# Note on the Independent Roman Domination Number of a Graph

Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

E-mail: n.jafarirad@gmail.com

#### Abstract

A Roman dominating function (RDF) on a graph G is a function  $f:V(G)\to\{0,1,2\}$  satisfying the condition that every vertex u with f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value  $f(V(G))=\sum_{u\in V(G)}f(u)$ . The Roman domination number,  $\gamma_R(G)$ , of G is the minimum weight of a Roman dominating function on G. An RDF f is called an independent Roman dominating function if the set of vertices assigned non-zero values is independent. The independent Roman domination number,  $i_R(G)$ , of G is the minimum weight of an independent RDF on G. In this paper, we improve previous bounds on the independent Roman domination number of a graph.

Keywords: domination, Roman domination, independent Roman domination.

2000 Mathematical Subject Classification: 05C69.

## 1 Introduction

For a graph G = (V(G), E(G)), let  $f : V(G) \to \{0, 1, 2\}$  be a function, and let  $(V_0, V_1, V_2)$  be the ordered partition of V(G) induced by f, where  $V_i = \{v \in V(G) : f(v) = i\}$  for i = 0, 1, 2. There is a 1 - 1 correspondence between the functions  $f : V(G) \to \{0, 1, 2\}$  and the ordered partitions  $(V_0, V_1, V_2)$  of V(G). So we will write  $f = (V_0, V_1, V_2)$  (or  $f = (V_0^f, V_1^f, V_2^f)$  to refer to f). A function  $f : V(G) \to \{0, 1, 2\}$  is a Roman dominating function, or just RDF, if every vertex u for which f(u) = 0 is adjacent

to at least one vertex v for which f(v)=2. The weight of an RDF f is the value  $f(V(G))=\sum_{u\in V}f(u)$ . The Roman domination number of a graph G, denoted by  $\gamma_R(G)$ , is the minimum weight of an RDF on G. A function  $f=(V_0,V_1,V_2)$  is called a  $\gamma_R$ -function if it is an RDF and  $f(V(G))=\gamma_R(G)$ , (see for example [5,9,10]).

For a subset  $X \subseteq V(G)$ , we denote by G[X] the subgraph of G induced by X. A subset S of vertices of a graph G is an *independent set* if G[S] has no edge. The *independence number*  $\alpha(G)$  of G is the maximum cardinality of an independent set of G.

Cockayne et al. in [5] introduced the concept of independent Roman domination in graphs. An RDF  $f=(V_0,V_1,V_2)$  is called an independent Roman dominating function (IRDF) if the set  $V_1 \cup V_2$  is an independent set. The independent Roman domination number,  $i_R(G)$ , is the minimum weight of an IRDF on G. We call an IRDF  $f=(V_0,V_1,V_2)$  in a graph G an  $i_R$ -function if  $f(V(G))=i_R(G)$ . The concept of independent Roman domination in graphs is studied in [1,3,4,6,8]. If v is a vertex of G then the degree of V is denoted by  $\deg(v)=\deg_G(v)$ , and the maximum degree of V is denoted by Q(G). In V is a vertex of V in an independent Roman domination number in terms of the Roman domination number and maximum degree Q(G).

**Theorem 1** ([1]) For any graph G with  $\Delta(G) \geq 3$ ,

$$i_R(G) \le \gamma_R(G) + ((\gamma_R(G) - 2)/2)(\Delta(G) - 3).$$

In this paper we improve Theorem 1 for all graphs, and characterize graphs with maximum degree at most six which achieve equality. We make use of the following.

**Lemma 2** ([1]) Let  $f = (V_0^f, V_1^f, V_2^f)$  be an RDF for a graph G. If  $V_2^f$  is independent, then there is an independent RDF g for G such that  $w(g) \leq w(f)$ .

Theorem 3 ([2] and [11]) For any graph G,

$$\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{\deg(v) + 1}.$$

By S(a, b) we mean a double-star in which the two central vertices have degrees a and b, respectively, and by  $K_{a,b}$  we mean a complete bipartite

graph in which the partite sets have cardinalities a and b, respectively. Let  $f=(V_0^f,V_1^f,V_2^f)$  be an RDF in a graph G and  $v\in V_2^f$ . A vertex  $u\in V_0^f$  is a private neighbor of  $v\in V_2^f$  if  $N(u)\cap V_2^f=\{v\}$ .

## 2 Main result

Let  $k \geq 4$ . Let H be a bipartite graph with partite sets A and B each of cardinality k-1 such that  $i_R(H) \geq k$  with the condition that if  $i_R(H) = k$  then for every  $i_R(H)$ -function f, either f(A) = 0 or f(B) = 0. Let  $G_k$  be the graph obtained from H by adding two new vertices x and y, and adding edges xy, xu for all  $u \in A$ , and yv for all  $v \in B$ .

Theorem 4 For any connected graph G with  $4 \leq \Delta(G) \leq 6$ ,  $i_R(G) \leq \frac{\Delta(G)+1}{4}\gamma_R(G)$ , with equality if and only if G = S(k,k) or  $G = G_k$ , where  $k = \Delta(G)$ .

**Proof.** Let G be a graph with  $4 \le \Delta(G) \le 6$ . Our goal is to find an RDF  $g = (V_0^g, V_1^g, V_2^g)$  with the desired weight such that  $V_2^g$  is independent, and then apply Lemma 2. Let  $f = (V_0^f, V_1^f, V_2^f)$  be a  $\gamma_R(G)$ -function such that  $G[V_2^f]$  has minimum number of edges. Observe that each vertex of  $V_2^f$  has at least one private neighbor in  $V_0^f$ . Now if there is a vertex  $x \in V_2^f$  having exactly one private neighbor in  $V_0^f$ , say y, then we replace f(x) and f(y)with 1. Hence we may assume that every vertex of  $V_2^f$  has at least two private neighbors in  $V_0^f$ . Let A be the set of isolated vertices of  $G[V_2^f]$ . Let B the set of all vertices of  $G[V_2^f]$  that belong to a  $K_2$ -component of  $G[V_2^f]$ , and  $C = V_2^f - (A \cup B)$ . If  $B \cup C = \emptyset$ , then clearly  $i_R(G) \le \gamma_R(G) < 0$  $\frac{\Delta(G)+1}{4}\gamma_R(G)$ . Thus we may assume that  $B\cup C\neq\emptyset$ . Note that any vertex of B is of degree one in  $G[V_2^f]$ , and any vertex of C belongs to a component of  $G[V_2^f]$  of order at least three. If a vertex x of  $B \cup C$  has precisely two private neighbors  $x_1, x_2$  in  $V_0^f$ , then  $((V_0^f - \{x_1, x_2\}) \cup \{x\}, V_1^f \cup \{x_1, x_2\}, V_2^f - \{x\})$  is a  $\gamma_R(G)$ -function such that  $|E(G[V_2^f - \{x\}])| < |E(G[V_2^f])|$ , a contradiction. Thus any vertex of  $B \cup C$  has at least three private neighbors in  $V_0^f$ . In particular,  $\Delta(G[C]) \leq \Delta(G) - 3$ . Let X be a maximum independent set in G[C] containing all vertices of degree one in G[C]. By Theorem 3,

$$|X| \geq |C|/(\Delta(G[C])+1) \geq |C|/(\Delta(G)-2).$$

Also, since every vertex of C-X has at least two neighbors in X, every vertex of C-X dominates at most  $\Delta(G)-2$  vertices of  $V(G)-V_0^f$ . Let

Y be a subset of B containing one end vertex of every  $K_2$ -component of G[B]. Thus  $|Y| = \frac{|B|}{2}$ . Let Z be the set of all vertices of  $V_0^f$  that are not dominated by  $A \cup Y \cup X$ . Then any vertex of Z is dominated by some vertex of  $(B - Y) \cup (C - X)$ . Furthermore,

$$|Z| \le (\Delta(G) - 1)(|B| - |Y|) + (\Delta(G) - 2)(|C| - |X|)$$
  
=  $(\Delta(G) - 1)|B|/2 + (\Delta(G) - 2)(|C| - |X|).$ 

Now  $g = ((V_0^f - Z) \cup (B - Y) \cup (C - X), V_1^f \cup Z, A \cup Y \cup X)$  is an RDF for G such that  $A \cup Y \cup X$  is independent. Let  $s = 2|A| + 2|Y| + 2|X| + |V_1^f|$ ,  $s_1 = \frac{\Delta(G) - 3}{2}|B|$  and  $s_2 = (\Delta(G) - 4)|C|$ . By Lemma 2,

$$i_R(G) \le w(g) \tag{1}$$

$$= s + |Z| \tag{2}$$

$$\leq s + (\Delta(G) - 1)|B|/2 + (\Delta(G) - 2)(|C| - |X|) \tag{3}$$

$$= s + (\Delta(G) - 1)|B|/2 + (\Delta(G) - 2)(|C| - |X|) \tag{4}$$

$$= \gamma_R(G) + s_1 + s_2 - (\Delta(G) - 4)(|X|) \tag{5}$$

$$\leq \gamma_R(G) + s_1 + s_2 - (\Delta(G) - 4)(\frac{|C|}{\Delta(G) - 2})$$
 (6)

$$= \gamma_R(G) + s_1 + \frac{s_2(\Delta(G) - 3)}{\Delta(G) - 2}$$
 (7)

$$\leq \gamma_R(G) + \frac{\Delta(G) - 3}{2}(|B| + |C|) \tag{8}$$

$$\leq \gamma_R(G) + \frac{\Delta(G) - 3}{2} \cdot \frac{\gamma_R(G)}{2} \tag{9}$$

$$=\frac{\Delta(G)+1}{4}\gamma_R(G). \tag{10}$$

Assume now that the equality holds, that is

$$i_R(G) = \frac{\Delta(G) + 1}{4} \gamma_R(G).$$

Then all of the inequalities (1), (3), (6), (8) and (9) become equality. From (8) and (9) we obtain that  $|A| = |V_1^f| = 0$ . We show that |C| = 0. If  $k = \Delta(G) < 6$  then from (7) and (8) we have |C| = 0. Thus assume that k = 6. From (2) and (3) we obtain that |X| = |C|/4. Furthermore, Z is an independent set, and any vertex of C - X dominates four vertices of Z. Further, as we assumed earlier, for any vertex  $x \in C - X$ ,  $\deg_{G|C|}(x) = 2$ .

Then Theorem 3 implies that |X| > |C|/4, a contradiction. Thus |C| = 0. We show that |B| = 2. Suppose that |B| > 2. Then |B| is even. Let  $P_1: x_1y_1, P_2: x_2y_2,...,P_{|B|/2}: x_{|B|/2}y_{|B|/2}$  be the components of G[B]. Clearly N(B-Y) is an independent set, and any vertex of B-Y has precisely  $\Delta(G) - 1$  private neighbors in  $V_0^f$ . Thus for  $i \neq j$ , no vertex of  $N(\{x_i, y_i\} - Y)$  is adjacent to a vertex of  $N(\{x_j, y_j\} - Y)$ . Moreover, for each i=1,2,...,|B|/2, replacing the vertex of  $Y\cap\{x_i,y_i\}$  with the vertex of  $\{x_i, y_i\} - Y$  produces a set that plays the same role of Y. We conclude that for each i = 1, 2, ..., |B|/2, if a vertex of  $N(x_i)$  has degree more than one then it is adjacent only to some vertex in  $N(y_i)$ . Consequently  $G[N[x_i] \cup N[y_i]]$  is a component of G, and G is disconnected, a contradiction. Hence, |B|=2, and thus  $\gamma_R(G)=4$ , and  $i_R(G)=1+\Delta(G)$ . Let B= $\{x,y\}$ . Then  $\deg(x)=\deg(y)=\Delta(G)$  and both  $N(x)-\{y\}$  and  $N(y)-\{x\}$ are independent. Let  $X_1 = N(x) - \{y\}$ , and  $Y_1 = N(y) - \{x\}$ . If there is no edge between  $X_1$  and  $Y_1$  then  $G[X_1 \cup Y_1] = S(\Delta(G), \Delta(G))$ . Thus assume that there is some edge between  $X_1$  and  $Y_1$ . Let  $g = (V_0^g, V_1^g, V_2^g)$  be an  $i_R(G[X_1 \cup Y_1])$ -function. Suppose that  $w(g) \leq \Delta(G) - 1$ . If  $V_2^g \cap X_1 \neq \emptyset$  and  $V_2^g \cap Y_1 \neq \emptyset$ , then we extend g to an IRDF for G of weight less than  $i_R(G)$ by assigning 0 to both x and y, a contradiction. Thus assume without loss of generality that  $V_2^g \cap X_1 = \emptyset$ . Since  $w(g) \leq \Delta(G) - 1$ , we find that  $V_2^g \cap Y_1 \neq \emptyset$ . Then we extend g to an IRDF for G of weight less than  $i_R(G)$  by assigning 1 to x, and 0 to y, a contradiction. We deduce that  $w(g) \geq \Delta(G)$ . Assume that  $w(g) = \Delta(G)$ . If  $V_2^g \cap X_1 \neq \emptyset$  and  $V_2^g \cap Y_1 \neq \emptyset$ , then we extend g to an IRDF for G of weight less than  $i_R(G)$ by assigning 0 to both x and y, a contradiction. Thus assume without loss of generality that  $V_2^g \cap X_1 = \emptyset$ . Then  $g(u) \neq 0$  for each  $u \in Y_1$ . Since  $Y_1$  is an independent set, and  $w(g) = \Delta(G)$ , we find that  $|Y_1 \cap V_2^g| = 1$ ,  $|Y_1 \cap V_1^g| = \Delta(G) - 2$ , and  $f(X_1) = 0$ . Consequently,  $G = G_{\Delta(G)}$ .

Conversely, if G=S(k,k) then clearly  $i_R(G)=k+1$  and  $\gamma_R(G)=4$ . Let  $G=G_k$ . It is clear that  $\gamma_R(G)=4$  and  $(V(G)-\{x,y\},\emptyset,\{x,y\})$  is a  $\gamma_R(G)$ -function. By assumption  $A=N(x)-\{y\}$  and  $B=N(y)-\{x\}$ . Let  $h_1=(V(G)-(\{x\}\cup B),B,\{x\})$ . By Lemma 2,  $h_1$  is an IRDF for G and thus  $i_R(G)\leq k+1$ . Let  $h_2=(V_0^{h_2},V_1^{h_2},V_2^{h_2})$  be an  $i_R(G)$ -function. If  $x\in V_2^{h_2}$ , then  $A\cup\{y\}\subseteq V_0^{h_2}$ , and thus  $V_1^{h_2}=B$ . So  $w(h_2)\geq k+1$ . Similarly if  $y\in V_2^{h_2}$ , then  $w(h_2)\geq k+1$ . Thus we may assume that  $\{x,y\}\cap V_2^{h_2}=\emptyset$ . Clearly  $V_2^{h_2}\neq\emptyset$ . Assume that  $V_2^{h_2}\cap A\neq\emptyset$ . If  $V_2^{h_2}\cap B\neq\emptyset$  then  $h_2(x)=h_2(y)=0$ , and the restriction of  $h_2$  on  $G[A\cup B]$  (say  $h_2|_{G[A\cup B]})$  is an IRDF for  $G[A\cup B]$ , and so  $w(h_2)\geq w(h_2|_{G[A\cup B]})\geq i_R(G[A\cup B])$ , and by assumption  $w(h_2)\geq k+1$ , since  $h_2(A)\neq 0$  and  $h_2(B)\neq 0$ . Thus assume that  $V_2^{h_2}\cap B=\emptyset$ . Since A is an independent set, and  $h_2(y)\neq 0$ , we find that  $w(h_2)\geq k+1$ . We conclude that  $i_R(G)=k+1$ .

Corollary 5 If  $4 \le k \le 6$ , then for a k-regular graph G,  $i_R(G) = \frac{\Delta(G)+1}{4}\gamma_R(G)$  if and only if  $G = K_{k,k}$ .

**Theorem 6** For any graph G with  $\Delta(G) \geq 7$ ,  $i_R(G) \leq \lceil (\Delta(G) - \frac{18}{5})\gamma_R(G) \rceil - 1$ .

**Proof.** We follow the proof of Theorem 4. Since  $\Delta(G) \geq 7$ , we find that  $\frac{\Delta(G)-3}{2} < \frac{(\Delta(G)-4)(\Delta(G)-3)}{\Delta(G)-2}$  and thus we deduce from (7) that

$$\begin{split} i_R(G) &\leq \gamma_R(G) + \frac{\Delta(G) - 3}{2} |B| + \frac{(\Delta(G) - 4)(\Delta(G) - 3)}{\Delta(G) - 2} |C| \\ &< \gamma_R(G) + \frac{(\Delta(G) - 4)(\Delta(G) - 3)}{\Delta(G) - 2} (|B| + |C|) \\ &\leq \gamma_R(G) + \frac{(\Delta(G) - 4)(\Delta(G) - 3)}{\Delta(G) - 2} \frac{\gamma_R(G)}{2} \\ &\leq \frac{\Delta(G)^2 - 6\Delta(G) + 10}{\Delta(G) - 2} \gamma_R(G) \\ &= (\Delta(G) - 4 + \frac{2}{\Delta(G) - 2}) \gamma_R(G) \\ &\leq (\Delta(G) - \frac{18}{5}) \gamma_R(G). \end{split}$$

Corollary 7 If G is a graph in which the vertices of degree at least 4 form an independent set, then  $i_R(G) = \gamma_R(G)$ .

**Proof.** Let f, A, B and C be as defined in the proof of Theorem 4. If  $B \cup C \neq \emptyset$ , then as it was seen, any vertex of  $B \cup C$  has at least three private neighbors in  $V_0^f$ , and thus has degree at least four, a contradiction. Thus  $B \cup C = \emptyset$ , and so  $V_2^f = A$ . By Lemma 2,  $i_R(G) \leq \gamma_R(G)$ , and thus  $i_R(G) = \gamma_R(G)$ .

Recall that a graph is *claw-free* if it does not contain a  $K_{1,3}$  as an induced subgraph.

Corollary 8 ([8]) If G is a claw-free graph, then  $i_R(G) = \gamma_R(G)$ .

**Proof.** Let f, A, B and C be as defined in the proof of Theorem 4. Assume that  $B \cup C \neq \emptyset$ . It was seen that any vertex of  $B \cup C$  has at least three private neighbors in  $V_0^f$ . Since G is claw-free, the private neighbors of any

vertex of  $B \cup C$  in  $V_0^f$  form a clique. But then replacing a vertex of  $B \cup C$  with one of its private neighbors in  $V_0^f$  forms a  $\gamma_R(G)$ -function g such that  $G[V_2^g]$  has fewer edges than  $G[V_2^f]$ , a contradiction. Thus  $B \cup C = \emptyset$ , and so  $V_2^f = A$ . By Lemma 2,  $i_R(G) \le \gamma_R(G)$ , and thus  $i_R(G) = \gamma_R(G)$ .

### References

- M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad, and M.S. Moradi, Properties of independent Roman domination in graphs. Australas. J. Combinatorics 52 (2012) 11-18.
- [2] Y. Caro, New Results on the Independence Number, Technical Report, Tel-Aviv University, 1979.
- [3] M. Chellali and N. Jafari Rad, A note on the independent Roman domination in unicyclic graphs, *Opuscula Mathematica* 32 (2012), 673-676.
- [4] M. Chellali and N. Jafari Rad, Strong equality between the Roman domination and independent Roman domination numbers in trees, Discussiones Mathematicae Graph Theory 33 (2013), 337-346.
- [5] E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, On Roman domination in graphs, *Discrete Math.* 278 (2004), 11-22.
- [6] E. Ebrahimi Targhi, N. Jafari Rad, C. M. Mynhardt, and Y. Wu, Bounds for independent Roman domination in graphs, J. Combin. Math. Combin. Comput. 80 (2012), 351-365.
- [7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork, 1998.
- [8] N. Jafari Rad and L. Volkmann, Roman domination perfect graphs, Annalele St. Univ. Ovid. Const. 19 (2011), 167-174.
- [9] C. S. ReVelle, K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, *Amer Math. Monthly* 107 (2000), 585-594.
- [10] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (6) (1999), 136-139.
- [11] V. K. Wei, A Lower Bound on the Stability Number of a Simple Graph, Technical memorandum, TM 81 - 11217 - 9, Bell laboratories, 1981.