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Abstract

Define Dy to be the class of graphs such that, for every indepen-
dent set {v1,...,vs} of vertices with 2 < h < k, if S is an inclusion-
minimal set of vertices whose deletion would put v;,...,v, into h
distinct connected components, then S induces a complete subgraph;
also, let D = ﬂk>2 Dy Similarly, define Dy and D’ with “complete”
replaced by “edgeless,” and define D and D* with “complete” re-
placed by “complete or edgeless.” The class D; is the class of chordal
graphs, and the classes D, D3, and D; have also been characterized
recently. The present paper gives unified characterizations of all of
the classes Dy, D;, Dx, D, D', and D*.

1 Introduction: minimal k-vertex separators

When G is a graph with an independent set Z of two or more vertices, call
S C V(G) an I-separator of G if the vertices of T are in |Z| separate con-
nected components of the subgraph of G that is induced by V(G)—S; a min-
imal Z-separator is an inclusion-minimal Z-separator. When |Z| = k, these
will also be called (minimal) k-vertez separators. Minimal 2-vertex sepa-
rators have long been studied as “minimal separators” (sometimes called
“minimal vertex separators” or “minseps”); see [1, 3, 9].

The present paper will characterize the graphs for which every minimal
k-vertex separator induces a complete subgraph, an edgeless subgraph, or
a complete or edgeless subgraph. Each of these characterizations will imply
the existence of a forbidden induced subgraph characterization of the graph
class, and so the existence of a polynomial-time recognition algorithm.

Let v ~ w [and v o w)] denote that vertices v and w are adjacent
[respectively, nonadjacent]. The components of a graph are simply its con-
nected components. For any S C V(G), let G — S denote the subgraph of
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G that is induced by V(G) — S. If S is a minimal Z-separator of G, then
the minimality of S implies that each z € S has neighbors z’ and z” in,
respectively, components G’ and G” of G — S such that G’ and G” contain
different elements of Z. Observe that vertices in different components of
G — S cannot be adjacent in G.

2 Complete minimal k-vertex separators

Let Di denote the class of graphs such that every minimal Z-separator
induces a complete subgraph whenever 2 < |Z| < k, and call such graphs
complete minimal k-verter separator graphs. Let D = (5, Dk, and note
that DC ... C Dy C D3 CDs,. -

Proposition 1, from Dirac’s seminal paper [2], shows that D; is the
familiar class of chordal graphs; see |1, 9].

Proposition 1 A graph is in D, if and only if no induced subgraph is a
cycle of length 4 or more.

Figure 1 shows a graph that is in D3 (and D;), but is not in Dj.
Each minimal 3-vertex separator is an complete set (of cardinality 2), but
{s1,82,83,54} is a minimal {ry,r2,73,r4}-separator that does not induce
an complete subgraph.

Figure 1: A graph in D3 but not Dj.

Proposition 2, from (7], characterizes D, where C,, [and P,] denote the
cycle [respectively, path] on n vertices (so C, has length n and P, has
length n — 1), and 2P; denotes the graph that consists of two components,
each a copy of Ps.

Proposition 2 A graph is in D if and only if no induced subgraph is iso-
morphic to Cy, Cs, Ps, or 2P3.

The graph G in Figure 1 is not in D, since deleting the vertices sz
and s3 would leave an induced subgraph isomorphic to 2P;. Inserting an
additional edge s;s4 into G would produce a graph that is in D.



Define a chord of a set {m,...,7s} of paths (or a chord of a path m;
if s = 1) to be an edge xzy where z,y € V(m)U.-- U V(x,) but zy &
E(m)U---UE(m,). Define a m;-to-m; chord to be a chord z;z; of {m;, ;}
where z; € V(m;) — V(m;) and z; € V(m;) — V(m;). Let 79 denote the set
of vertices of the path m; that are not endpoints of m;, and call paths ;
and m; internally disjoint when 79 N7 = @. Motivated by the definition
of “chordless cycle” in [11], define a chordless path to be a path of length
at least 2 that has no chord—thus, chordless paths are induced paths that
are long enough for a chord to have been possible.

Theorem 3 will generalize (and prove again) hoth Propositions 1 and 2.

Theorem 3 A graph is in Dy if and only if no two internally disjoint
chordless paths m, and mo have a total of at most min{k, 4} distinct end-
points with no my-to-ma chord. Consequently, Dy = D4 whenever k > 4 and
D = D,.

Proof. First suppose two internally disjoint chordless paths 7; and 3 of G
have a total of at most min{k, 4} distinct endpoints with no 7-to-m; chord
{arguing by contraposition). Let Z be the set of endpoints of m; and 75 (so
7 is independent with 2 < |Z| < 4), and let S = {z1,z2} where z; % =2 and
each z; € 7?. But then S is a minimal Z-separator of the subgraph of G
induced by V(m) U V(m,), and so S is contained in a minimal Z-separator
of G where the subgraph induced by S is not complete (since z; # z3) and
2 < |Z] £ min{k, 4} < k. Therefore, G & Dx.

Conversely, suppose G € D, say with S a minimal Z-separator of G
that does not induce a complete subgraph and has 2 < |Z| < k. To be
specific, suppose z,,z3 € S where z; % 3. By the minimality of S, each
z; has neighbors z and z! in, respectively, components G} and G of G—S.

Case 1': G} # Gj. Define paths 7{ and 7 to consist of, respectively,
the single edge z]z, and the single edge zjz;.

Case 2': G| = G5. Let ¢’ denote a chordless ,-to-z2 path in G with
o C V(G}), and choose v/ € 0. Define paths 7{ and 7} to consist of,
respectively, the v'-to-z; and v'-to-z subpaths of o',

Now consider similar cases 1” and 2" for the components G{ and G4
of G — S by replacing each superscript ' with ” in the corresponding case
above so as to define paths 7{’ and 75'. Finally, for each i € {1, 2}, define =;
to be the chordless path 7/ U7/’ in G (noting that each z; € 7). In every
combination of cases 1,2’ and 1”,2", the two paths m;, w2 will be internally
disjoint and chordless with a total of at most min{k, 4} distinct endpoints,
with no m;-to-my chord.

Consequently, if k > 4, then min{k,4} = 4 and the preceding two para-
graphs show D = D4, and so D = Dy. m]



To illustrate Theorem 3 in Figure 1 with k =4, T = {ry,r2,73,74}, and
S = {s1, 82, 3, $4}, observe that the paths m; = r1,81,72 and 72 = 73, 54,74
have four distinct endpoints with no m-to-ms chord.

Theorem 3 has Propositions 1 and 2 as consequences; in the latter’s
characterization of D = Dy, the subgraphs C, and Cs arise when m; and m2
share the same two endpoints, and the subgraphs P; and 2P; arise when
7, and 7 have, respectively, a total of three or four endpoints. Similarly,
D3 can be characterized by no induced subgraph being isomorphic to Cy,
Cs, or P5.

3 Edgeless minimal k-vertex separators

Let Dj, denote the class of graphs such that every minimal Z-separator
induces an edgeless subgraph whenever 2 < |Z| < k, and call such graphs
edgeless minimal k-vertez separator graphs. Let D' = [\, D}, and note
that D' C --. C D) C D C Ds. -

Proposition 4, from [6], shows that D} is also the graph class character-
ized in [10], whose members are called unichord-free graphs in [4, 5].

Proposition 4 A graph is in D} if and only if no cycle has a unique chord.
2

Figure 2 shows a graph that is in D} (and Dj), but is not in Dj. Each
minimal 3-vertex separator is an independent set (of cardinality 3 or 4), but
{s1, 82, 83, 84} is a minimal {ry, 5, r3, 74 }-separator that does not induce an
edgeless subgraph.
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Figure 2: A graph in Dj but not Dj.
Theorem 5 will generalize (and reprove) Proposition 4.

Theorem 5 A graph is in Dj, if and only if no two internally disjoint

chordless paths m, and 7o have a total of at most min{k,4} distinct end-

points with a unique m)-to-wa chord x1z2 and each z; € ®Y. Consequently,
. = D} whenever k > 4 and D' = Dj.

Proof. The proof given above for Theorem 3 will also prove Theorem 5
after making the following four substitutions: replace each D (subscripted



or not) with D’; replace “no m;-to-my chord” with “a unique m;-to-m3 chord
z172 and each z; € 7?”; replace “z; % z2” with “z; ~ z5”; and replace
“complete” with “edgeless.” O

To illustrate Theorem 5 in Figure 2 with k = 4, T = {ry, 7, 73,74}, and
S = {sy, S2, 83, S4}, observe that the paths m; =ry,s,,75 and my = r3, 54,74
have four distinct endpoints with the unique m;-to-m3 chord s;s4 and s; €
7} and s4 € 75.

Theorem 5 has Proposition 4 as a consequence. Moreover, a graph is
in D' = Dj if and only if it contains none of the graphs shown in Figure 3
as an induced subgraph; in each of these six graphs, the “hollow vertices”
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Figure 3: The six forbidden induced subgraphs for D’ =

show possible endpoints for the two internally disjoint paths #; and mg,
with the “horizontal edge” halfway up being their unique w-to-m2 chord.
In subgraphs (a), (b), and (¢}, the two paths share the same two endpoints;
in (d) and (e), they share a total of three endpoints; in (f), they have a
total of four endpoints. (Similarly, D5 can be characterized by no induced
subgraph being a cycle with pendant edges attached at two consecutive
vertices or being one of the subgraphs (a), (b), or (¢) in Figure 3.)

The graph G in Figure 2 is not in D', since deleting vertices s, and sa
would leave an induced subgraph isomorphic to subgraph (f) in Figure 3.
Deleting the edge 3134 from G would produce a graph that is in D',

4 Extreme minimal k-vertex separators

Let D; denote the class of graphs such that every minimal Z-separator
induces a complete or edgeless subgraph whenever 2 < |Z} < k, and (mo-
tivated by (8]) call such graphs eztreme minimal k-vertez separator graphs.
Let D* = >, D}, and note that D* C --- C D; C D3 C Dj. Of course,
DUD, CDf and DUD' C D"

Proposition 6, from (8], characterizes D3, where a block is an inclusion-
maximal 2-connected subgraph and a graph G is the edge sum of graphs
G, and G, if V(G) = V(G,) UV(G;) and E(G) = E(G,) U E(G;) where
V(G1) NV (G2) = {z,y} and E(Gy) N E(G2) = {zy}.



Proposition 8 A graph is in D} if and only if every block is the edge sum
of graphs in Do U Dj5.

Both Figure 1 and 2 show graphs that are in D3 (and D3), but are not in
D;. Each minimal 3-vertex separator is an independent set (of cardinality 3
or 4), but {sy, s2, 53, 4} is a minimal {ry, 72,73, 74}-separator that induces
neither a complete nor an edgeless subgraph.

Although there does not seem to be a direct generalization of Proposi-
tion 6 to D} when k > 3, Theorem 7 will characterize each class Dy (along
with D*) while generalizing the results and proofs of sections 1 and 2.

Theorem 7 A graph is in D} if and only if no three internally disjoint
chordless paths my, T3, and w3 have a total of at most min{k,6} distinct
endpoints with no my-to-my chord and a unique mp-to-w3 chord T2z3 and
zp € m$ and 23 € 7w3. Consequently, Di = D whenever k > 6 and
D =Dg.

Proof. First suppose three internally disjoint chordless paths 7y, 72, and
w3 of G have a total of at most min{k, 6} distinct nonadjacent endpoints
with no my-to-m chord and a unique wa-to-m3 chord z2z3 and z2 € 7§ and
z3 € m$ (arguing by contraposition). Let Z be the set of endpoints of m,
my, and m3 (so Z is independent with 2 < |Z| < 6), and let S = {z,z3, 73}
where ) % z9 ~ z3 and each z; € #y. But then S is a minimal Z-
separator of the subgraph of G induced by V(m;) UV (m2) U V(n3), and so
S is contained in a minimal Z-separator of G where the subgraph induced
by S is neither complete (because z; % z3) nor edgeless (since 2 ~ z3)
and 2 < |Z| € min{k, 6} < k. Therefore, G & D;.

Conversely, suppose G ¢ D}, say with S a minimal Z-separator of G that
does not induce a complete or edgeless subgraph and has 2 < |Z| < k. To be
specific, suppose 1, T2, 23 € S where z; # o ~ 3 (1 might or might not
be adjacent to z3). By the minimality of S, each z; has neighbors z} and
z{ in, respectively, components G; and G} of G — S. Assume in addition
that S and z,, 2, T3 have been chosen to make |V{(G")| a minimum.

Case 1': no two of G}, G5, G5 are equal. For each i € {1,2,3}, define a
path 7] to consist of the single edge zjz;.

Case 2': exactly two of G}, G}, G are equal—say G} = G; # G}, where
{h,i,5} = {1,2,3}. Let ¢’ denote a chordless z;-to-x; path in G with
o’ C V(G)), and choose v' € ¢’°. Define paths 7{ and 7] to consist of,
respectively, the v’-to-z; and v'-to-z; subpaths of ¢’ Define 7} to consist
of the single edge z),zs.

Case 3': G| = Gy = Gj5. Let H’' be the subgraph of G induced by
V(G}) U {z1,z2, 73} except without the edge z2x3 (and without z,z3 if
T) ~ z3). Let T be a subtree of H' with leaves z,,z;,z3 and with |E(T")|
a minimum,; specifically, say T” consists of a vertex v’ and three v'-to-z;



paths (each either chordless or the single edge v'z;). Let G’ be the subgraph
of H' induced by V(T"), and note that {z;,z2,z3} is independent in G".
Each edge E(G’) = E(T') must join two neighbors of v’ in T' (otherwise,
that edge could be inserted into 7/ and two or more edges deleted so as to
contradict the minimality of [E(7")|). Similarly, there can be at most two
edges in E(G’) — E(T") that join neighbors of v/ in T” (if there were three,
then two of them could be inserted into 7 and the three edges incident
with v’ deleted so as to contradict the minimality of |[E(T”)|). Thus, one of
the following three subcases occurs:

35: The subgraph G’ = T” has no triangles and so consists of the three
internally disjoint v'-to-z; paths; take o’ = v'.

3{: The subgraph of G’ induced by V(T") consists of one triangle a’b'c’
and three vertex disjoint paths from {a', b, ¢’} to {z;,z2, 23} where
at most one of a’, b/, ¢’ is in the independent set {z;,z3,z3}; without
loss of generality, suppose o' & {z1,z2,z3}.

35: The subgraph of G’ induced by V(T") consists of two triangles with
vertices in {a/, b, ¢, d'} and three vertex disjoint paths from {a’, ¥, ¢, d’}
to {z1,Z2,z3} where either {a' b, c,d'} N{ zy,z3,z3} = O or exactly
one of the two vertices of {a/, ¢/ d'} that are in both triangles (and
neither of the other two vertices) is in the independent set {x;, z2, z3};
without loss of generality, suppose a’ & {z1, z2,z3}-

In each subcase, define internally disjoint paths 77, 73, 74 such that each 7;
is the a’-to-z; path in G’ (and so is chordless or a single edge).

Now consider similar cases 1", 2", and 3" (with three subcases 3!) for
the components GY, G4, G of G — S by replacing each superscript ’ with
“ in the corresponding case above so as to define paths 7}, 74, and 7.
Subcases 3 and 34 cannot occur (otherwise, one or two of z;, z2, z2 could
have been replaced by one or two vertices of G”, contradicting the assumed
minimality of |V(G”)|). Thus, case 3" will always have G = T". Finally,
for each i € {1, 2, 3}, define =; to be the chordless path 7/ U7/ in G (noting
that each z; € 7).

If neither subcase 3] nor 3j occurs, then no chord will exist between 7/
and 7/ in G’ and the paths 71, 72, w3 will be as described in the theorem.

On the other hand, if subcase 3] or 3} does occur, then there were
at least two choices for @/, and so a’ can be chosen so as either to have
{i,5} = {1,3} for every chord between 7{ and 7} in G'or to have {i,j} =
{1,2} for every such chord. (Either way, there will only be one or two
such chords.) If {%,5} = {1,3} always holds, then the three paths m;, w3, 73
will be as described in the theorem. If {i,j5} = {1,2} always holds, then
interchanging m; and o (do this if z; ~ z3) or interchanging 72 and m3
(do this if z; o z3) will make the edges of E(G’) — E(T") all into m;-to-m3
chords, and the new m;, my, w3 will be as described in the theorem.



Therefore, in every combination of cases 1/,2/,3' and 17,2, 3", the three
paths 7,7, 3 will end up being internally disjoint and chordless with a
total of at most min{k, 6} distinct endpoints, with no m;-to-m chord and
with a unique 73-to-w3 chord z2z3 and z2 € 7§ and 3 € 73.

Consequently, if k& > 6, then min{k,6} = 6 and the preceding para-
graphs show D} = Dg, and so D* = Dj. o

To illustrate Theorem 7 in Figure 1 with k = 4, T = {r,r2,73,74},
and S = {s1, 52,53, 54}, observe that the paths my = 71,s1,72 and 7 =
r3, 84,74 and w3 = 7y, 83, 72 share four distinct endpoints with no #{-to-73
chord and the unique 73-to-m§ chord sgs4. Similarly in Figure 2, the paths
® = r1,82,72 and m = 7,8;,72 and w3 = r3, s4,74 share four distinct
endpoints with no n$-to-n§ chord and the unique #3-to-7§ chord s;s4.

Theorem 7 would also lead to forbidden induced subgraph characteriza-
tions, much as Theorems 3 and 5 did; for instance, characterizing D* = Dg
would require 20 forbidden subgraphs. By Proposition 2 and Theorems 5
and 7, the “house graph” —shown as () in Figure 3—is the smallest graph
that is in D* but is not in D or D",
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