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ABSTRACT. Much research has been done on the edge decomposition
of A copies of the complete graph G with respect to some specified
subgraph H of G. This is equivalent to the investigation of (G, H)-
designs of index A. In this paper we present a fundamental theorem
on the decomposition of A copies of a complete bipartite graph. Asan
application of this result we show that necessary conditions are suffi-
cient for the decomposition of A copies of a complete bipartite graph
into several multi-subgraphs H with number of vertices less than or
equal to 4 and the number of edges less than or equal to 4, with some
exceptions where decompositions do not exist. These decomposition
problems are interesting to study as various decompositions do not
exist even when necessary conditions are satisfied.

1. Introduction

The decomposition problem of a graph into subgraphs all of which be-
long to a specific class of graphs has been well studied where the subgraphs
are simple (see (1], [2], and references therein). We consider connected
graphs G with vertex set V' of size/order n and edge set E of size e, and we
allow the edges to occur with a frequency greater or equal to 1. By A copies
of a simple graph G, denoted by AG, we mean the graph with the same
vertex set of G with each edge of G having multiplicity A\. For example, a
AK, is a A-fold complete multigraph of order n and a AK, » is a A-fold
complete bipartite graph with V partitioned into two subsets Vi and V;
such that the size of V] equals m and the size of V; equals n. The decom-
position of copies of a complete graph or a complete bipartite graph into
proper multigraphs has not received much attention yet, see (3, 4, 6, 7, 8].
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DEFINITION 1. Given a graph G and a subgraph H, a decomposition
of G into t subgraphs in A = {G,,Ga,...,G:} such that any edge of G is
an edge of exactly one of the Gis, and the G}s are isomorphic to the graph
H is called an H-decomposition of G. The elements of A are also called
H-blocks. An H-decomposition of a AG 1is also called a (AG, H)-design with
inder .

Following well known observations are very useful for our purpose.

LeEMMA 1. If an H-decomposition of A copies of G exists, then an H-
decomposition of n\ copies of G exists for any integer n > 2.

LEMMA 2. If an H-decomposition of A\, copies of G and Ay copies of G
exists, then an H-decomposition of A\; + Ay copies of G exists.

In this paper we present a fundamental theorem on the decomposition
of a AK,, , into isomorphic subgraphs and use it to settle graph decomposi-
tion problem for several subgraphs. All graphs considered in this paper are
connected graphs. The fundamental theorem reduces proving the neces-
sary conditions are sufficient to mostly finding examples of decompositions
for certain small bipartite graphs, but the problem is still very interesting.
First reason is that these small complete bipartite graphs are not always of
the same size and more interesting reason is that there are several exam-
ples of non-existence: for example, a 3K, » , a 4K n, and a 6K, , can
be decomposed into copies of a specific subgraph called EL graph (defined
in Section 5), but a 5K, ,, can not be for any m and n.

We begin with a simple problem of the decomposition of a AK, » into
a small graph to motivate the Fundamental theorem and its application.

2. Decomposition of AK,, , into LO graphs

DEFINITION 2. Let V = {a,b,c}. An LO graph < a,b,c > onV isa
graph where the frequency of edges {a, b} and {b,c} are 1 and 2, respectively.
We write abc to denote an LO graph < a,b,c > when there is no confusion.

FIGURE 1. An LO graph < a,b,¢ >
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2.1. Decomposition of 3K, ».

THEOREM 1. Necessary conditions are sufficient for an LO-decomposition
of a 3K n.

Proof: An LO Graph needs three vertices, hence m +n must be greater
than or equal to 3. If m = 1, and n = 2, with V] = {a;} and V2 = {b1, b2},
we have the unique LO decomposition {bja;bs,b2a1b1}. For m = 1 and
n = 3, and Vi = {a1} and Vo = {b1,b2,b3}, the LO decomposition is
{b1a1b2, baay b3, bza;b;}. We can use these two decompositions to obtain an
LO decomposition for any 3K, , as follows: First consider m = 1 and any
n, with Vi = {a1} and V5 = {b1,bs,...,b,}. If n is even, say n = 2t, we
can use the set union of {ba;—ja;be;, baia1bs;_1} over i =1,...,t to obtain
the required LO decomposition. For n odd, say n = 2¢ — 1, the decom-
position is obtained with the LO graphs biaib2, b2a1bs, and bza;b; on the
first three vertices along with the LO graphs b;a1b2i+1, and bg;11a1bg; for
i=2,...,t — 1. For general, a 3K, » With Vj = {a,,0z,...,am}, repeat
the same decomposition for a; (i = 1,2,...,m) as we have done for a,; for
the 3K n. O

The fundamental theorem for the decomposition of A copies of a com-
plete bipartite graph is a generalization of this method and simplifies our
proofs for other subgraphs, but first we state a natural necessary condition
for a decomposition to exist.

LEMMA 3. Amn = 0(mod t) is a necessary condition for an H- decom-
position of a AKp, », if the order of H is t.

This follows since there are Amn edges in the multi-bipartite graph and
graph H has t edges.

2.2. LO decomposition of AK,, » for any index A. From the pre-
vious lemma, Amn = 0(mod 3) is a necessary condition for the existence of
an LO decomposition of a AK,y, .

LEMMA 4. An LO decomposition of a 3tAK,, , and a 2AK,, ,, exists.

Proof: Theorem 1 gives an LO decomposition of a 3K, , for all m
and n. Taking multiple copies, we will have a decomposition of A = 3t by
Lemma 1. For A # 3t, we have either m = 0(mod 3) or n = 0(meod 3).
Without loss of generality we take m = 3¢ and n any integer.

Case A = 2: Consider the graph 2K3,1, on V] = {1,2,3} and V5 = {4}.
Its LO decomposition is {142,143}. Hence a 2K3, can always be decom-
posed. Assume V; = {1,2,3} and V; = {4,5,...,n}, then the LO graphs
{1i2,143} (i = 4,5,...,n) provide the necessary LO decomposition.
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Hence, if m = 3t, let Vi = {1,2,3,4,5,6,...,3t — 2,3t — 1,3t} and
Va = {a1,as,...,a,}, the required decomposition consists of the LO graphs
Ji(G+1), and ji(j +2), j =1,4,...,3t — 2; i = 1,2,...,n (subscript i is
used in place of ;). O

Thus from Lemma 1, 3 and 4, we have that the necessary conditions
are sufficient for an LO decomposition of a AKy, . A formal statement and
proof for the ease of reference is given in Section 4 as Theorem 3.

In the next section we introduce a very applicable result on the decom-
position of a complete bipartite graphs into isomorphic subgraphs.

3. A fundamental theorem for the decomposition of a AK,,,

We will refer to the following theorem and its corollaries and remarks
as the FT in the rest of the paper.

THEOREM 2. (The fundamental theorem for the decomposition of a
MK n): If an H-decomposition of a AK, , exists, then an H-decomposition
of a ApKps g5 for any positive integers p, p and q exists.

Proof: Suppose we have a decomposition of an F} = AK, , with graphs
Gy, Ga, ..., and G, where each edge of the F} is in exactly one of the G;’s.
Let the F) have partite set A; of cardinality ¢ and B, with cardinality s.
Take p — 1 copies Az, As, ..., Ap of A; and place on the same side as A;.
Superimpose the edges of the F; onto the partite sets A;UB (i = 1,2,...,p)
so that we have a decomposition of a AKp; ;. Similarly, we can extend the
decomposition to a AKpqs, and take p copies of the decomposition to
complete the proof of the theorem. O

COROLLARY 1. If the decomposition of a AK, » and the decomposition
of a AKy , are known where a,b = 1,2 or 2,3, then we know the decompo-
sition of a AK »n for any positive integer m.

COROLLARY 2. If the decomposition of a AK, . and the decomposition
of a AKp 4 are known where a,b = 1,2 or 2,3, same for ¢ and d, then we
know the decomposition of a AKm n for any positive integers m and n.

REMARK 1. Essentially a AK s st X s copies of disjoint AKp, p.
Therefore, once the decomposition of a AKp, n s known, we know the de-
composition of a AKm: ns. Similarly, if the decompositions of a AK, ,, and
a pK, n are known, then we know the decomposition of a (aA+bu) Ky .

4. An application of the FT for an LO graph decomposition

As mentioned earlier, here is a formal statement and a proof based on
the FT.
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THEOREM 3. An LO decomposition of a AKy, 5, exists for A > 1, except
when X # 3t and neither m,n are congruent to O(mod 3), i.e. the necessary
conditions are sufficient.

Proof: By Lemma 3 a necessary condition for an LO decomposition for
a AKpm n is Amn = 0(mod 3). Hence, A # 1 and for A = 3t (any positive
integer t), there is no condition on m and n. For A # 3¢, i.e. A =1,2(mod
3), m or n has to be = O(mod 3). Earlier we have constructed LO graph
decompositions for a 2K3 1, a 3K;,2 and a 3K 3, hence by the FT and using
Lemmas 1 and 2, the necessary conditions are sufficient for the existence of
an LO decomposition of complete bipartite graphs. O

5. Multigraphs on 3 vertices and at most 4 edges

There are infinitely many multi-subgraphs on 3 vertices of a multi-
bipartite graphs. We restrict ourselves to the following four graphs as
shown in Figure 2: a P3, an LO graph, a 2P;, and an EL graph, respec-

tively.
a b a b a Z :? b a
c: c: c ch

FIGURE 2. All connected graphs on 3 vertices and at most
4 edges

Recall a Py is a path on k vertices. Hence, there is nothing to do for
the graphs with two edges (a path ) and its multiple a 2P; with four edges
except to note the following result on a P; decomposition (Theorem 4) and
to note that a 2P3; decomposition of AK, , exists iff a P; decomposition of
a (%)Km.n exists.

THEOREM 4. (Heinrich [5]) Necessary conditions that Amn is even and
mn > 2 are sufficient for a Py decomposition of a AK, 5.

We have already given the final result on the subgraph with three edges
in Theorem 3. Now we deal with the remaining subgraph with four edges.

DEFINITION 3. Let V = {a,b,c}. An EL graph < a,b,c> onV isa
graph where the frequency of edges {a,b} and {b,c} are 3 and 1, respectively
(see the last graph in Figure 2 for an ezample). We write abc to denote an
EL graph < a,b,c > when there is no confusion.

OBSERVATION 1. For A = 2t + 1, where t is any nonnegative integer
and m =n =2, a AKy 2 does not have a EL decomposition.
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Of all the EL graphs used in the decomposition, let p be those edges of
the multi-bipartite graph that have 1 edge contribution only, h those edges
that have a combination of 1 and 3 edges contributed: s of 1 and q of 3,
and r edges that have a 3 edge contribution. Counting the total number of
edges, we have p+s+3¢+3r=4(2t+1) =T, but p+ s = q+r = total
number of EL graphs so that p + s = 2t + 1 = ¢ 4 . But the multiplicity
of each edge is 2t + 1 so that if {u,v} is an edge of type p, then we must
have a triple corresponding to this edge. Thus the total number of edges
are 2t + 1 + 3(2¢t + 1) = T. This means that every edge must be incident
with u or v which is impossible. Thus p = 0 and s = 2t + 1. Each edge
of s must be matched with a triple from ¢ so that all the edges are of the
combined type. But then the multiplicity of each edge is a multiple of 4,
impossible.

The necessary condition Amn = 0(mod 4) for an EL decomposition of
a MK » yields: (A): A = 4t, no conditionon m and n. (B): A=4t+2, m
is even or n is even. (C): A is odd, mn = 0(mod 4): (C-I): m = 0(mod 4)
or n = 0(mod 4); (C-II): m,n = 2(mod 4).

We consider each case below.

In case (A), A = 4t. An EL decomposition for a AKy; = 4tK3; with
Vi = {a,b} and V; = {c} is obtained by taking EL graphs acb and bca
t times. Similarly taking EL graphs adb, bdc and cda t times, we get an
EL decomposition for a AK3; = 4tK3; with Vi = {a,b,c} and V, = {d}.
Now invoking the FT gives us the result that the necessary conditions are
sufficient for this case.

In case (B), A = 4t + 2, m or n is even. First we make an interesting
observation: (4t + 2)K, 2 can not be decomposed into EL graphs. Suppose
Vi = {1} and V; = {2,3}. If the edge {1, 2} occurs with multiplicity 3 in,
say, £ number of EL graphs and with multiplicity in y EL graphs, then the
edge {1, 3} will occur with multiplicity 1 in z and with multiplicity 3 in y
EL graphs. Hence 3z + y = 4t + 2 = = + 3y. There is no integer solution
for this system of linear equations in two variables.

Next, we can decompose a 6K> 2 and a 6K> 3 into EL graphs as follows.
A decomposition of a 6K, 2 = {132,423,423,231,413,413} on Vi = {1,2}
and Vo = {3,4}. A decomposition of a 6K, 3 = {413,513,231, 314,514, 241,
324,524,524} on V1 = {1,2} and V, = {3,4,5}.

Hence using the FT, we can decompose a 6K o, and also a 6Ky, 25 for
any positive integers a and b, and also a 6 K3, 2(5—1)+3 = 6K24,25+1. Since a
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4tK,, » decomposition exists for all values of m and n, we can say that the
necessary conditions are sufficient for the existence of an EL decomposition
in this case as well for any A = 4t + 2, m or n even, t > 0.

In case (C), A is odd. (I) Suppose m = 0(mod 4) or n = O(mod 4). A
decomposition of a AK4,; = 3tK4,) on V; = {a,b,¢c,d} and V2 = {e} is ob-
tained with ¢ copies of EL graphs aed, bed and ced. Using the FT, a AKy;,1
has a EL decomposition and so a AK4:,» has the required decomposition
if A = 3(mod 4). We notice that 9 is 1(mod 4) and though a 5K4,; does
not have required decomposition (see Theorem 5 below), a 9K, has the
decomposition as 9 is a multiple of 3. Therefore, if A = 4¢ + 1 and greater
than 5, then as 4¢ +1 = 4(t — 2) + 9, we have a required decomposition for
a AKpm » for all odd A when m or n is 0(mod 4).

(II) Suppose m = 4t + 2 and n = 4s + 2. Recall that (2t + 1)K, o
does not have a EL decomposition by Observation 1. Even though it is
immediate from this, one can check that it is not possible to decompose
5K, in a different way as well: the decomposition needs 5—';"—‘ = 5 EL
graphs, but as each of the four edges need to occur single twice, it is impos-
sible. What helps us is that 3K5 ¢ has the required EL decomposition. Let
Vi ={1,2} and V, = {3,4,5,6,7,8}. The EL graphs in the decomposition
are {231, 241,513,613, 714, 814, 625, 725, 825}.

Therefore a (4t + i) K26 decomposition for i = 1,3 exists except for a
5K, 6, and repeated application of the FT gives the decompositions in all
other cases except that a 5K,, , cannot be EL decomposed for any m and
n. The reason is that we need i’iﬂ EL graphs, hence %‘2 edges which can
come with multiplicity 3, but there are only mn distinct edges in 5K,
and 227 is bigger than mn. We summarize the results obtained in this

section in the following theorem.

THEOREM 5. The necessary conditions are sufficient for a decompo-
sition of AK n into graphs of 3 vertices and at most 4 edges, except for
decomposing a (2t + 1)K22, a (4t + 2)K, 5 or a 5K, into EL graphs
(where a decomposition does not exist).

6. Multigraphs on 4 vertices and at most 4 edges

We discuss the decomposition of a AK, ,, into multigraphs of 4 vertices
and 3 edges, and of 4 vertices and 4 edges in each of the following subsec-
tions, respectively. Recall that we consider only the connected graphs.

6.1. Decompositions of a AKX, into graphs on 4 vertices and
3 edges. Figure 3 includes all graphs on 4 vertices and 3 edges: a K3
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and a P; and the decomposition problem for these graphs has long been
solved in a most general setting as follows.

b b a

[«

d d c

FIGURE 3. All connected graphs on 4 vertices and 3 edges:
aK;3and a Py

THEOREM 6. (Heinrich [5]) If m > n and either X is even or m and n
are even, there is a (\Km n, Pi)-design if and only if Amn = 0(mod k — 1),
m > [£] and n > [E52].

Since the necessary conditions for a decomposition of a AK, », into Pys
are m = n > 2 and even and Amn = 0(mod 3), by Theorem 6, the necessary
conditions are sufficient for the decomposition.

Here is an argument using the F'T. The necessary condition for a decom-
position of a AKp, » into K 3 is Amn = 0(mod 3). That is, if A # 0(mod
3), then m or n = O(mod 3). If A = O(mod 3), then m or n > 3 (without
loss of generality, assume n > 3 here). In the first case (A # O(mod 3)),
since a K 3 can be decomposed into a K 3 (itself), by the FT, a Ky, n=a:
can be decomposed into K 3s and so does a AK n=3:. In the second case
(A = 0(mod 3)), if m or n = 0(mod 3), a AK, »n can be decomposed into
K, 3s using the arguments in the first case. Now assume m # 0(mod 3)
and n # O(mod 3) (n > 3). A 3K;,4 on Vi = {a} and V2 = {1,2,3,4} can
be decomposed into four K 3s: {a123,a124,a134,a234}. Since a 3K 3 can
also be decomposed into K 3s, by the FT, a 3K} 3;1+4s can be decomposed
into K 3s. Also, a 3K 5 on Vi = {a} and V2 = {1,2,3,4,5} can be de-
composed into five K 3s: {a123,a145,a124,a235,a345}. Thus, a 3K,
and a 3tK,, » can be decomposed into K 3s by the FT (notice that for any
n > 5, n can be written as 3t + 4s). We have that the necessary condition
for the decomposition of a AKp, », into K, 3 is sufficient. We conclude the
results in the section in the following theorem.

THEOREM 7. The necessary conditions are sufficient for the decompo-
sition of a AKm ,, into graphs of 4 vertices and 3 edges.

6.2. Decompositions of a AK,, » into graphs on 4 vertices and
4 edges. Figure 4 includes all graphs on 4 vertices and 4 edges and the
decomposition problem for one of these graphs C, has long been settled,
see for example,
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éb a b b a a b
a c X § Z
d c d d c c d
FIGURE 4. All connected graphs on 4 vertices and 4 edges

THEOREM 8. (Sotteau [9]) A bipartite graph K, can be decomposed
into cycles of length 2k if and only if m and n are even, m > k, n 2 k,
and 2k divides mn.

The second graph in Figure 4 is a C4 graph. The necessary conditions
for a decomposition of a AK, ,, into Cys are that m and n are even (which
implies Amn = O(mod 4)) and m > 2 and n > 2, by Theorem 8, the neces-
sary conditions are sufficient for the decomposition.

6.2.1. OLL, 3 graph decomposition. The first graph in Figure 4 is an
example of an OLL, 3 graph which is defined as follows.

DEFINITION 4. Let V = {a,b,c,d}. An OLL,3 graph < a,b,c,d > on
V is a graph where the frequency of edges {a, b} and {a,c} and {a,d} are2,1
and 1, respectively. We write abed to denote an OLL, 3 graph < a,b,c,d >
when there is no confusion.

The necessary conditions for the decomposition of a AK,, » into OLL4 3
graphs are m > 3 or n > 3 and Amn is O(mod 4), and if m (or n) is less
than 3, then An (or Am) is 0(mod 4).

If A = 2, then 2mn = 0(mod 4) implies m is even or n is even. Notice
that both a 2K 3 and a 2K 3 can not be decomposed into OLL, 3 graphs
due to the necessary conditions. Without loss of generality, we only need
to show the case when n is even. A 2Ky 4 on V; = {1} and V; = {a,b,c}
can be decomposed into two OLL; 3 graphs {1abc, 1dbc}. Also, a 2K; 6 on
Vi = {1} and V2 = {a,b,¢,d, e, f} can be decomposed into three OLL, 3
graphs {labc, 1dbe,1fce}. By the FT, a decomposition of a 2K, » for n
even and n > 4 into OLL, 3 graphs exists. Notice that if n = 2, thenm >3
and 2m = 0(mod 4) by the necessary conditions, which implies m > 4 and
m is even. Thus, a decomposition of a 2K, ,, for n even into OLL, 3 graphs
exists when the necessary conditions are satisfied.

If A = 4, the necessary conditions are m > 3 orn > 3. A 4K
on V; = {1} and V, = {a,b,c} can be decomposed into three OLL3
graphs {labc, 1bac, 1cab}, and hence a 4K, 3, by the FT. Also, A 4K 4
on V; = {1} and V = {a,b,c,d} can be decomposed into four OLLy 3
graphs {labc, labe, 1dbe, 1dbe}, and hence a 4K 4, by the FT. A 4K; 5 on
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Vi = {1} and V2 = {a, b, ¢, d, e} can be decomposed into five OLL, 3 graphs
{1abe, 1bed, 1cde, 1dae, 1eab}, and hence a 4K, 5, by the FT. Since any num-
ber greater than or equal 3 can be written as a linear combination of 3,4 or
5, a decomposition of 4K, ,, into OLL, 3 graphs exists, and hence a 4tK, ..

If A is even, then we can write A = 4t or A = 4t + 2 and a decomposi-
tion of AK,, » into OLL, 3 graphs exists by Remark 1. Thus, the necessary
conditions for any even A are sufficient.

If A = 3, then 3mn = 0(mod 4) implies either m or n is 0(mod 4) or
m,n = 0(mod 2). A 3K; 4 on V; = {a} and V2 = {1,2,3} can be decom-
posed into three OLL, 3 graphs {e123,a412,a324}. By the FT, a decom-
position of a 3K, 4 exists. Notice that for the case when m,n = 0(mod 2),
we only need to show m,n = 2(mod 4). The decomposition of a 3K32 or
a 3K, ¢ into OLL, 3 graphs does not exist by the necessary conditions. A
3Kes on V3 ={1,2,3,4,5,6} and V, = {a,b,c,d, ¢, f} can be decomposed
into 27 OLL, 3 graphs as follows. Decompose each of the nine 3K 4 into
three OLL, 5 graphs: {1} and {a,b,¢c,d}, {2} and {c,d, e, f}, {3,4,5,6} and
{c}, {8,4,5,6} and {d}, {2,3,4,5} and {a}, {2,3,4,5} and {b}, {3,4,5,1}
and {e}, {3,4,5,1} and {f}, {6} and {a,b, e, f}. By the FT, a decomposi-
tion of a 3K4¢46,4s+6 into OLL, 3 exists. Thus, a decomposition of a 3K,
into OLL, 3 exists when the necessary conditions are satisfied.

Notice that for any A > 1 that is odd, the necessary conditions are the
same as the ones for A = 3, and these conditions are also included in the
necessary conditions for A = 2. Since we can write A = 2t + 3, a decomposi-
tion of AK,, » into OLL, 3 graphs exists by Remark 1. Thus, the necessary
conditions for any odd A are sufficient. Combining the case for A even, we
have the following theorem.

THEOREM 9. The necessary conditions of decomposing a AKp, n into
OLL, 3 graphs are sufficient.

6.2.2. LOL graph decomposition. The third graph in Figure 4 is an
example of an LOL graph which is defined as follows.

DEFINITION 5. Let V = {a,b,c,d}. An LOL graph < a,b,c,d > on V
is a graph where the frequency of edges {a,b}, {b,c} and {c,d} are 1,2 and
1, respectively. We write abed to denote an LOL graph < a,b,c,d > when
there is no confusion.

The necessary conditions for the decomposition of a AK,, , into LOL
graphs are m > 2 and n > 2 and AMmn is O(mod 4). If A = 2, then
2mn = 0(mod 4) implies m is even or n is even. A 2K33 on Vi = {a,b}
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and V2 = {c,d} can be decomposed into two LOL graphs {acbd, cadb}. By
the FT, a decomposition of a 2Ky, 2, exists.

There does not exist an LOL decomposition of a 2K3 941 on V] =
{a,b} and Vo = {1,2,...,2¢t + 1}. If a decomposition exists, the number
of LOL graphs in the decomposition is 2t + 1 which is an odd number.
However, if an edge {a,i} appears singly, then it has to appear once more
as a single edge in another LOL graph, which implies that the number of
LOL graphs in the decomposition must be even, a contradiction. Similarly,
a (4s +2)K3 2¢41 cannot be decomposed into LOL graphs.

A 2K,3 on V; ={1,2,3,4} and V2 = {a,b, c} can be decomposed into
six LOL graphs {4a2b,4a3c,alb3, alc3, b2c4,3bdc}. By the FT, a decom-
position of a 2K, 3, exists. Similarly, A 2Kg3zon Vi ={a,...,f} and V2 =
{1,2,3} can be decomposed into nine LOL graphs {b3al, ald2,a2cl, a2e3,
b3d2, f3c1,b2f3, f1b2, f1e3}. By the FT, a decomposition of a 2Kg:,3s ex-
ists. Combing with the decomposition of a 2Ky 25, a decomposition of a
2K, , into LOL graphs exists, i.e., the necessary conditions are sufficient
for A =2.

For A = 3, the necessary condition 3mn = 0(mod 4) implies that ei-
ther m or n = O(mod 4), or m and n are both = O(mod 2). Both a
3Ky4 (on Vi = {a,b} and V; = {1,2,3,4}) and a 3K34 (on V) = {a,b,c}
and V7 = {1,2,3,4}) can be decomposed into six LOL graphs and nine
LOL graphs, respectively, as follows: {bla4,b2a4,b3al,a2b4,a3bl,adbl}
and {blad,la2c,2a3b,c2b4,2b3c, 1b4a,a3c2, adcl, blcd}. By the FT, a de-
composition of a 3K, 45 exists.

A 3K3 4442 on V) = {a,b} and V; = {1,2,...,4t + 2} can not be de-
composed into LOL graphs. Notice that the degree of point a (as well
as b) is 3(4t + 2) which is an even number. If a decomposition exists,
there are 3(2t + 1) LOL graphs in the decomposition, that is, the num-
ber of LOL graphs is an odd number. Since the point a (as well as b)
is in each of the 3(2¢t 4 1) LOL graphs and each point in an LOL graphs
has an odd degree, the total degree of a (as well as b) in those 3(2t + 1)
LOL graphs must be an odd number, which is a contradiction. Similarly,
a AKj3 4t42 for A odd cannot be decomposed into LOL graphs. A 3Kg ¢ on
Vi ={a,...,f}and V5 = {1,...,6} can be decomposed into 27 LOL graphs
{2alf,2b1f,2c1f,3d2f,2e3c,3a2f,3b2f,6¢c2e, 1d3f,5edd, 4a3 f, 4b3 f, 4c3e,
1dde, 6e5f, 5a4 f, 5b4 f, 6c4 f, 6d5c, 1ebe, 6a5 f, 6b5 f, 1¢5d, 2d6 f, 2eld, 1a6 f,
1b6f}. By the FT, a decomposition of a 3Kg 4:42 into LOL graphs exists
(since a decomposition of a 3K 4(;—1) exists and a decomposition of a 3K 6
exists). Also, by the FT, a decomposition of a 3K5424¢42 (s > 1andt > 1)
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into LOL graphs exists (since a decomposition of a 3Kg 4¢+2 exists and a
decomposition of a 3Ky, 4¢+2 exists). Except for a 3K 4¢4+2 which cannot
be decomposed into LOL graphs, we have shown that the necessary condi-
tions for decomposing a 3K, , into LOL graphs are sufficient for A = 3.

For any odd A, the necessary conditions (m > 2 and n > 2 and
mn = 0(mod 4)) are the same as the necessary conditions for A = 3.
Notices that these conditions are also included in the necessary conditions
for A = 2. Except for a decomposition of a AK3 4:+2 (for A odd) into LOL
graphs which does not exists, by the FT, a decomposition of a AK,, ,, into
LOL graphs exists (since any odd number can be written as a linear combi-
nation of 2 and 3), i.e., the necessary conditions for decomposing a AK,
for A odd into LOL graphs are sufficient.

If A = 4, the necessary conditions are m > 2 and n > 2. By the FT,
a decomposition of a 4K3 3 into LOL graphs exists since the existence of a
decomposition of a 2K5 2. A 4K3 3 on Vi = {a,b} and V3 = {1,2,3} can be
decomposed into six LOL graphs {bla2,b2a3,b3al,alb2,a2b3,a3bl}. By
the FT, a decomposition of a 4K, » into LOL graphs exists, and hence a
AtKp .

For any even A (i.e., A = 4¢ or 4t +2), we know that a decomposition of
a 4tK,, , into LOL graphs exists. For A = 4t + 2, the necessary conditions
(m > 2 and n > 2and mn = 0(mod 2)) are the same as the necessary
conditions for A = 2. Except for a decomposition of a (4t + 2)K2 2,41
into LOL graphs which does not exists, by the FT, a decomposition of a
(4t + 2)Kn n into LOL graphs exists. That is, the necessary conditions
for decomposing a AK,,, ,, for A even into LOL graphs are sufficient. The
following theorem concludes the results obtained in this section.

THEOREM 10. The necessary conditions of decomposing a AKp,  into
LOL graphs are sufficient, except for a (2s+1)K2 4s42 or a (48 +2)K2 2541
(where a decomposition into LOL graphs does not exist).

6.2.3. LLO graph decomposition. The last graph in Figure 4 is an ex-
ample of an LLO graph which is defined as follows.

DEFINITION 6. Let V = {a,b,¢,d}. An LLO graph < a,b,c,d > on V
is a graph where the frequency of edges {a,b}, {b,c} and {c,d} are 1,1 and
2, respectively. We write abed to denote an LLO graph < a,b,c,d > when
there is no confusion.

The necessary conditions for the decomposition of a AKp, , into LLO
graphs are m > 2 and n > 2 and Amn is O(mod 4). If A = 2, then
2mn = O(mod 4) implies m is even or n is even. A 2K55 on V; = {a,b}
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and V3 = {1,2} can be decomposed into two LLO graphs {alb2,bla2}.
A 2K;3 on V) = {a,b} and V, = {1,2,3} can be decomposed into three
LLO graphs {2a1b,1a3b, 3a2b}. By the FT, a decomposition of a 2Kg3;
into LLO graphs exists, i.e., necessary conditions for the decomposition are
sufficient for A = 2.

If A = 4, the necessary conditions are m > 2 and n > 2. A 4K,
on V; = {a,b} and V; = {1,2} can be decomposed into four LLO graphs
{a1b2,1b2a,b2a1,2a1b}. A 4K53 on V) = {a,b} and V3 = {1,2,3} can be
decomposed into six LLO graphs {alb2,a2b3, a3bl,bla2, b2a3,b3al}. By
the FT, a decomposition of a 4K, into LLO graphs exists, and hence
that of a 4tK,, ».

For any even A (i.e., A = 4t or 4t +2), we know that a decomposition of
a 4tKy, ,, into LLO graphs exists. For A = 4t + 2, the necessary conditions
(m > 2 and n > 2and mn = O(mod 2)) are the same as the necessary
conditions for A = 2. By the FT, a decomposition of a (4t + 2)K, » into
LLO graphs exists. That is, the necessary conditions for decomposing a
MKy n for A even into LLO graphs are sufficient.

For A = 3, the necessary condition 3mn = 0(mod 4) implies that ei-
ther m or n = O(mod 4), or m and n are both = O(mod 2). A 3Kz
(on V; = {a,b} and V, = {1,2}) cannot be decomposed into LLO graphs.
This is also true for a AK32 where A is odd. There are four edges in a
(2k +1)K32 2, and the degree of each vertex is even (2(2k 4 1)). Also, there
are 2k + 1 LLO graphs in a decomposition if it exists. In an LLO graph
in a decomposition, either both a and b occur with degree 2 or both 1 and
2 occur with degree 2. Also, if a and b occur with degree 2, then both 1
and 2 occur with odd degrees, and vice versa. If there are s LLO graphs
in the decomposition where a and b have even degrees (1 and 2 have odd
degrees) and ¢t LLO graphs where a and b have odd degrees (1 and 2 have
even degrees), then s + ¢ = 2k 4+ 1 which is odd. Since the degree of @ in
the (2k + 1)K> 5 is even, t must be even. Similarly, s must be even (since
the degree of 1 in the (2k + 1)K is even). We have s +t is even, a con-
tradiction to that s + ¢ is odd.

A 3K, 3 cannot be decomposed into LLO graphs because necessary con-
ditions are not satisfied. A 3Ky 4 (on Vi = {a,b} and V2 = {1,2,3,4}) can
be decomposed into six LLO graphs {bdal,bda2,bla3,a2bl,a3b2,adb3}.
A 3K34 on Vi = {a,b,c} and Vo = {1,2,3,4} can be decomposed into
nine LLO graphs {3bla, 1c2a, c4a3, 3¢2b, alb3, 2a4b, b2c3, 3adc, 4blc}. By
the FT, a decomposition of a 3K, 4 into LLO graphs exists. A 3K3¢
(on V; = {a,b} and V, = {1,...,6}) can be decomposed into nine LLO
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graphs {6bla,1b2a, 1b3a, b6ad, b6a5, 1a2b, 6a3b, a5b4, a4b5}. By the FT, a
decomposition of a 3K 4442 into LLO graphs exists (since a decomposition
of a 3K3 4(;—1) exists and a decomposition of a 3K ¢ exists). Also, by the
FT, a decomposition of a 3K4s+2,4t+2 (s > 1 and ¢ > 1) into LLO graphs
exists (since a decomposition of a 3K 4:+2 exists and a decomposition of a
3K 4,,4¢+2 exists). We have shown that the necessary conditions for decom-
posing a 3K, into LLO graphs are sufficient for A = 3.

For any odd A, the necessary conditions (m > 2 and n > 2 and mn =
0(mod 4)) are the same as the necessary conditions for A = 3. Notices that
these conditions are also included in the necessary conditions for A = 2.
Except for a decomposition of a (2k + 1) K5 2 into LLO graphs which does
not exists, by the FT, a decomposition of a AK,, ,, into LLO graphs exists,
i.e., the necessary conditions for decomposing a AK, , for A odd into LLO
graphs are sufficient. The following theorem concludes the results obtained
in this section.

THEOREM 11. The necessary conditions of decomposing a AKp, 5, into
LLO graphs are sufficient, ezxcept for a (2k+1)K22 (where a decomposition
into LLO graphs does not exist).

COROLLARY 3. The necessary conditions are sufficient for the decom-
position of a MKy, into graphs of 4 vertices and 4 edges, except for de-
compositions of a (2s + 1)Kz 4:42 and a (4t + 2)K3 2541 into LOL graphs
which do not ezist, and a (2k + 1)K3 2 where the decomposition into LLO
graphs does not ezist.

7. Energy of a graph

The Huckel Molecular Orbital theory provided the motivation for the
idea of the energy of a graph: the sum of the absolute values of the eigen-
values associated with the graph (see [2]). In this section we show that the
sum of the energies of the decomposed LO subgraphs is greater than the
energy of the original graph.

DEFINITION 7. Define ay(G,{) = mm Ef(G ), where P = {G1,... G}
ranges over all {-decompositions of G and f (G ) is some non-negative value
(such as weight or energy, see below) assigned to G;, or its cost function.

DEFINITION 8. The sum of the absolute values of the eigenvalues of
adjacency matriz of graph G is called the energy of the graph.

In other words, the energy of a graph G is E = IT|\;|; A; are eigenvalues
of the adjacency matrix of G ([2]).

EXAMPLE 1. Consider a 3K, 2 with Vi = {0} and Vo = {1,2} and a
decomposition of the 3K, 2 into two LO graphs:
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FIGURE 5. Decomposition of a 3K 3 into 2 LO graphs

The adjacency matrix of graph G, is:

01 2
MG&G) = 00
= 0 0 -
The adjacency matrix of graph G is:
[0 2 1]
1 00

The adjacency matrix of the 3K} 2 is the sum of the first two

0 3 3
3 00
3 00

Note that the non-zero entries occur on the edges of the square of the
matrix. Energy of Gy = energy of G2 = 2 *v/5 while energy of 3K;, =
E(3Kyp) = 6%/2. Thus, if f(G;) = E(G;), we have a;(3K) 2,¢) = 4%/5 >
6 *v/2 where ¢ is an LO-decomposition of 3K o.

THEOREM 12. An LO-decomposition of a AKm » yields 0f(AKpm n, LO)
> 2\ x/mn where f(G;) = BE(G;) = /5.

Proof: Each LO graph has 3 edges and energy 2/5. Also the total
number of edges of a AK,, , is Amn. Thus,

&y (Ao, LO) = 2% 4 0/ )
On the other hand since the non-zero eigenvalues of a Ky, are n/mn,

the energy of a AKp, , is:
A3/mn 2)
Since 2) # 0 is common to (1) and (2), we have to compare ng@ and
vmn. We see that since one of m,n must be greater than 1 (LO graphs
have 3 vertices), we must have mn > 2 =>\/mn >v/2. Also,+/10 > 3. Thus,
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—3C 3/—’—";"' mra/ > \/"‘f */mn = C */mn >./mn yielding our
result that 1) > (2) for all possxble LO decomposmons ofa )\Km ne O

8. Summary

In this paper a fundamental theorem on the decomposition of a AK,, ,,
is presented and applied to obtain decompositions of a AK,, , into sub-
graphs having four or less vertices and edges. Applying the fundamental
theorem to prove that certain necessary conditions are sufficient reduces
the proofs to find examples of decompositions for certain small bipartite
graphs. We also showed in several cases where decompositions do not exist
even when the necessary conditions are satisfied. It is evident that the fun-
damental theorem will be beneficial to others since the same idea can be
applied to find the decompositions of a AK,, ,, into subgraphs with vertices
or edges more than four.
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