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Abstract

It has been conjectured that the edge domination number of the
m xn grid graph, denoted by v/ (P,0OP,), is [mn/3], when m,n > 2.
Our main result gives support for this conjecture by proving that
[mn/3] € 7' (PnQP,) € mn/3 +n/12 + 1, when m,n > 2. We
furthermore show that the conjecture holds when mn is a multiple of
three and also when m < 13. Despite this support for the conjecture,
our proofs lead us to believe that the conjecture may be false when
m and n are large enough and mn is not a multiple of three. We
state a new conjecture for the values of v'(PnOP,).
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1 Introduction

Let G = (V,E) be a graph with n vertices. In this paper, we will study
edge dominating sets in grid graphs. Edge domination is the natural analog
of vertex domination and has been studied in a number of papers, see for
example [1, 2, 3, 4, 7, 9, 10, 11]. For an edge uv, we call u and v the
endvertices of uv. An edge dominates itself and the edges adjacent to it
(edges incident to its endvertices). Two edges are independent if they have
no endvertices in common.
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An edge dominating set of a graph is a set of edges E' C E such that
each edge in E is either in E’ or shares an endvertex with some edge in E’.
The edge domination number of a graph is the number of edges of a smallest
edge dominating set, which we denote as 4/(G). It is shown in [1] that if
E' is a minimum edge dominating set of G, there is an independent edge
dominating set of G of cardinality |E’|. In fact, that the edge domination
number of a graph is equal to its independent edge domination number
seems to have first been proved in [6].

Yannakakis and Gavril proved that the decision problem associated with
edge domination is NP-complete, even in planar graphs or bipartite graphs
of maximum degree three. Polynomial-time algorithms for finding a mini-
mum edge dominating set have been found for bipartite permutation graphs
and cotriangulated graphs [10], trees (8], claw-free chordal graphs, locally
connected claw-free graphs, the line graphs of total graphs, and the line
graphs of chordal graphs [7]. Approximation algorithms for edge domina-
tion and weighted edge domination have been considered in a number of
papers, including {11} and [5]. For example, a 2-approximation algorithm
for edge domination is given in [11}. Structural results were obtained in
(1], in which the graphs G with 4/(G) = n/2 and ¥/(G) = n — A’ were
characterized, where A’ denotes the maximum degree of any edge in G. In
addition, trees and unicyclic graph with 4’(G) = |n/2| were characterized
in [1].

The m x n grid graph is the Cartesian product of P,, and P,, denoted
P,0P,. Previously, edge domination in Cartesian products of graph was
explored by Cutler and Halsey [3]. In that paper, they consider the edge
domination numbers of GOK,.

Prior to this paper, the edge domination number of P,,0F, was un-
known except when (i) m = 1, in which case v/(P,) = [(n — 1)/3]; (ii)
m € {2,3}, in which case v/(P,0P,) = [nm/3], see [4, 9]; and (iii) m = 4
and n # 1(mod 3), in which case v'(PnOP,) = [4n/3], see [9]. It was
further stated in [9] that v'(P,,0P,) < [mn/3], when m € {5,7}, but no
proof is given (however, these two cases are not difficult to verify, which we
do below).

The following is conjectured in [9].
Conjecture 1 (9] v'(Pn0OP,) = [mn/3], when m,n > 2.

Motivated by this conjecture, in this paper we further study edge dom-
inating sets in grids. Our main result is that ¥'(P,0OP,) > [mn/3], for
all m,n > 2. This is proved in Section 2. In Section 2 we furthermore
prove that if nm is a multiple of three then Conjecture 1 holds and every
minimum edge dominating set in P,,0P, is independent. In Section 3, we
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Figure 1: A minimal edge dominating set in P;0P,.

show that Conjecture 1 holds when 2 < n < 10 (or 2 £ m < 10). In Section
4, we prove an upper bound on v'(P,,0F,), show that Conjecture 1 holds
in some additional cases, and conclude the paper with a new conjecture.

2 Proof of the Main Result

We begin by illustrating that [mn/3] is an upper bound on ¥'(PnOF,)
when n = 0(mod 3). See Figure 1 for a solution to PsOPs. This result also
appears in [9], but we include a proof for completeness, as it will be used
in the proof of the lower hound.

Theorem 1 [9] v'(P,,0PF,) < [mn/3] when n = 0(mod 3).

Proof: Select the second edge on the first row and every third edge there-
after (so the fifth, eighth and so on); select the first edge on the second
row and every third edge thereafter; and then alternate that pattern row
by row. It is not difficult to see that this produces an edge dominating set
of size nm/3. O

In Theorem 2 below we give support for Conjecture 1, by proving that
[nm/3] is a lower bound for v/(P,0F,) when n,m > 2. We prove this by
introducing a specific edge-weighting that easily gives us a lower bound of
[(nm — 1)/3]. However some extra work will be required to achieve the
lower bound of [nm/3].

Theorem 2 Let m,n > 2. Then v'(Pn0OP,) = [nm/3].
Furthermore, if nm is a multiple of three, then every minimum edge
dominating set is independent.

Proof: Let m,n > 2 and let G = P,OP,. Let the vertex set and edge set
of G be defined as follows.
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V(G) {vij|i=1,2...,m j=1,2,...,n}

E(G) = {vi,jvi‘j+1|i=1,2,...,mj=1,2,...,'n—1}u
{‘Ui,j‘UH.)'j |i=1,2,...,m—1 j=1,2,...,n}

In other words, v; ; is the vertex in row ¢ and column j if we think of G
as being laid out in m rows and n columns. Now assign a weight of one to
all edges, except for the edges in the first row, last row, first column and
last column which each get weight 3/2. Let this weight be denoted by the
function we, which implies that the following holds.

ifl<i<m
ifi=lori=m

I

we (Vi jVi,j+1) = {

ifl<j<n
ifj=lorj=n

NI =

We (Vi jVit1,5) = {

Let D be a minimum edge dominating set in G. We will now define a
weight w,(v; ;) for each vertex v;; € V(D) as follows.

wy(vi ;) = ( Z we(vi,ju)) + ( Z we(v,-,ju)/2)
u€N (v, \V(D) wEN(vi ; )NV (D)

In other words, for every edge xy € E(G) we assign w.(zy)/2 to each
of z and y if z,y € V(D) and otherwise we assign we(zy) to the vertex in
V(D) N {z,y}.

For every edge uv € E(D), let w*(uwv) = wy(u) + w,(v). We will now
prove the following claims.

Claim A: }° .y (p)wu(v) = 2mn - 2.
Proof of Claim A: Claim A follows from the calculation below. Note

that the first equality below holds by double counting and the next
two equalities follow from the definition of w.

ZueV(D) wy(v) = nyez(c) w(zy)
(m=2)(n—-1)+(n—2)(m - 1)+
3x2(m-1) , 3x2(n-1)

2 + 2
= 2mn-2

@
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Claim B: w*(e) < 6 for all e € D.

Proof of Claim B: The proof is by case analysis. For the first case, con-
sider an edge e = v; jv; j4+1 € D. If i > 1, then at least one of the ver-
tices v;_1 ; and v;_ ;41 belongs to V(D), as the edge v;—1,;vi—1,j+1
needs to be dominated. Analogously, if i < m, then one of the vertices
Vi41,; and vy 41 belongs to V(D). For the remainder of the proof,
consider the following cases, which exhaust all other possibilities.

i=1and 1<j<n-—1: In this case, the edges v; jvit+1,; and
Vi j+1Vi+1,5+1 add a total of at most 3/2 to w*(e). Furthermore,
the edges Vi, j-1Yi,j, Vi,jVi,j+1 and Ui j+1Vi,j+2 add at most 3/2
each to w*(e). Therefore, w}(e) < 6.

i=1and j = 1: In this case, the edges v;,1v;,1 and v; 2v22 add a
total of at most 2 to w*(e). Furthermore, the edges vy,1v1,2 and
v1.2v1.3 add at most 3/2 each to w*(e). Therefore, wh(e) < 5.

i =1 and j = n: Analogously to when i = j = 1 we get wp(e) < 5.

i=m and 1 < j < n: This case is proved analogously to when i =1
considering the three cases for j in turn.

1<i<mand j=1 or j =n: This is proved analogously to when
i=landl<j<n

1 <i<mand 1< j<mn: In this case, the edges v; jvi1,; and
Vi j+1Vit1,j+1 together add a total of at most 3/2 to w*(e). Anal-
ogously, the edges v; jv;—1,; and v; j11vi—1 j+1 add a total of at
most 3/2 to w*(e). Finally, the edges v;_; ;v j, vi,;vi,;+1 and
i j+1Vi j+2 add at most 1 each to w*(e). Therefore, w}(e) < 6.

This completes the proof of Claim B when e = v; ;v; j41 € D. The
case when e = v; ;v;41,; € D can be proved analogously. ©)

Claim C: If zy,yz € D, then w,(z) + w,(y) + wu(z) < 10.

Proof of Claim C: By Claim B, we note that w,(z) + w,(y) < 6. Let
z = v;,; and consider the following cases. If 1 <i<mand1 <j<n,
then w,(z) < 4 as the edge yz adds 1/2 to w,(2), and each of the
other three edges incident with z add at most one to wy(z). This
implies that w,(z) + w,(y) + wy(z) < 9.5 in this case. If z lies in
one of the corners of our grid, then w,(z) < 3 and we are done. So
we may assume that i = 1 or i = m and 1 < j < n, or alternatively
j=1lorj=mnand 1 < i< m. However, in this case, the three
edges incident with z have weights 3/2, 3/2 and 1, respectively, and
the edge yz only contributes with we(yz)/2 to wy(z), which implies
that w,(z) < 3.5. So again, wy(z) + wy(y) + wy(2z) < 9.5. This
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completes the proof of Claim C. (It is, in fact, possible to show that
wy () + wy(y) + wy(2) <9, but this is not needed for our proof). ()

Claim D: We may assume that D is an independent edge domi-
nating set, as otherwise the theorem holds.
Proof of Claim D: Assume that D is not independent and let zy, yz €
D. By Claim C, we note that w, (z)+w,(y)+w,(2) < 10. By Claim A
and B, we note that the following holds.

6D| -2=10+6(D|-2)>10+ >  w'(e)>
e€(D\{zy,yz})

Z w, (v) = 2mn — 2.

veV (D)

Therefore, |D| > mn/3. This proves that |D| > [am/3]. Fur-
thermore, if either n or m is congruent to zero modulo three, then
|D| < mn/3, by Theorem 1, contradicting the fact that |D| > mn/3.
This implies that D is independent in this case. )

Claim E: We may assume that n =m =1 or n = m = 2 modulo
three, as otherwise the theorem holds.

Proof of Claim E: By Claim A and B, we note that

61D > > w'(e)> Y wy(v)=2mn-2.

e€D veV (D)

Therefore, |D| > (mn — 1)/3. If mn — 1 is not divisible by three,
then we must have |D| > mn/3 and therefore |D| > [mn/3], as |D|
is an integer. This would complete the proof in this case, so we may
assume that mn — 1 is divisible by 3, which implies that n = m =1
or n = m = 2 modulo three. @

Claim F: We may assume that w*(e) = 6 for all e € D, as otherwise
the theorem holds.
Proof of Claim F: Assume that w*(e) < 6, for some e € D. By
Claim A and B, we note that 6|D| > 3", p w*(e) = 2mn — 2, which
implies that |D| > (mn — 1)/3. As m, n and |D| are integers, this
implies that |D| > mn/3, which in turn implies that |D| > [mn/3].
We would therefore be done in this case. (@

Claim G: We may assume that the following hold, as otherwise
the theorem holds.
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(i)

Figure 2: We show in Claim G that we may assume that the above config-
urations do not appear.

by () (C)] (e) (h)

Figure 3: By symmetry of (i) and (ii) in Claim G, we may assume that the
above configurations do not appear.
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(i): We do not have v; jv;j+1, Vit1,Vi+1,j+1 € D for any i,j
(see Figure 2 (i)).

(ii): We do not have v; jvi j+1, vit1,5vi+2,5 € D for any i,j (see
Figure 2 (ii)).

(iii): We do not have v; j4+1vij42, Vit+1,jVi+2,j € D for any ¢,j
(see Figure 2 (iii)).

(iV): V1,1» V1,my Un,ly UYnm ¢ V(D)‘

Proof of Claim G: We shall show that if any of the configurations (i),
(ii), or (iii) appear, then |D| > mn/3.

First assume that v; jvi j4+1, Vig1,jVit1,j+41 € D (see Figure 2 (i)).
Analogously to the proof of Claim B, it is not difficult to show that
w*(v,-,jvi_j.,.l) < 6 and w*(v,-.,.l,jv,-“,,-“) <6 (as the edges Vi,5Vi+1,5
and v; j41vi41,j+1 only contribute w(v; jvit1,5)/2 and
w(vi'j+lv,-+1,j+1)/2 to each of ’LU‘(U,'J’U,'J.FI) and w‘(vi.,.l,jv,-.{.l,j.,.l)).
By Claim F, we have now proved part (i).

Now assume that v; jv; j+1, Vit1,jVi+2,; € D (see Figure 2 (ii)). Again
analogous to the proof of Claim B, we note that w*(vij1,jvi2,5) <6
(as the edge v; jviy1,; only contributes w(v; ;viy1,;)/2 to
w*(Viy1,5Vit2,5)). By Claim F, we have now proved part (ii).

By symmetry, we may now assume that none of the configurations in
Figure 3 appear. In order to prove Claim G(iii), we will prove the
following subclaim.

Subclaim G.1: If vy joyyvir joy2 € D and vi4,j: Vi 42,5+ € D, then
Virg1,5' 42V 41,543 € D and V' 42,5/ 41V +3,5'+1 € D.
Proof of Subclaim G.1: We assume that vy j41vi jo 42,
Viry1,5Vir42,5 € D. For the sake of contradiction, assume that
Virg1,57+1 € V(D), and let ¢’ € D be the edge containing
vir4+1,5.+1 as an endpoint. The other endpoint cannot be vy 41 jo 42
(see Figure 3(g)) or viry2 j-41 (see Figure 3(c)). Furthermore,
it cannot be vy ;41 or vy as D is an independent edge
dominating set (by Claim D). This contradiction implies that
Virgr,j+1 ¢ V(D).
As V(D) is a vertex cover, we must now have vir 42 jr41,
V41,542 € V(D). Let ey, ez € D be chosen such that vy4 25041
is an endpoint of e; and vy 41 .42 is an endpoint of e;. We
note that e; = vyy2js41v¢43,441 (by Figure 3(h)) and e =
Virg1,j:4+2Vi 41,5243 (by Figure 3(d)). This completes the proof
of Subclaim G.1. «ay
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We now complete the proof of Claim G(iii). Assume that v; j;1v; 42,
Vig1,5Vi+2,; € D (see Figure 2 (iii)). By Subclaim G.1, we note that
Vigl,j42Vit1,5+3:  Vit2,j+1Vi+3,5+1 € D. Using Subclaim G.1 again
gives us v;42j43Vit2,j+4, Vi+3j+2Vitq,j+2 € D. Continuing this
process gives us an infinite sequence of edges belonging to D, a con-
tradiction to G being finite. This proves part (iii).

We will now prove part (iv). If e = vy,191,2 € D, then in the proof
of Claim B we showed that w*(e) < 5, a contradiction to Claim F.
Analogously (by symmetry), if e = vy,1v2; € D, then w*(e) < 5, a
contradiction to Claim F. Therefore, vy,; ¢ V(D). Analogously (by
symmetry) we have v1 m, Un,1, Unm € V(D). ()

We will now complete the proof of the theorem. By symmetry, we note
that we do not have any of the configurations in Figure 3. By Claim G(iv),
we have vy,; ¢ V(D). Therefore vy 2,v2,1 € V(D). By Claim G(iii), we note
that either v; qug 2 € D or vg v22 € D. Assume without loss of generality
that v 1v22 € D (as otherwise we could swap n and m). This implies that
v12v1,3 € D, as D is an independent edge dominating set (by Claim D).
By Claim G(iv), we must therefore have m > 3.

By Claim G(i) and (ii), we note that v3; ¢ V(D). By Figure 3(d), note
that v3ou33 € D. If m > 4, then we furthermore must have v4,; € V(D)
and by Claim G(iii) we have v4,1v4,2 € D. This would imply that m > 5.

Analogously to ahove, we would in this case have vs qvs 3 € D. If m > 6,
then analogously we would have m > 7 and v 1v6,2 € D. Continuing this
process, we see that m > 3 is odd and the following edges belong to D.

D* = {v1,9v1,3, V2,1V2,2, ¥3,2V3,3, V4,1V4,2, U5,2U53, -- -,
Ym-1,1Vm-1,2, Um,2vm,3}

As n > 2 and n is not divisible by three, we note that n > 4 (asn =2 is
impossible due to the edge v; 2v1,3). If va;3 € V(D) for any 1 < i < m/2,
then wp(v2i,1,v2:,2) = 5.5 < 6, a contradiction to Claim F. So there are
no edges v;3v;4 in D for any 1 < j < m. Now observe that D\ D* is
an edge dominating set for P,,0P,_3 (by removing columns 1, 2 and 3
from G). If n = 4, then note that there are (m — 1)/2 edges in D \ D*
as the edges vy 3v2 4,v4,3V4,4,..-,Vn-1,3Un—1,4 need to be covered by D.
Therefore, |D| = m + (m — 1)/2 > [4m/3], completing the proof in this
case.

So we may assume that n > 5 and by induction we may assume that
|D\ D*| > [m(n — 3)/3]. However, this implies that |D| > [m(n — 3)/3] +
m = [nm/3], completing the proof. O

Theorem 1 and Theorem 2 imply the following corollary.
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Figure 4: Examples of minimum edge dominating sets that are not inde-
pendent.

Corollary 3 If n = O(mod 3), then ¥'(Pn0P,) = [mn/3] and every
minimum edge dominating set is independent.

By Corollary 3, we note that every minimum edge dominating set of
P,,0F, is an independent edge dominating set when nm is a multiple of
three. This is not the case for all grid graphs. In fact, it is not difficult to
show that 0P, P,OP,, P4OPs, Ps0Ps, PyOP;, P;,0P;, P40O0P), Ps0Pg
and P;0P;p have minimum edge dominating sets that are not independent.
See Figure 4 for some examples.

3 Exact Solutions for small n

When 2 < n < 10, the following theorem gives us the exact value of
v (PnOPR,).

Theorem 4 «'(P,0F,) = [mn/3] when2<n <10 and m > 1.

Proof: We may assume that m # 0(mod 3) and n # 0(mod 3), by Corol-
lary 3. We may also assume that m > n as otherwise we swap n and
m.

Consider the case when n = 2. If m = 1(mod 3), then select the edge
in row 1 and use the solution given in Theorem 1 on the remaining m — 1
rows. If m = 2(mod 3), then select the edges in rows 1 and 2 and use the
solution given in Theorem 1 on the remaining m — 2 rows.

Now consider the case when n = 4 and m # 0(mod 3). See Figure 5.
The middle part of the first figure can be repeated j times (on top of each
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Figure 5: By taking the middle part and adding it any number of times we
obtain a solution for P,,0P,, where m is congruent to 1 or 2 modulo 3 and
m 2> 4.

other) in order to obtain a solution to Ps;3;0P;. Analogously, the middle
part of the second figure can be repeated j times (on top of each other)
in order to obtain a solution to Ps43;0P;. This completes the case when
n = 4 (as if m = 0(mod 3), we were done by Corollary 3).

Now consider the case when n = 5 and m # 0(mod 3). See Figure 6.
Analogously to the case when n = 4, we obtain solutions to P4;3;0Ps and
Ps43;0P; (j > 0), completing the case when n = 5.

The construction in Figure 7 gives us solutions to Ps43;0FP7 and
Ps43;0P; (j > 0), completing the case when n = 7.

The construction in Figure 8 gives us solutions to Ps43;0Fs and
P743;0P5 (§ 2 0), completing the case when n = 8.

The construction in Figure 9 gives us solutions to Pr43;0P;0 and
Ps43;0P)0 (7 > 0), completing the case when n = 10. O

4 Upper Bound and Concluding Remarks

By Theorem 2, [mn/3] is a lower bound for 4'(P,,0F,) for all m,n > 2. It
was conjectured in [9] that 4'(P,0P,) = [mn/3], when m,n > 2. However,
we would like to conjecture that this may be false for large values of m and
n, when neither nm is not a multiple of three. In fact, we believe that the
following may be true.

Conjecture 2 There exists an € > 0, such that v'(Pn0OP,) > mn/3 + en,
when m > n > 2, n # 0(mod 3), and m # 0(mod 3).



Figure 6: By taking the middle part and adding it any number of times we
obtain a solution for P,,0P;, where m is congruent to 1 or 2 modulo 3 and
m > 5.

Figure 7: By taking the middle part and adding it any number of times we
obtain a solution for P,,0P;, where m is congruent to 1 or 2 modulo 3 and
m2>17.
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Figure 8: By taking the middle part and adding it any number of times we
obtain a solution for P,,0P;, where m is congruent to 1 or 2 modulo 3 and
m > 8.

Figure 9: By taking the middle part and adding it any number of times
we obhtain a solution for P,,0P)g, where m is congruent to 1 or 2 modulo 3
and m > 10.
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Note that if the above conjecture is true then we must have € < 1/30, as
if m = 2(mod 3) and n = 10, then Theorem 4 implies that v'(P,0PF,) =
[mn/3] = mn/3 4+ 1/3, so in this case éen = 10¢ must be less than 1/3.

If true, Conjecture 2 would be best possible, due to the following theo-
rem.

Theorem 5 +'(P,0F,) < mn/3+n/12+1, foralln,m > 1.

Proof: The theorem is clearly true when n =1 or m = 1, as v/(P,0F,) =
[(n-1)/3] <n/3+1. If n <10 or m < 10, then v/'(P,OF,) = [mn/3] <
mn/3 + n/12 + 1, by Theorem 4. So assume that n,m > 11.

If m = 0(mod 3) or n = 0(mod 3), then we are done by Corollary 3, as
v (P,,0P,) = [mn/3] < mn/3 +n/12 4+ 1.

Next assume that m = 1(mod 3). We will now combine the solutions
in Figure 10 and Figure 11 (as shown in Figure 12) to obtain a solution for
P,,0P,. Assume that n = 12i,, +r, where i, and r,, are integers such that
0 <7, < 12. Note that r, #Z 0(mod 3) as n # O0(mod 3). Also define the
integer ¢ > 0, such that m = 37 + 4, which is possible as m = 1(mod 3)
and m > 11. Now consider the solution we get by placing Solution A in
Figure 10 on top of each other ¢ times and then placing this on top of
Solution B from Figure 10. This gives us a solution to P,,0P;3, which we
will call Solution C. Now place the first 7,, columns in Solution A on top of
each other ¢ times and then place the solution to P40F;,  given in Figure 11
underneath. This gives us a solution to P,0P,_ , which we call Solution D.
Now place 4,, copies of solution C next to each other followed by solution D,
which gives us an edge dominating set for P,OP, (See Figure 12). If we
use k edges in the solution of P40OFP,, given in Figure 11, then our solution
will contain the following number of edges, which completes the part when
m = 1(mod 3).

2l 1T+ k = BB MR 7 4k
= mrg oo LT02edre) 4 g7 4
= megn Mgk

< %+-{g+1

So finally assume that m = 2(mod 3). This case is proved analogously
to the case when m = 1(mod 3), except we use the partial solutions given
in Figure 13 (and let n = 4i,, + r,,, where 0 < r, < 3 and m = 3 + 2).
Again, it is not difficult to check that all solutions created this way have at
most mn/3 +n/12 + 1 edges. a
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Solution A

Solution B

OmO—CO—OmC)—O
S LA L L
0_ 000 0o e o
..Q‘Q’.:@.Q.e
O Q...Q 0...9

OO )—O—COmO—O—-0—-0O—10)
Q.Q...Q...0.0.Q.O.e
..Q.Q...Q.Q...0.0..
Q.Q...‘.‘V.O...Q.Q.'.ﬂ

P4 x Pyp (15 edges)

Py x P11 (16 edges)

Figure 11: Solutions for PyOP,, (and how many edges they use).
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in copies = 12i, columns rn columns

Solution A Solution A | oo Solution A Part of A

i coples Solution A I I Solution A | e Solution A Part of A
= 3i rows

Solution A Solution A | e Solution A Part of A

4 rows { Solution B Solution B Solution B Figure 11

Figure 12: How to create a solution for P,,0P, when m = 1(mod 3) and
m > 4.

Solution A

TTTE  soutionB
'S B G0

Py x Py Py x Py P x P3

Figure 13: The partial solutions used to create a solution for P,0OPF, when
m = 2(mod 3).
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Note that if Conjecture 2 is true, then Conjecture 1 would be false. The
reason we believe Conjecture 2 is true, despite Theorem 4 giving support
for Conjecture 1, is that the number of edges, e, in an optimal solution, D,
with w*(e) < 6 (see the proof of Theorem 2 for a definition of w*) seems
to be proportional with n (if m > n, n # 0(mod 3), and m # 0(mod 3)),
which would imply that Conjecture 2 is true.

Proposition 6 Let m = 14, n = 2(mod 3) and n > 11. Then v'(P,0F,)
= [mn/3].

Proof: We use the usual pattern, such as in Figure 1, for the first m — 3
rows and the leftmost n — 2 columns. So for example, there is an edge in
the edge dominating set in row 1 between the vertices in column n — 3 and
n — 2. For the last three rows, use the usual pattern, but starting from
right to left (so start with an edge in row m — 1 between columns n and
n — 1 and edges in rows m and m — 2 between columns n — 2 and n — 1)
except for columns 1, 2, and 3, which will have two edges of the following
form: column 1 hetween rows m —2 and m—1; and column 2 between rows
m — 1 and . Next include the following two edges: in column n between
rows m — 3 and m —4; and in column n — 1 between rows m —4 and m — 5.
Then in the last two columns, use the following pattern: every fourth edge
in column n (starting between rows 1 and 2 and the last being between
rows m — 8 and m — 9); every fourth edge between columns n—2 and n—1
(starting with row 4 and ending with row m — 6); and every fourth edge in
column n — 2 (starting between rows 2 and 3 and the last being between
rows m — 7 and m — 8). It is easy see that this uses [mn/3] edges: 3]
are used in each of the first m — 3 rows and n — 3 columns, for a total of
(m — 3)(n — 2)/3. In the last three rows, 3(n — 2)/3 + 2 edges are used.
In the last two columns and first m — 4 rows, 3(m — 6)/4 + 2 edges are
used. Summing, we get mn/3 + m/12 — 1/2, which is equal to [mn/3] for
m = 14. a

A similar pattern as in Proposition 6 can be utilized when m = 17 and
n = 2(mod 3), adjusting slightly where the extra two edges are located in
the last two columns. However, in this case, the pattern described uses
more than [mn/3] edges. It turns out that one can use a different pat-
tern to show that v/(P;70P;7) = 97 = [mn/3] and this pattern can be
used for all P70P,, where n > 17 and n = 2(mod 3). This construc-
tion and a few others, including Pj40P14 and Pj30P;3, can be seen at
www.unf.edu/” wkloster/edge_dom.html

As we have two contradicting conjectures, it seems interesting to deter-
mine which one (if any) is true. If Conjecture 1 is false, the smallest possible
counterexample would he for m = 16 or one of the cases for m = 14 not
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covered by Proposition 6. This is because as the cases for m = 11 and
m = 13 with m < n have been checked with the aid of a computer pro-
gram,; that is, ¥/(P,,0P,) = [mn/3] when m € {11,13}. However, we have
no firm reason to bhelieve at this time that any of these small cases will
provide a counterexample to Conjecture 1 and it may be that the smallest
such counterexample, if one exists at all, is for some m > 16.
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