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Abstract

A Roman dominating function (RDF) on a graph G is a function
f : V(G) — {0,1,2} satisfying the condition that every vertex u
with f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of a Roman dominating function is the value f(V(G)) =
> wev(c) f(v). The Roman domination number, Yr(G), of G is the
minimum weight of a Roman dominating function on G. An RDF
f is called an independent Roman dominating function if the set of
vertices assigned non-zero values is independent. The independent
Roman domination number, ig(G), of G is the minimum weight of an
independent RDF on G. In this paper, we improve previous bounds
on the independent Roman domination number of a graph.

Keywords: domination, Roman domination, independent Roman domi-

nation.
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1 Introduction

For a graph G = (V(G), E(G)), let f : V(G) — {0,1,2} be a function,
and let (Vp, V4, Va) be the ordered partition of V(G) induced by f, where
Vi={veV(G): f(v) =1} fori=0,1,2. Thereis a 1 — 1 correspondence
between the functions f : V(G) — {0,1,2} and the ordered partitions
(Vo, Vi, Va) of V(G). So we will write f = (Vo, Vi, V&) (or f = (V{,V{, V)
to refer to f). A function f : V(G) — {0,1,2} is a Roman dominating
function, or just RDF, if every vertex u for which f(u) = 0 is adjacent
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to at least one vertex v for which f(v) = 2. The weight of an RDF f
is the value f(V(G)) = ¥, cy f(u). The Roman domination number of
a graph G, denoted by vgr(G), is the minimum weight of an RDF on G.
A function f = (Vp, W1, V2) is called a vyg-function if it is an RDF and
f(V(G)) = vr(G), (see for example {5, 9, 10]).

For a subset X C V(G), we denote by G[X] the subgraph of G induced by
X. A subset S of vertices of a graph G is an independent set if G[S] has
no edge. The independence number o(G) of G is the maximum cardinality
of an independent set of G.

Cockayne et al. in (5] introduced the concept of independent Roman domi-
nation in graphs. An RDF f = (Vp, V4, V2) is called an independent Roman
dominating function (IRDF) if the set V;UV5 is an independent set. The in-
dependent Roman domination number, ig(G), is the minimum weight of an
IRDF on G. We call an IRDF f = (Vp, V1, V,) in a graph G an ig-function
if f(V(G)) = ir(G). The concept of independent Roman domination in
graphs is studied in [1, 3, 4, 6, 8]. If v is a vertex of G then the degree of v
is denoted by deg(v) = degg(v), and the mazimum degree of G is denoted
by A(G). In [1] the authors proved that if A(G) < 3 then igr(G) = vr(G),
and presented the following upper bound for the independent Roman dom-
ination number in terms of the Roman domination number and maximum
degree A(G).

Theorem 1 ([1]) For any graph G with A(G) = 3,

ir(G) < 1r(G) + ((7r(G) — 2)/2)(A(G) - 3).

In this paper we improve Theorem 1 for all graphs, and characterize graphs
with maximum degree at most six which achieve equality. We make use of
the following.

Lemma 2 ([1]) Let f = (V{,V{,V/) be an RDF for a graph G. If Vy is
independent, then there is an independent RDF g for G such that w(g) <
w(f).

Theorem 3 ([2] and [11]) For any graph G,

1
aoG)2 Y —
v deg(v) +1

By S(a,b) we mean a double-star in which the two central vertices have
degrees a and b, respectively, and by K,, we mean a complete bipartite
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graph 1n Wthh the partite sets have cardinalities a and b, respectively. Let
= (V/,V/,V{) be an RDF in a graph G and v € V. A vertex u € 174

is a private neighbor of v € V§ if N(u) N Vi = {v}.

2 Main result

Let & > 4. Let H be a bipartite graph with partite sets A and B each of
cardinality k — 1 such that ig(H) > k with the condition that if ig(H) = k&
then for every ig(H)-function f, either f(A) =0 or f(B) = 0. Let G be
the graph obtained from H by adding two new vertices = and y, and adding
edges zy, zu for all u € A, and yv for all v € B.

Theorem 4 For any connected graph G with 4 < A(G) < 6, ir(G) <
—A(?H'm(G), with equality if and only if G = S(Ic, k) or G = Gy, where
k= A(G).

Proof Let G be a graph with 4 < A(G) < 6. Our goal is to find an RDF

= (V§,V{,Vs) with the desired welght such that V is independent, and
then apply Lemma 2. Let f = (V0 , VI, V) be a va(G)-function such that

G[V{] has minimum number of edges. Observe that each vertex of V; has
at least one private neighbor in Vf Now if there is a vertex z € VJr having
exactly one private neighbor in Vo , say ¥, then we replace f(z) and f(y)
with 1. Hence we may assume that every vertex of Vz" has at least two
private neighbors in V. Let A be the set of isolated vertices of G[V{).
Let B the set of all vertices of G[V;] that belong to a K;-component of
G[V{], and C = Vi —(AUB). If BUC = 0), then clearly ir(G) < 7r(G) <
ﬁ%M*m(c'). Thus we may assume that BUC # ). Note that any vertex of
B is of degree one in G’[V2f ], and any vertex of C' belongs to a component of
G [sz ] of order at least three. If a vertex z of BUC has precisely two private
neighbors z1, z2 in V{, then (Vg —{z1, z2})U{z}, Vi U{z1, 22}, Vi —{z}) is
a vr(G)-function such that | E(G[V{ - {z}])| < |E(G[V{))|, a contradiction.
Thus any vertex of B U C has at least three private neighbors in V},f . In
particular, A(G[C]) € A(G) — 3. Let X be a maximum independent set in
G|[C] containing all vertices of degree one in G[C]. By Theorem 3,

1X] 2 |Cl/(A(GIC]) + 1) 2 [CI/(A(G) - 2).

Also, since every vertex of C — X has at least two neighbors in X every
vertex of C — X dominates at most A(G) — 2 vertices of V(G) — V. Let
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Y be a subset of B containing one end vertex of every Kj-component of
G([B]. Thus |Y] = |_2§l. Let Z be the set of all vertices of V that are not
dominated by AUY U X. Then any vertex of Z is dominated by some
vertex of (B — Y) U (C — X). Furthermore,

121 < (A(G) = D)(IBI - Y]) + (A(G) - 2)(IC] - |X])
= (A(G) - 1)IBl/2 + (A(G) - 2)(IC] - | X1).

Now g = (Vf - 2)u(B-Y)u(C - X),V{ UZ AUY UX) is an RDF for
G such that AUY U X is independent. Let s = 2|4| + 2[Y] + 2| X| + |V{],
s1 = 2E)=3/B| and s, = (A(G) — 4)|C|. By Lemma 2,

i(G) < w(9) 1)
=s5+12| (2)
<s+(A(G) - DIBI/2+(AG) -D(CI - 1X)  (3)
=5+ (AG) - DIBI/2+(AG) - 2(CI - IX) (&)
= 1R(G) + 51 + 82 ~ (A(G) ~ 4)(1X] )
< R(G)+ 81 + 32 = (AG) - 5t —) )
= 1a(G) + o1 + I D) )
<1(0) + 2935 1 ) ®)
< 1m(@) + 222 1O ©)
_ ﬂiﬂm(a). (10)

Assume now that the equality holds, that is

in(G) = A(Gi +1

Tr(G).

Then all of the inequalities (1), (3), (6), (8) and (9) become equality. From
(8) and (9) we obtain that |A|] = |V{/| = 0. We show that |C| = 0. If
k = A(G) < 6 then from (7) and (8) we have |C| = 0. Thus assume that
k = 6. From (2) and (3) we obtain that |X| = |C|/4. Furthermore, Z is
an independent set, and any vertex of C — X dominates four vertices of Z.
Further, as we assumed earlier, for any vertex z € C — X, degg(c) (z) = 2.
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Then Theorem 3 implies that |X| > |C|/4, a contradiction. Thus |C| = 0.
We show that |B| = 2. Suppose that |B] > 2. Then |B] is even. Let
Py : iy, Pt xoys,...,PiBjj2 ¢ T)B|/2Y)B|/2 be the components of G[B].
Clearly N(B — Y) is an independent set, and any vertex of B — Y has
precisely A(G) — 1 private neighbors in Vof . Thus for ¢ # j, no vertex
of N({z;,y:} — Y) is adjacent to a vertex of N({z;,y;} —Y). Moreover,
for each i = 1,2,...,|B]|/2, replacing the vertex of Y N {z;,y:} with the
vertex of {z;,y:} — Y produces a set that plays the same role of Y. We
conclude that for each i = 1,2, ...,|B|/2, if a vertex of N(z;) has degree more
than one then it is adjacent only to some vertex in N(y;). Consequently
G[N{z;]UN[y;]] is a component of G, and G is disconnected, a contradiction.
Hence, |B| = 2, and thus 7g(G) = 4, and ig(G) = 1 + A(G). Let B =
{z,y}. Then deg(z) = deg(y) = A(G) and both N(z)— {y} and N(y)—{z}
are independent. Let X, = N(z)— {y}, and Y; = N(y) —{z}. If there is no
edge between X; and Y; then G[X; U Y1) = S(A(G), A(G)). Thus assume
that there is some edge between X; and Yj. Let g = (V{,V{,V5) be an
ir(G[XUY;])-function. Suppose that w(g) < A(G)—1. If VJ/NX; # #hand
VY NY; # ¥, then we extend g to an IRDF for G of weight less than ig(G)
by assigning 0 to both = and y, a contradiction. Thus assume without
loss of generality that V¥ N X; = . Since w(g) < A(G) — 1, we find
that VJ NY; # 0. Then we extend g to an IRDF for G of weight less
than ig(G) by assigning 1 to z, and 0 to y, a contradiction. We deduce
that w(g) > A(G). Assume that w(g) = A(G). If VJ/ N X; # @ and
VY NY; # W, then we extend g to an IRDF for G of weight less than ig(G)
by assigning 0 to both z and y, a contradiction. Thus assume without loss
of generality that VJ N X; = (. Then g(u) # 0 for each u € Y7. Since
Y; is an independent set, and w(g) = A(G), we find that |Y; N VJ| =1,
Y1 N VY| = A(G) - 2, and f(X;) = 0. Consequently, G = Ga(g)-

Conversely, if G = S(k, k) then clearly ig(G) = k + 1 and vg(G) = 4.
Let G = Gy. It is clear that ygr(G) = 4 and (V(G) — {z,y}, ¥, {z,y}) isa
vr(G)-function. By assumption A = N(z) - {y} and B = N(y) — {z}. Let
h; = (V(G)-({z}UB), B, {:c}) By Lemma2 h; is an IRDF for G and thus
ir(G) < k+1. Let hz = (Vo ,Vlh‘, %) be an ig(G)-function. If z € V ,
then A U{y} € V4, and thus V** = B. So w(hg) > k+ 1. Slmllarly if
y € Vy*, then w(hg) > k + 1. Thus we may assume that {z,y} N V;? =
0. Clearly V;** # (. Assume that V;2 NA # 0. If V2 N B # 0 then
ha(x) = ha(y) = 0, and the restriction of hy on G[A U B] (say h2|cjaus))
is an IRDF for G[A U B], and so w(hs) > w(ha|claum)) = ir(G[AU B)),
and by assumptlon w(hg) > k + 1, since ho{A) # 0 and hg(B) # 0. Thus
assume that V;* N B = . Since A is an independent set, and ha(y) # 0,
we find that w(hg) > k + 1. We conclude that igr(G) =k+1. =
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Corollary 5 If4 < k < 6, then for a k-regular graph G, ig(G) = ﬂ%ﬂ'm(G)
if and only if G = Ky .

Theorem 6 For any graph G with A(G) > 7, ir(G) < [(A(G) — £)yr(G)] -

Proof. We follow the proof of Theorem 4. Since A(G) > 7, we find that

A(G) =3 LG ("é()A(G) 3) and thus we deduce from (7) that

(AG) - 4)(A(G) -
A(G) - 2
CE RV EL P
(A(G) —4)(A(G) - 3) 1r(G)
A(G) — 2 2
2 _
< A(G’)A(GG)A(G) + 107R(G,)

= (A(G) -

ir(G) < 7a(C) + ey

1Bl +

A(G) -3
2

<vr(G) +

<r(G) +

18

< (A(G) = £ )r(G)-

Corollary 7 If G is a graph in which the vertices of degree at least 4 form
an independent set, then ig(G) = vr(G).

Proof. Let f, A, B and C be as defined in the proof of Theorem 4. If
BUC # {, then as 1t was seen, any vertex of B U C has at least three
private neighbors in Vo , and thus has degree at least four, a contradiction.
Thus BUC =0, and so V/ = A. By Lemma 2, ig(G) < vr(G), and thus
ir(G) =r(G). =

Recall that a graph is claw-free if it does not contain a K 3 as an induced
subgraph.

Corollary 8 ([8]) If G is a claw-free graph, then ig(G) = vr(G).

Proof. Let f, A, B and C be as defined in the proof of Theorem 4. Assume
that BUC # . It was seen that any vertex of B U C has at least three
private neighbors in VO Since G is claw-free, the private neighbors of any
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vertex of BUC in be form a clique. But then replacing a vertex of BUC
with one of its private neighbors in Vof forms a yr(G)-function g such that
G[V¥] has fewer edges than G[V{], a contradiction. Thus BUC = 0, and
so V/ = A. By Lemma 2, ir(G) < 7r(G), and thus ir(G) = 7r(G). =
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