices of P,-fiber are in C, then by the fiber condition there are also
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three consecutive vertices of that fiber in C, say (g, k), (¢’, k), and (¢”, h).
By convexity of C also (¢’,h') and (¢’, h"”) are in C, where A’ and h” are
neighbors of h in C4. Thus we have again three vertices of the same C;-
fiber in C which is impossible. Thus vertices of every K4 form a copoint
of some vertex. Let C be a set of four vertices of P, ®C, in “the corner”
that induce K4 and let v be any other vertex (out of two remaining) of the
first Cy-fiber. Again we present similar scheme as above

2 4 6

W W

4
3
4
3

[ 2N e B )

1 5 5
0 4 6
0 5 5

It is clear that n = r(v; C) < ph(P, B C,) and the proof is complete.0]

One could try to prove the general version of the example used in the
above theorem, namely P, ® C,. However there is no pattern even for
4 < k < 10. If we observe a vertex u in the Ci-fiber with respect to the
vertex of degree 1 in P, and take for the convex set its antipodal vertices
of C}., we obtain the following lover bounds

-1 k=6,7
l%] | k=10andn>9

The proof is technical and can be done in a similar fashion as for k =4 in
the above proof and is left to the reader.

We end the discussion with the exact result for the copoint pre-hull
number for the strong product of trees.

Theorem 3.3 If Ty and T, are trees on more then two vertices, then
ph(T1 @Tz) =1.

Proof. We first describe the copoints of T} ® T; where T; and T, are
trees each on at least two vertices. Let C be a copoint of T} ® T and
(g,h) € V(T1 ® T3) its attaching point. We denote with T7,... ,le‘ the
components of T3 — g and with T},... ,Tz'cz the components of T5 — h.
Note that only vertices of one of T}, for i € {1,...,k1}, can be in C N
T}, otherwise (g,h) € C by the fiber condition of Theorem 3.1 which is
impossible. Similar, only vertices of one of T3, for i € {1,...,kz}, are in
C N 9T,. Say that T} and T} are these components. Let ¢’ and h’ be
neighbors of g and h in T} and T3, respectively. But then C consists of
all vertices of T} x T}, as well as of every vertex (a,b) where a € V(T}),
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b € V(T3) — V(T}) with dr,(a,g’) = dr, (b k) and of every vertex (c,d)
where ¢ € V(Ty) — V(T}), d € V(T2) with dr,(c,g) = dr,(d, h’) together
with all (possible) vertices that are in I1,g7,((a,b), (a,k)) in °T; and in
It&r,((c,d),(g,d)) in T¢. In particular note that (g’, k) and (g, k') are in
C. It is not hard to see that the conditions of Theorem 3.1 are fulfilled
for C and C is convex. (For instance the diagonal property holds since
all vertices of the type (a,b) and (¢, d) are included, and fiber condition is
fulfilled since the interval in each fiber is added.) Suppose that there is an
additional vertex (u,v) in C. Then (u,v) is a neighbor of some vertex of the
type (a,b) where b = v or by fiber condition there exists such a neighbor
(«',v) in C or symmetric (u,v) is a neighbor of some vertex of the type
(c,d) where ¢ = u or by fiber condition there exists such a neighbor (u,v")
in C. By 2-convexity of C every vertex of type (a,b) and of type (c,d) has
such a neighbor. Since (g’, h) is of type (a,b) we see that (g, k) is also in
C which is impossible.

With this it is easy to see that in £({(g, h)UC?} for any vertex of the type
(a,b) # (¢', h) a vertex (a’,b) ¢ C where aa’ € E(T}) is added and for any
vertex of the type (c,d) # (g, h’) a vertex (c,d’) ¢ C where dd' € E(T)
is added. This is again convex by Theorem 3.1 and, since (g, h) can be
chosen so that degrp, (9) = 1 and degr, (k) > 1, we have the desired equality
ph(T) X T,) =1. O
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