DISTRIBUTIONS FOR TRANSFORMATIONS OF
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ABSTRACT. In this paper we present some patterns related to de-
rangements. We find the distribution of the §’-transformation ap-
plied to all unicyclic derangements of order n, and the distribution
of the é’-transformation applied to all derangements of order n, con-
sidered in one-line notation. We introduce the notion of matrix of
forbidden pairs that helps us in solving our problems. We also give
and prove a theorem related to derangements.

1. INTRODUCTION

Let d,, denote the number of derangements of order n; i.e., permutations
of the set {1,2,...,n}, such that 7(¢) # ¢ for all i. It is well known that:

dn = Tio(-1) (D) (n - ) = nl Ty S,
dp =nd,_; +(-1)" forn > 2,
dp = (n—1)(dn—1 +dn_2) for n > 2.

The problem of counting derangements is also known as The Hatcheck
Problem: How many ways can a hatcheck girl hand back the n hats of n
gentlemen, 1 to each gentleman, with no man getting his own hat? We
can tell from the language of The Hatcheck Problem that this is a very old
problem, but it is still interesting [3].

In this paper we find the distribution of the ¢'-transformation applied
to all unicyclic derangements of order n, and the distribution of the &'-
transformation applied to all derangements of order n, considered in one-
line notation. By a unicyclic derangement of order n is meant a derange-
ment of order n with a single cycle of length n. In using the transformation
mentioned here, we were inspired by the use of the d-transformation in
data compression [1]. We also observed that the unicyclic derangements of
order n are the unique outputs of the Burrows-Wheeler Transform [2] for
all permutations of order n given as inputs.
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2. THE §’-TRANSFORMATION FOR ALL UNICYCLIC DERANGEMENTS OF
ORDER n

Given a string Y = (Y[1],Y[2],Y[3],...,Y[n]), we define its -transforma-
tion as the difference string Y = (Y(1),Y[2]-Y[1),Y[3] -Y[2],...,Y[n] -
Y[n — 1]) and its §’-transformation as the difference string §'Y = (Y'[2] —
Y(1],Y[3]-Y[2],...,Y[n] =Y [n—1],Y[1] - Y[n]). We consider a collection
C of pairs of elements from the set {1,2,...,n}, which can contain the
same pair more than one time. We define the matriz of forbidden pairs for
C, which is an n x n matrix P where PJ[i, j] represents the frequency of the
pair (2, 5) in the collection C, 7 and j from 1 to n.

First we present some theoretical aspects, some of which will help us in
finding the distribution of the ¢’-transformation for all unicyclic derange-
ments of order n. We denote this distribution by D’. We consider derange-
ments represented in one-line notation (not in cycle notation).

Let d = (d;,d2,...,d,) be a unicyclic derangement of order n. Next,
when we talk about (d;,d;+1), we consider 7 and 7 + 1 modulo n (e.g.,
dn+1 = d1), to include the pair (d,,d;). For each pair (d;,d;+1), we can’t
have d; = i or d;yy = i + 1. Also, we can’t have (d;,d;+1) = (i + 1,17)
because this derangement would no longer have a single cycle of order n.

Let s = (s1,52,...,5,) be the difference string resulting from applying
the §'-transformation to d. We want to find the distribution of all s; =
diyq — d;, i taking values from 1 to n, for all unicyclic derangements d of
order n.

Let M be a matrix whose rows are the (n — 1)! unicyclic derangements
of order n, written in one-line notation. This matrix can be generated,
for example, by taking as rows the unique outputs of the Burrows-Wheeler
Transform, presented in [1] or [2], for all permutations of order n given
as inputs. From the cycle representation we can easily see that there are
(n —1)! such derangements. We consider that all the cyclic representations
start with 1. The order of the rows in M does not matter, so M can be
generated in different ways.

The words is followed here have a cyclic meaning (the last element of
the cycle is followed by the first element). In the cycle representation of all
such derangements, 1 is always in the first position and each value k # 1
appears equally often in the second position. So 1 is followed by a fixed
k #1 (n—2)! times. The elements that follow 1 in this representation will
be in the first column/entry of the matrix M.

For any fixed k # 1 there are (n — 2)! rows of M with first entry k. This
is because each value of k appears equally often. The statement is true for
all positions ¢ from 1 to n; i.e., all the values k # c appear an equal number
of times, (n — 2)!, in the ¢ position (in column ¢), in the matrix M.
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To prove this for a fixed ¢ # 1, we consider the pair (¢, k), ¢ # k in all
the cyclic representations (starting with 1) of our derangements. If k = 1,
we have ¢ in the last position, n, in these cyclic representations, and the
number of times this can happen is (n — 2)!. If k # 1, this pair can start
at positions 2,3,...,n — 1. But for each of these n — 2 positions, there
are (n — 3)! derangements that contain the fixed pair (c, k) at that fixed
position, so (¢, k) appears (n — 3)!{(n — 2) = (n — 2)! times in the cyclic
representations (starting with 1) of all unicyclic derangements of order n.
This means that k # ¢ appears an equal number of times, (n — 2)!, in the
¢ position (column c), in the matrix M.

We consider each pair of adjacent columns (m;,miy1) of M, 1 <i<n
where subscripts are as above taken modulo n. For each of the n pairs
of adjacent columns, consider the n x n matrix P; of forbidden pairs for
the pairs in (m;,m;41). When we construct P; we use the word clear to
mean, “set the entry equal to zero.” In this matrix we clear the diagonal
elements, {(¢,i)}. Then we clear row i, column i 4+ 1 and the element at
position (i + 1,7). We set the remaining elements P;[row, col] equal to
the frequency of (row,col) in the corresponding pair of adjacent columns
(my,myyy) of M.

For each i’ and j' from 1 to n, P;[¢/, j'] = 0 means that the pair (#/, ) can-
not appear in the pair of adjacent columns (m;,m;4+1) of M and Pi[i’, j'] #0
means that we can have m; = i and m;y; = j'. If P;[i’,j'] #0, we call
(i',7') a legal pair, or a pair that qualifies.

Our problem is reduced to finding, for all n matrices P;, how many
times each possible j' — ¢’ appears. Each pair (i’, ') that qualifies appears
in (m;, mi41) equally often; ie., (n—1){/(n?—n—-(n-1)-(n-2)-1) =
(n=1D1Y(n?-3n+2) =(n-/({(n-2)(n~-1)) = (n—3)! times. A
generalization of this fact is given in the next section as a theorem. In the
previous expression, the denominator was obtained by considering the total
number of elements of the n x n matrix P; and subtracting the number of
elements resulted from clearing the main diagonal, row ¢, column ¢+ 1 and
the element at position (i + 1,7).

First, we will find the distribution vector of j/ — i’ for the unique pairs
(i',7') that appear in (m;, mi41), i from 1 to n, denoted by Dy, and then we
will multiply this by (n — 3)!, to get D' = Dg x (n — 3)!. So in this section,
from now on, the matrices of forbidden pairs P; will have Pi[¢',j'] = 1
instead of P;[i’,5'] = (n — 3)!, for each pair (¢’,j’) that can appear in
(mi, miy1).

To simplify the problem of finding Dg, we consider n steps, each step i
corresponding to an adjacent pair of columns (m;,m;41), ¢ from 1 to n. In
each step %, to construct P;, we start with an initial matrix of all possible
pairs from which we eliminate the pairs that do not qualify. For this initial
matrix, the distribution vector of all possible j' — i’ (i.e. col — row) is:
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Si -n-1) [ -(n2) ... ] -2 [ -1 1 2 |...|n2]|n-1
Frequency 1 2 o [ 2 n-1n-1{m-2(... ] 2 1

We denote this basic distribution vector by Basic.DV. In other words,
we found the distribution of all possible values j/ — i’ when ¢’ and j' take
values from 1 to n, neglecting the zero values (when i’ = j’). For an n x
n matrix, in this distribution vector, each s; appears n — |s;| times at each
of the n steps. To obtain our initial distribution vector, because we have
n steps, we multiply each number in the second row by n and denote the
result by n x Basic DV.

We consider that each matrix P; has the main diagonal cleared. In
this paragraph, the word delete refers to deleting from Dy, which is the
distribution vector of j' — i’ for the unique pairs (¢, j’) that appear in
(mi,mi+1). We have to delete the elements that can’t be in Dy. When
we clear row i from matrix P;, it means that we delete the differences
(col —row): 1 —4,2—4,...,(t—=1)—4,(i+1)—4,...,n —4i. When we
clear column ¢+ 1 from matrix P;, it means that, in addition, we delete the
differences (col — row): (i+1)—1,(i+1)—2,...,(G+1)—(i—1),(i+1)—
(i+2),...,(i+1)—n. These are equal to 4,i—1,...,2,-1,-2,...,i+1—n.
Then, when we clear the element at (i + 1, ¢) from matrix P;, we delete the
difference ¢ — (i + 1) = —1. So these are the elements that we delete at step
i:

1 1-i2—4,...,-1,1,...,n—1i
(2) 4,i—1,...,2,~-1,-2,...,i+1-n
3) -1

To find the distribution of the d’-transformation for all unicyclic de-
rangements of order n, we can use the following method. The first steps
are a summarized version of the details that we gave before, for a clearer
understanding of the method.

We denote by D’ the distribution vector of the §’-transformation of all
unicyclic derangements of order n.

First, we will find the distribution vector of j/ — i’ for the unique pairs
(¢,7") that appear in the pair of columns (m;, m;41), i from 1 to n, denoted
by Dg, and then we will multiply this by (n — 3)!. Our final distribution
vector will be D' = Dj x (n—3)!. The goal is now to find Djj. We start from
the basic distribution vector Basic_.DV multiplied by n, or n x Basic.DV,
where Basic_DV is presented in the next table.

8; -n-1) [-(n-2) | ... | -2 | -1 1 2 |...[n2]mn-1
Frequency 1 2 v |2 n-lnl1(n2]... 2 1

Each pair of adjacent columns in M will have an associated matrix of
forbidden pairs, and in total, we have n distinct pairs of adjacent columns.

90



The matrix of forbidden pairs for (m, ms) will have the main diagonal,
row 1, column 2 and the element at (2, 1) cleared.

The matrix of forbidden pairs for (m;, m;;+;) will have the main diagonal,
row ¢, column ¢ + 1 and the element at (i + 1, ?) cleared.

The matrix of forbidden pairs for (m,, m;) will have the main diagonal,
row n, column 1 and the element at (1,n) cleared.

When we talk ahout a matrix of forbidden pairs, we totally neglect the
main diagonal because we can’t have pairs of equal elements in (m;, miy1).
Summarizing the results, we observe that from n x Basic. DV we have to
subtract the distribution vector of the differences corresponding to two ma-
trices (2 x Basic.DV) because our cleared elements span a matrix twice,
by rows and by columns respectively. But when we cleared all rows i
and columns i + 1 by subtracting 2 x Basic_.DV, we cleared their intersec-
tion (the element at (i,i + 1)) twice. Therefore, we have to add back to
D}, one copy of each of the differences corresponding to the elements at
(1,2),(2,3),...,(n=1,n),(n,1),i.e. n—1of I’s and 1 of —(n —1).

We also have to take into account the following cleared elements: (2,1),
3,2), ..., (i+1,i),...,(n,n—1),(1,n), which correspond to n —1 of (-1)’s
and 1 of » — 1 to be subtracted from Dj. We get n x Basic DV - 2 x
Basic.DV = (n — 2) x Basic_DV, to which we add n — 1 of 1's and 1 of
—(n — 1) and from which we subtract n — 1 of (-1)’s and 1 of n — 1.

The sum of the elements in Basic DV is 2(1+2+...4+(n—1)) = n(n—1).
The sum of the elements in (n —2) x Basic DV is n(n —1)(n —2). If we add
n elements and subtract n elements, we still get n(n — 1)(n — 2) elements,
so the sum of the elements in the distribution vector D is n(n — 1)(n —2)
and the sum of the elements in the distribution vector D' = Dj x (n — 3)!
is n(n — 1)(n — 2)((n — 3)!) = n! = (n — 1)In. So our distribution vector
D' will have a sum of (n — 1)!n, which we expect, taking into consideration
that we have (n — 1)! unicyclic derangements of order n, and each such
derangement has n elements.

Our final distribution vector D’ is (n~2) x Basic.DV x (n—-3)! = (n—2)!
x Basic_DV, to which we add (n-3)!(n—1) of I’s and (n—3)! of —(n—1)’s
and from which we subtract (n—3)!(n—1) of (-1)’s and (n—3)! of (n—1)’s.

The next table presents the distribution of the §’-transformation for all
unicyclic derangements of order n.
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TaBLE 1. The distribution of the ¢’-transformation for all
unicyclic derangements of order n

Our Final Distribution
85 (n-2)x Adjustments | (n-2)xBasic.DV + [(n-2)xBasic.DV +
Basic.DV Adjust t Adjust ts] x (n-3)!
-(n-1) 1(n-2) +1 1(n-2) + 1 n-1).(n-3)!
-(n-2) 2(n-2) 2(n-2) n-2)]-(n-
-2 n-2)(n-2 (n-2)(n-2) n-2)(n-2){.(n-3)!
-1 n-1)(n-2 -(n-1) (n-1)(n-2) - (n-1) n-1)(n-3)]-(n-3)!
1 n-1)(n-2 +(n-1) (n-1){(n-2) + (n-1) n-1)(n-1)]-{n-3
2 n-2)(n-2 (n-2)(n-2) n-2){n-2)]-(n-3)!
n-2 2(n-2) 2(n-2) 12(n-2)]-(n-3)!
n-1 1(n-2) -1 1(n-2) - 1 (n-3):(n-3)!

3. A THEOREM RELATED TO ALL UNICYCLIC DERANGEMENTS OF
ORDER 1

In the next theorem we prove that any pair (a,b), a and b taking values
from 1 to n, with @ # b, @ # i, b # j and (e,b) # (j,i) appears in the
pair of columns (m;,m;) of M (the matrix of all unicyclic derangements
of order n, represented in one-line notation) with equal probability; that is
(n — 3)! times.

We consider a pair of columns (m;, m;) with fixed ¢, j taking values from
1ton, i< jand fixed a,b taking values from 1 to n, with a # b, a # 1,
b # j and (a,b) # (4,7). In the proof of the theorem, when we refer to
cycle representations we mean the cycle representations for all unicyclic
derangements of order n. We consider that every cycle notation starts with
1. For an easier understanding we separate the proof into two cases: 1)
t=1and 2) i > 1. We suppose n > 2.

Theorem. Any pair (a,b), a and b taking values from 1 to n (n > 2), with
a #b,a#1i,bs# jand (a,b) # (j,¢) appears in the pair of columns (m;, m;)
of the matrix M of all unicyclic derangements of order n, represented in
one-line notation, with equal probability; that is, (n — 3)! times. There are
(n = 1)!/(n —3)! = (n — 1)(n — 2) such distinct pairs (a,b), for each fixed
i,j (4,7 taking values from 1 to n, with 7 # j).

Proof.

Casel: i=1

In cycle representation, we have (n — 2)! possibilities to start with (1, a).
i) If @ = j, then a must be followed by b. This happens (n — 3}! times,

so we proved that (a,b) appears in the pair of columns (m;,m;) (n — 3)!

times.
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ii) If a # j and b # 1, we have to count how many pairs (j, b) we have in
the cycle representations that start with (1,a). (4,b) can start at positions
3,4,...,n —1, so it appears (n — 4)!(n — 3) = (n — 3)! times.

iif) If @ # j and b = 1, we have to count how many times j appears in
the last position, n, of the cycle representations that start with (1,a). This
happens (n — 3)! times.

Case 2: i >1

Case2.1: a=1

In this case, ¢ appears in the last position, n, of the cycle representations.
This happens (n — 2)! times.

i) If b = 4, then (j,b) starts at position n — 1, and there are (n —3)! ways
to fill in the remaining n — 3 positions.

ii) If b # 4, we try to place (4, b) to start at one of positions 2,3,...,n—2,
so we have (n — 4)!(n — 3) = (n — 3)! possibilities.

Case 2.2: a # 1
In cycle notation, the pair (¢,a) can start at positions 2,3,...,n—1, so we
have (n — 3)!(n — 2) = (n — 2)! possibilities that contain (i, a).

i) If a = j, then a must be followed by b. If b % 1 this happens (n —
4)(n—3) = (n— 3)! times, because the triplet (i, a, b) can start at positions
2,3,...,n—2. If b= 1, the pair (i,a) has to start at position n — 1, so we
have (n — 3)! possibilities.

In this case, we must have b # i; otherwise, the cycle representation
would contain the cycle (a b), and this is not possible.

ii) If a # j and b # 1, we consider two cases: b =1 and b # 4.

If b = ¢, the triplet (4,b,a) can start at positions 2,3,...,n — 2, so we
have (n — 4)!(n — 3) = (n — 3)! possibilities.

If b # %, we have to count how many cycle representations contain the
non-overlapping pairs (i,a) and (j,b), where (i,a) can start at positions
2,...,n—1, and (4,b) can start at positions 2,...,n — 1. We know that
i > 1; so (i,a) can’t start at position 1, and also j > i > 1, so j # 1;
therefore, (j,b) can’t start at position 1 (from our assumptions, position 1
of the cycle representations is filled with 1). In this case, we have a # 1 and
b # 1; so, 7 and j can’t be in the last position, n, of the cycle representations.

If (3, a) starts at position 2, there are n — 4 possibilities to place (4, b).

If (¢,a) starts at position 3, there are n — 5 possibilities to place (j,b).
Position 2 is blocked for (j, ), because position 3 is taken.

If (i, a) starts at position 4, there are 1 4 (n — 6) = n — 5 possibilities to
place (j,b). Position 2 becomes available for (3, b).

If (i, a) starts at position 5, there are 2 + (n — 7) = n — 5 possibilities to
place (j,b).

If (i, a) starts at position n — 3, there are (n —6)+1 = n — 5 possibilities
to place (j,b). Position n — 1 is available for (j,d).
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If (¢, a) starts at position n —2, there are n—5 possibilities to place (7, b).
Position n — 1 is blocked for (7, b) because it is taken.

If (i, a) starts at position n— 1, there are n—4 possibilities to place (7, b).

Summarizing the results, we have in total (n —5)!(2(n—4) + (n —4)(n —
5)) = (n — 5)!(n — 4)(n — 3) = (n — 3)! cycle representations that contain
the non-overlapping pairs (%,a) and (j, b), where (¢, a) can start at positions
2,...,n—1 and (4,b) can start at positions 2,...,n —1.

Thus, subcase (b # 1) is solved.

iii) If a # j and b = 1, we have j in the last position, and (i,a) can
appear in positions 2,3,...,n — 2; so, we have (n — 4){(n — 3) = (n — 3)!
possibilities.

Here we can’t have b = i, because we are in case 2, for which ¢ > 1.

The first statement of the theorem is now proved and it follows that the
second statement is also true.

4. THE §’-TRANSFORMATION FOR ALL DERANGEMENTS OF ORDER 7

We generalize the results from the preceding sections by applying the &'-
transformation to all derangements of order n and finding patterns. Re-
garding the matrices of forbidden pairs, for an easier understanding of their
construction, we will sometimes use the terms black for zero (cleared) ele-
ments and white for the elements that were not cleared yet.

We use the basic distribution vector for a matrix of forbidden pairs,
Basic_.DV. This corresponds to a matrix of forbidden pairs from which just
the main diagonal is cleared, and for which the non-cleared cells are filled
with 1. Basic_DV gives the distribution of all possible differences col — row
(col # row) in an n x n matrix.

34 (n-1)|-n-2) [... ] -2 ] -1 1 2 |...|n2]n-1
Frequency 1 2 o 2 n1{n1n2]... 2 1

‘We denote the number of derangements of order n by d(n). We construct
the n x n matrix of forbidden pairs corresponding to position (column)
k =1 in a matrix of all derangements of order n, of dimension d(n) x n.
The order of the rows in the matrix of all derangements does not matter. In
the matrix of forbidden pairs, we clear the main diagonal, row 1 and column
2; the number of white cells we are left with is: n2 —n—(n—1)-(n—2) =
n? —3n +3. ,

Position (2,1) should be filled with d(n - 2), and we are left with n2 —
3n+3-1=n2-3n+2= (n-2)(n—1) white cells. We fill the remaining
n—2 white cells from row 2 and the remaining n—2 white cells from column
1 with d(n — 3) + d(n — 2). We are left with (n —2)(n —1) —2(rn - 2) =



(n — 3)(n — 2) white cells, which we fill with d(n —4) +2d(n —3) +d(n—2).
These results can be generalized for any position k.

In the next table, it can be seen how a number from the third and the
fourth column (for n > 3) is obtained by adding the number to its left and
the one above this number. Next, when we refer to k or k + 1 we refer to
these numbers modulo n. We do this so that we take into account the case
k=nk+1=1.

Number in the remaining white T . X

n | Number in cell (k + 1, k) | cells from row k + 1 and from N“ in the r ing white
column k& cells

3 d(1)=0 1

4 d(2)=1 d(1)+d(2)=1 2

5 | d(3)=2 d(2)+d(3)=3 d(1)+2d(2)+d{3)=4

6 | d(4)=9 d(3)+d(4)=11 d(2)+2d(3)+d(4)=14

7 [ d(5)=44 d(4)4-d(5)=583 d(3)+2d(4)+d(5)=64

8 | d(6)=265 d(8)+d(6)=2309 d(4)+24(6)+d(6)=362

The sum of the frequencies for the matrix of forbidden pairs correspond-

ing to position k should equal d(n).

[1]d(n - 2) + [2(n — 2)][d(n — 3) + d(n — 2)] + [(n — 3)(n — 2)][d(n — 4) +
2d(n — 3) + d(n — 2)]
=d(n—2)+2(n—2)d(n—3)+2(n-2)d(n—2)+(n—3)(n—2)d(n—4) +
2(n —3)(n —2)d(n —3) + (n — 3)(n — 2)d(n — 2)

= [d(n — 2) + 2(n — 2)d(n — 2) + (n — 3)(n — 2)d(n — 2)] + [2(n — 2)d(n —
3) +2(n —3)(n —2)d(n - 3)] + (n — 3)(n — 2)d(n — 4)

=1+ (n—2)(n—1)}d(n —2)+2(n—2)%d(n—3) + (n - 3)(n — 2)d(n — 4)
=d(n—2)+(n—2)(n—1)d(n—2)+2(n—2)%d(n—3)+(n—3)(n—2)d(n—4)
= (n—3)[d(n - 3) + d(n — 4)] + (n — 2)(n — 1)d(n — 2) + 2(n — 2)%d(n —
3) + (n —3)(n — 2)d(n — 4)
=(n-2)(n—-1)d(n-2)+(n—-1)(2n—5)d(n—3) + (n—3)(n—1)d(n — 4)
We know that

d(n) = (n — 1)[d(n — 1) + d(n — 2)]

=(n—-1)d(n—-1)+(n—1)d(n -2)

= (n—1)[(n—2)(d(n—2) + d(n—3))| + (n - D(n—3)(d(n - 3) +d(n—4))]
=(n-2)(n-1d(n-2)+(n-2)(n—-1)d(n—3)+ (n—3)(n—1)d(n —
3) + (n—3)(n - 1)d(n — 4)
=(n-2)(n-1)d(n-2)+(n—-1)(2n-5)d(n—3) +(n—3)(n—1)d(n —4)
We observe that the sum of our frequencies is indeed d(n).

For fixed n and different positions k’s, the matrix of forbidden pairs
contains the same numbers in the white cells, the same number of times, but
they are placed differently in the matrix, according to the previous table.
When k goes from 1 to n, the cell (k + 1, k) filled with d(n — 2) moves like
this: (2,1),(3,2),(4,3),...,(n,n—1),(1,n). These give us (n — 1)d(n —2)
of (-1)’s and d(n — 2) of (n — 1)’s.
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Also, for k from 1 to n, row k + 1 and column k sweep an n x n matrix
twice (except for the cells (k + 1, k) considered before and the forbidden
pairs), so we start from 2{d(n — 3) + d(n — 2)] x Basic_DV, from which
we subtract the differences corresponding to the elements (k + 1, k) twice:
2(n —1)[d(n — 3) +d(n —2)] of (-1)’s and 2[d(n — 3) +d(n — 2)] of (n —1)’s.
We subtract them twice, because when we consider the sweep by rows
and the sweep by columns, the elements (k + 1, k) appear twice, being the
intersection of row k + 1 and column k. The strips for forbidden pairs
(corresponding to row k, column k + 1) intersect row k+1 and column k on
the main diagonal, at positions (k, k) and (k+1, k4 1), which are cleared by
default, so we neglect them. So, in this case, we subtract 2n[d(n—3)+d(n—
2)] elements: 2(n—1)[d(n—3)+d(n—2)] of (-1)'s and 2[d(n — 3) +d(n —2)]
of (n —1)’s.

The cells that are left are filled with d(n—4)+42d(n—3)+d(n—2). Suppose
these cells are filled with 1. We could get the differences corresponding to
them by considering n x Basic.DV from which we subtract 2 x Basic DV
(corresponding to the cleared row k and column k + 1, giving us 2 sweeps
of the matrix), and we subtract again 2 x Basic_.DV (corresponding to row
k + 1 and column k considered previously, giving us other 2 sweeps of the
matrix). When we did this we subtracted the differences corresponding to
the intersection cells (k, k+1) and (k+1, k) twice, so we add back one copy
of them; i.e., we add n — 1 of (-1)’s and 1’s and 1 of —(n — 1) and (n — 1).
We get: (n—4) x Basic_ DV, to which we add n—1 of (-1)’s and 1’s and 1 of
—(n—1) and (n — 1). Taking into account the numbers that fill the white
cells we consider here, we get: [d(n — 4) + 2d(n — 3) + d(n — 2)](n — 4) x
Basic_DV, to which we add (n — 1)[d(n — 4) +2d(n — 3) + d(n — 2)] of (-1)’s
and 1’s and [d(n — 4) + 2d(n — 3) + d(n - 2)] of —(n — 1)’s and (n — 1)’s.

Our resulting distribution will be: 2[d(n — 3) + d(n — 2)] x Basic.DV +
[d(n — 4) + 2d(n — 3) + d(n — 2)](n — 4) x Basic. DV

(1) to which we add n[d(n — 2)] elements: (n —1)d(n —2) of (-1)’s and
d(n—2) of (n—1)’s;
(2) from which we subtract 2n[d(n — 3) + d(n — 2)] elements: 2(n —
1)[d(n—3)+d(n—2)] of (-1)’s and 2[d(n —3)+d(n—2)] of (n—1)’s;
(3) to which we add 2n[d(n — 4) + 2d(n — 3) + d(n — 2)] elements:
(n—1)[d(n —4) +2d(n — 3) + d(n — 2)] of (-1)’s and 1’s and d(n —
4)+2d(n—3) +d(n—2) of —(n—1)’s and (n —1)’s.
We want to check if this distribution sums up to n[d(n)].
The sum of the elements in Basic DV is 2(1+2+...+(n—1)] = n(n—1).
The sum of the elements in 2{d(n — 3) +d(n — 2)] x Basic. DV + [d(n—4)+
2d(n —3) + d(n — 2)](n — 4) x Basic DV is 2n(n — 1)[d(n — 3) + d(n — 2)] +
n(n —1)(n — 4)[d(n — 4) + 2d(n ~ 3) + d(n — 2)]

(1) to which we have to add n[d(n — 2)] elements;
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(2) from which we subtract 2n[d(n — 3) 4+ d(n — 2)] elements;
(3) to which we have to add 2n[d(n —4)+2d(n —3)+d(n —2)] elements.

We get:

2n(n—1)[d(n—3)+d(n-2)]+n(n—1)(n—4)[d(n—4)+2d(n—3) +d(n—
2)] +n[d(n—2)] —2n[d(n — 3) + d(n - 2)] + 2n[d(n— 4) + 2d(n — 3) + d(n — 2)]
=n{2(n—-1)[d(n—-3)+d(n—2)]+(n—1)(n—4)[d(n—4)+2d(n—-3)+d(n—
2)] +d(n —2) — 2[d(n — 3) + d(n — 2)] + 2[d(n — 4) + 2d(n — 3) + d(n — 2)]}
= n{2(n-2)[d(n—3)+d(n—2)]+(n—1)(n—4)d(n—4)+(n—1)(n—4)2d(n—
3) +(n—1)(n—4)d(n —2) + d(n — 2) + 2d(n — 4) + 4d(n — 3) + 2d(n - 2)}
=n{2d(n—1)+[(n—1)(n—4)d(n—4)+2d(n—4)] + [2(n — 1)(n —4)d(n—
3) +4d(n — 3)] + (n — 1)(n — 4)d(n — 2) + 3d(n — 2)}

=n{2d(n — 1)+ [(n = 3)(n - 2)d(n — 4) + (n — 3)(n — 2)d(n — 3)] + (n —
3)(n — 2)d(n — 3) + (n — 1)(n — 4)d(n - 2) + 3d(n — 2)}

=n{2d(n — 1) + (n - 2)[(n - 3)(d(n — 3) + d(n — 4))] + (n — 3)(n — 2)d(n —
3) + (n —1)(n — 4)d(n — 2) + 3d(n — 2)}

=n2d(n—1)+ (n—2)d(n - 2) + (n - 3)(n — 2)d(n — 3) + (n — L)(n —
4)d(n — 2) + 3d(n - 2)]

=n[2d(n—1)+(n—2)d(n—2) + (n —2)d(n—3) — (n— 2)d(n - 3) + (n—
3)(n —2)d(n — 3) + (n — 1)(n — 4)d(n — 2) + 3d(n — 2)]

=nf2d(n — 1) +d(n - 1)+ (n — 4)(n - 2)d(n ~ 3) + (n — 1)(n — 4)d(n —
2) + 3d(n - 2))

=n[3d(n—1)+3d(n—2)+ (n—4)(n—2)d(n—3) + (n —1)(n — 4)d(n - 2)]
=n[3d(n —1) + 3d(n - 2) + (n —4)(n — 2)d(n — 2) + (n — 4)(n — 2)d(n —
3) —(n—4)(n—2)d(n - 2) + (n— 1)(n — 4)d(n - 2)]
=n[3d(n—1)+3d(n—2)+(n—4)d(n-1)~ (n—4)(n - 2)d(n —-2) + (n—
1)(n — 4)d(n - 2)]

= n|(n—1)d(n—1)+3d(n—2)—(n—4)(n—2)d(n—2)+(n—1)(n—4)d(n—2)]
n[(n —1)d(n — 1) + 3d(n — 2) + (n — 4)d(n — 2)]
n[(n — 1)d(n — 1) + (n — 1)d(n — 2))

= n[d(n)]
We obtained the expected result.

The next table contains the distribution of the §’-transformation applied
to all derangements of order n. As we previously showed, the elements in
this table add up to n[d(n)].

For clarity, we rewrote the elements 2[d(n — 3) +d(n —2)) x Basic.DV +
[d(n — 4) + 2d(n — 3) + d(n — 2)](n — 4) x Basic DV as {2[d(n — 3) +d(n —
2)] + [d(n — 4) + 2d(n — 3) +d(n — 2)](n — 4)} x Basic. DV = [(n — 4)d(n —
4) + 2(n — 3)d(n — 3) + (n — 2)d(n — 2)] x Basic.DV.
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TABLE 2. The distribution of the §’-transformation for all
derangements of order n

[(n —4)d(n —4) +2(n —
3)d(n—3)+(n-2)d(n—
2)] x Basic.DV

“(ne1)

[(n = 4)d(n —4) + 2(n -
3)d(n—=3)+ (n—2)d(n -
2)]1

+d(n—4)+2d(n—3)+
d(n — 2)

-(n-2)

=D - D+ 2(n =

3)d(n~3)+(n—-2)d(n-
2)]2

-(n-3)

[(n—-4)d(n —4) + 2(n -
3)d(n —3)+(n—2)d(n—
2)]3

-2

[(n —~4)d(n - 4) +2(n -
3)d(n—3)+(n—2)d(n—
2)n = 2)

-1

[n—Dd(n =) ¥ 2(n =
3)d(n—3) + (n~2)d(n —
2)[(n = 1)

+(n—-1)d(n—
2)

—2(n—1)[d(n —
3) + d(n - 2))

+(n - D{d(n - 4) +
2d(n - 3) + d(n — 2)]

[(n = 4)d(n — 4) + 2(n -
3)d(n—3)+(n—2)d(n—
Din =1

+(n = ld(n — 4) +
2d(n — 3) + d(n — 2)|

[(n=—2dn =D+ 2(n =
3)d(n—3)+ (n—2)d(n—
2)|(n — 2)

(GO TV FICP ey e
3}d(n—3)+(n—2)d(n—
2))3

[(n —4)d(n —4) +2(n —
3)d(n—-3)+(n—2)d(n—-
2))2

[(n —2)d(n —4) + 2(n —
3)ii(n—3)+(n—2)d(n—
2))1

+d(n - 2)

—2[{d(n — 3) +
d(n — 2)]

+d(n-4)+2d(n-3)+
d(n - 2)
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