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Abstract

Using only the skein relation and some combinatorics, we find a closed
form for the Conway polynomial of (m,3) torus links and a trio of re-
currence relations that define the Conway polynomial of any (m,4) torus
link.

1 Introduction

In this paper, we use elementary methods to calculate the Conway polynomial
of (m,3) and (m,4) torus links for all positive integers m. Fix a particular
projection of an oriented link and select a particular crossing. Depending on
the orientation, the crossing will either appear as in the projection of L} or L_
as shown in Figure 1. Recall that the Conway polynomial V in one variable z

XX

Figure 1: The projections of these three links are identical outside of the region
shown.

satisfies the skein relation

V(L4) = V(L-) = 2V(Lo), 1)

where the projections of the links Ly and L_ are related by reversing which
strand is on top for the selected crossing and a projection of the link Lo (see Fig-
ure 1) is obtained from the projection of Ly or L_ by eliminating the particular
crossing and rejoining the strands so that the orientations match.

Direct application of the skein relation yields a formula for (m,2) torus
knots and links, as seen in [5, 15]. Our approach extends this method. By
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careful application of the skein relation, we determine recurrence relations for
the Conway polynomials of (m, 3) and (m,4) torus links. Using Mathematica,
we obtain closed forms for the Conway polynomial of (m,2) and (m,3) links
‘in Theorems 1 and 2. The recurrence relations for (m,4) torus links appear in
Theorem 3.

The substitution z = t1/2 — t~!/2 relates the Conway polynomial to the
Alexander polynomial A in one variable t:

At) = V(2 - t~Y2)

Therefore, these theorems immediately give formulas for the Alexander polyno-
mials of (m, 2}, (m, 3) and (m, 4) torus knots and links as well. (While retrieving
a Conway polynomial from a formula for the Alexander polynomial is theoreti-
cally straightforward, it is tedious and laborious in practice.)

Other formulas are known for the Alexander polynomial of (m,n) torus
knots, with varied methods of proof. Lickorish [9, Chapter 11] applies Fox’s free
differential calculus to the Wirtinger presentation of the fundamental group of
the complement of the torus knot, which has two generators and one relation,
to obtain the desired formula. Alternatively, Jones views the torus knots as
closed braids and uses the Burau representation and the trace of Hecke algebra
representations to obtain a formula for the Alexander polynomial of torus knots
(see [4]). Morton gives an explicit formula for the Alexander polynomial of
a torus knot, in terms of the family of Jones polynomials of its parallel links
(11]. Bayram et al. calculate the Alexander polynomial of (3,n)-torus knots
from the Alexander matrix using a Maple program {2). Many known methods
for calculating the Alexander polynomial rely on the fact that m and n are
relatively prime. The formula for the Alexander polynomial of a torus link with
any number of components can then found by making use of the fact that the
(km, kn) torus knot is a satellite of the (m,n) torus knot; see e.g. [6]. Our
approach to deriving a formula applies directly to links with any number of
components; we apply the skein relation and use ambient isotopy to identify
relationships among the resulting links.

The outline of this paper is as follows. In Section 2, we review some of the
known invariants for torus knots and set up our notation. Sections 3 and 4
contain the proofs of Theorem 2 and Theorem 3 respectively. Finally, Section
5 describes generalization attempts.

2 Torus links in general

Torus links are among the most readily-recognized knots. Technically,

Definition 1. A torus link T is a link that can be embedded on the standard
(unknotted) torus in R3.

Let m and n be positive integers. The usual projection of the torus link
T(m,n) wraps m times around the meridian of the torus and n times around
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the longitude of the torus, and the projection has m(n — 1) positive crossings.
Note that T(m,n) = T(—m, —n) and T(—m, n} is the mirror image of T(m, n),
so it suffices to restrict to the case when m and n are positive. In this paper,
we will use a polygonalization of the standard projection, as shown in Figure 2.
In this polygonal projection, there are m spokes with n — 1 crossings per spoke.

Figure 2: The torus link 7°(5,4) wraps 5 times around the meridian of the torus
and 4 times around the longitude of the torus.

Alternatively, the link T(m, n) can be viewed as the closure of the braid on
n strings defined by (103 ...0n-1)™. The number of components of T'(m, n) is
the greatest common divisor of m and n. When m and n are relatively prime,
T(m,n) is a knot. The link T(m,n) is equivalent to the link T'(n,m) by a
homeomorphism of the torus.

When m and n are relatively prime, many of the knot invariants for T'(m, n)
are known, including:

o The least number of crossings in any projection of T'(m, n) is
er(T(m,n)) = min (m(n - 1),n(m — 1)) [4, Theorems 9.7, 15.1]. (This
also holds for links; see [12, Proposition 7.5].)

e The unknotting number of T(m, n) is w(T'(m,n)) = (m - 1;(71' -1 (7).

¢ The minimal genus of an orientable surface bounding T'(m, ») in the 4-ball

. -1)(n-1
is o(T(m,m) = " " g7
e The Alexander polynomial of T(m,n) is
_ (1 - t)(l — tmn)t—(m-l)(n-l)/z
Arimm () = (1-tm)(1—t7)
ample, [9, Chapter 11] or [4, Theorem 9.7].

. This follows from, for ex-

e The Jones polynomial of T'(m,n) is
t(m—l)(n—l)/2(1 — ¢m+l

_ n+l m+n
Vr(m,a) () = 1—¢2 At ) (4, Proposition 11.9).

e The FLYPMOTH polynomial of T(m,n) is
Pr(m,n)(@,2) = Prim ) ((Ag)'/?,¢"/% — g71/%) =
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( 1-g ) A(n=1)(m-1)/2 T (Cppgmrtens [T5-_ (¢ = Ag)

1-a 12 pricmmezo M 1-d 1~
[4, Theorem 9.7].

‘We contribute the following for (m,2) torus links:

Theorem 1. Let m be a positive integer. The Conway polynomial of an (m,2)
torus link is

z+VE+2D)™ - (z-Va+ 2™

2m\/4 ¥ 22 '
Proof. The torus link T°(1,2) is the unknot, with V(T'(1,2)) = 1, and the torus
link T'(2, 2) is the Hopf link, with V(T'(1,2)) = z, so the theorem is valid when
m =1 and m = 2. For m > 2, we can apply the skein relation from Equation
1. Let T(m,2) = Ly. Then T(m — 2,2) = L_ and T(m — 1,2) = Lo, which
produces the recurrence relation

V(T (m,2)) = V(T(m - 2,2)) + zV(T(m - 1), 2)).

V(T(m,2)) =

See [5, 15). The theorem follows by mathematical induction. Assume

(z+ VE+28)% — (2 — VE+ 22)*

V(ITk.2) = VIt 22

for all K < m. Then

V(T(m,2)) = V(T(m - 2,2)) + zV(T(m - 1),2))
_ VAT - (2 - VI )2

2m=2\/4 22
+ iz VA+ 2™ — (2 — Vi 22)™!
am-1/4 4 22
_(z+ VA - (z - VEF+ )™
- 2mV/4 + 22
which completes the proof. (]

Using the standard polygonal projection, let ¢;; denote the jth crossing on
the ith spoke, where spokes are labeled clockwise from the negative = axis,
j = 1 corresponds to the outermost crossing, and j = n — 1 corresponds to
the innermost crossing. Note that all the crossings in our projection of T'(m, n)
are positive crossings. If we apply the skein relation to the above projection
of T(m,n) at crossing c;;, then we have Ly = T(m,n) which we denote as
T(m,n)[ij)+, and we then denote L_ and Lo by T(m,n)[ij]- and T (m,n)[ij]o
respectively. The skein relation applied to ¢;; becomes:

V(T(m,n)lij]+) - V(T (m, n)is]-) = 2V(T(m, n)[is)o)
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By applying the skein relation at one crossing c;;, we express the Conway poly-
nomial of a torus link in terms of the Conway polynomials of related links that
will not themselves be torus links in general. However, when we apply the skein
relation at each of the n — 1 crossings along a particular spoke, one of the links
obtained is T(m,n)[i1]o[i2]o...[¢(n — 1)]o. In this link, each of the positive
crossings along spoke 1 is eliminated, and the result is a torus link with one less
spoke. Therefore, we see that

T(m, n)[i)ofi2o . . . li(n — 1)}o = T(m — 1, n). )

This observation motivates our strategy for finding the Conway polynomial for
{m, 3) and (m,4) torus links.

3 (m,3) Torus links

The main result in this section is a closed form for the Conway polynomial of
the (m, 3) torus links.

Theorem 2. Let m be a positive integer. The Conway polynomial of an (m,3)
torus link is V(T (m,3)) =

1 ((2+z2+zm)"‘ +(2+2 -2VA+ )™ 9 cos (?_m))

3+ 22 m 3

The proof will proceed as follows. We first begin with the projection of
the T'(m, 3} link as described in Section 2 and apply two generations of skein
relations in order to obtain recurrence relations for T'(m, 3). By Equation 2 we
know that T'(m, 3)[11]o[12]o is ambient isotopic to T(m— 1, 3). However, there is
no reason to believe that (for example) T'(m, 3)[11]-[12]o will be a recognizable
knot; some secondary applications of the skein relation and manipulation of such
knots by Reidemeister moves are necessary to resolve the recurrence relations
(rrr). After this process results in recognizable recurrence relations (rrrr!), we
manipulate these relations combinatorially. We then use Mathematica to solve
for a closed form.

Proof. Since T'(1, 3) is the unknot and T'(2, 3) = T'(3, 2), we know V(T'(1,3)) = 1
and V(T'(2,3)) = 1 + z2. We computed V(T'(3,3)) = 322 + z* by hand, and
the final necessary initial value V(T'(4,3)) = 1 + 522 + 52* + 28 was obtained
using the Mathematica KnotTheory package (which can compute the Conway
polynomial for torus knots, but not for links). One can verify that these poly-
nomials match the polynomials obtained by evaluating the above formula, so
the theorem holds for m < 4.

For m > 4, we begin by applying skein relations to our standard projection
of T(m, 3) = T(m, 3)[11);. This gives

V(T(m, 3)[11]4) = V(T(m,3)(11]-) + V(T (m, 3)[11)o),
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V(T(m,3)[11]-) = V(T(m,3)[11][12]-) + zV(T(m, 3)[11]-[12]), and
V(T(m, 3)[11]o) = V(T(m, 3){11}0[12]-) + 2V(T(m, 3)[11]o[12]o).

Performing the corresponding crossing changes defines three new links K,(m),
Kjy(m), and K3(m):

T(m,3)[11]-[12]- = Ki(m)

T(m, 3)[11]0[12]_ = Kz(m)

T(m,3)[11]-{12}o = Ka(m)
Next, we show that K(m) is ambient isotopic to K3(m): Let K® indicate
the projection of the link obtained by applying Reidemeister moves to K. Ap-

plying a couple of Reidemeister moves on each of K2(m) and K3(m), shown in
Figures 3 and 4, reveals that if we rotate K£(m) one spoke (or one m-th of a

K,(m) Ki(m)

Figure 3: Kjy(m) is shown at left. A Reidemeister II move eliminates two
crossings to produce the projection K4*(m) shown at right.

K(m) K(m)

Figure 4: K3(m) is shown at left, and is ambient isotopic to the link K{(m) at
right, which has two fewer crossings.

circle) clockwise, we obtain a link that is planar isotopic to Kf(m).
Plugging these results into our original skein relations gives

V(T(m,3)) = V(K1(m)) + 22V (Ka(m)) + 2*V(T(m - 1,3)) (3)

Next, we want to understand K(m). Redrawing K, (m) as shown in Figure
5 provides some assistance.
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K (m) K(m)

Figure 5: K (m) is shown at left, and redrawn as K¥(m) at right to eliminate
unnecessary over-over crossings.

Now the crossings on the first spoke have been eliminated. When we ap-
ply the skein relation to the projection Kf¥(m) at crossing cz), we notice that
KF(m)[21]- is ambient isotopic to T(m — 3,3) (see Figure 6).

v/

K& m)[21]_ T(m-3,3)

Figure 6: A Reidemeister II move is applied to Kf{(m)[21]_. The resulting
projection is planar isotopic to the standard projection of T(m — 3, 3).

The skein relation now becomes

V(K (m)[21]4) = V(T(m - 3,3)) + 2V(KF(m - 1)). (4)
Similarly, applying one skein relation to the projection X£(m) at the cross-
ing co1 gives
V(Ef(m)21]y) = V(Ka(m—1))+2V(T(m -2,3))
= V(Kz(m - 1)) +2V(T(m - 2,3)). (5)

These three recurrence relations reduce to two by plugging (4) and (5) into

3):
V(T(m,3)) = V(T (m — 3,3)) + 3zV(K2(m - 1))

+222V(T(m - 2,3)) + 22V(T(m - 1,3))

and
V(K2(m)) = V(K2(m — 1)) + zV(T(m — 2,3)).
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We may rewrite these in a completely combinatorial manner by denoting
V(T(m, 3)) by am(z) and V(K2(m)) by Bm(z), to obtain

om(2) = am-3(2) + 22%am-2(2) + 22am-1(2) + 32Bm-1(2)

and Bm(z) = Bm-1(2) + zam-2(z).

Computing am(z) — am-1(z) (noting that Bm_1(z) — Bm-2(2) = zam-3(2)
and then simplifying) produces

am(z) = (22 + 1)am-1 + 22am-2 + (22 + 1)am-3 — Qm—q.

From the initial values of V(T'(m, 3)) we know a(z) = 1, ae(z) = 1 + 22,
a3(z) = 322 + 24, and ay(z) = 1 + 522 + 524 + 25.

We were then able to solve the recurrence relation in Mathematica. The
command

RSolve[{a[m] == (2°2 + 1)alm-1] + z"2 a[m-2]
+ (2°2 + 1) a[m-3] - a[m-4], afl]l == 1, a[2] == 1 + 22,
al3) == 32"2 + z°4, af4) == 1 + 5§ z"2 + 5 2°4 + z~ 6}, a[m], m]

returns the closed form

1 ((2+22—2vV4+22)™ + (24 22 + 24+ 2)™ 2nm
— 2cos
3+ 22 om 3

which can be verified via mathematical induction.

4 (m,4) Torus links

The main result in this section is a trio of recurrences that, together with ap-
propriate initial conditions, define the Conway polynomial of the (m,4) torus
links.

The standard polygonal projection of T'(m, 4) has m spokes, with three cross-
ings per spoke. By altering the crossings along one spoke, we obtain two related
projections. Let An, = T(m,4)[11)o[12])-[13])o be the link obtained by elim-
inating the crossings at c;; and ¢;3 and switching the crossing at ci2. Let
By, = T(m, 4)[11)-[12]0[13] - be the link obtained by switching the crossings at
c11 and c;3 and eliminating the crossing at c¢j2. Note that the links A, and B,
have fewer crossings than T'(m, 4).

Theorem 3. Let m > 6. Then the Conway polynomials of T, = T(m,4), A,
and B,, are related by the following recursive relationship:
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V(Tn) = 2°V(Tmo1) + 223V(Tin=s) + (2* + 42% + 1)V(Tin—s) + 2°V(Tin-s)
+322V(Apm) + 223V (Am-1) + (2* + 622)V(4Am_2)
+(22% + 42)V(Am-3) + 2°V(Am-4)
+2V(Bm) + 222V(Bm-1) + (2% + 2)V(Bm-2)

22V(Tm-2) + 2°V(Tin-a) + 2V (Tru-s)
+22V(Am-1) + 22V(Am-2) + 22V (Am-3) + V(Am-4)
+ZV(Bm-2)

V(Bm) = zV(Tm-2) + 2°V(Trn-3) + 22V (Am-2) + V(Bm-2)

V(4n)

The proof will proceed much as the proof of Theorem 2 in Section 3. We
begin with the polygonal projection of T(m,4) as described in Section 2 and
apply three generations of skein relations in order to obtain recurrence relations
for T'(m,4) in terms of knots with fewer crossings. As before, some Reidemeis-
ter manipulations of links and secondary applications of the skein relation are
necessary to produce reasonable recurrence relations. Because of the increased
number of calculations, some straightforward calculations are noted and details
left to the reader.

Proof. We start by applying skein relations to our standard projection of T'(m, 4)
= T(m,4)[11]4[12]+[13]+. As before, T(m,4)[11]0[12]o[13]o is ambient isotopic
to T'(m —1,4). After performing some Reidemeister moves, we find that we can
determine the Conway polynomial of T(m, 4) from the Conway polynomials of
T(m — 1,4) and the four links shown in Figure 7.

¥

== ! =
L (m) L,(m) Ly(m) L,(m)

¥

Figure 7: The Conway polynomial of T'(m, 4) can be expressed in terms of the
Conway polynomials of T(m — 1,4), Li(m), La(m), Lz(m), and L4(m).
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Reidemeistering reveals the following set of ambient isotopies:

Lyi(m)
L2 (m)

o

L3(m)
L4 (m)

T(m, 4)[11)0[12] = [13] - = T(m, 4)[11]-[12]-[13]o
T(m,4)[11]0[12)-[13]o = T(m, 4)[11]0[12]0[13]-

= T(m,4)[11]_[12]6[13]o = Am

T(m, 4)[11)-(12]-[13]-
T(m,4)(11}-(12]o[13])- = Bm

Applying further skein relations to Li(m), La(m), L3(m), and L4(m) pro-

duces additional relationships:

L1 (m)[21]o[22]0

Ly (m)[21]0[22] - [31]o
L,(m)[21]0[22]-[31]-
Ly(m)[21]-[22]o
Ly(m)[21}-[22]-[32] -
La(m)[21]0[22]0

Lg (m) [21]0[22]_
Ly(m){21)-[22)-
Ls(m)[21]o[22]o
Ls(m)[21]o[22] - [31]0
La(m)(21)o[22) - [31)-
Ls(m)[21]-[22]-[32]o
La(m)[21]-[22]-[32]-
La(m)[21]-[22]o[41] - [32] -
L4(m)[21]-(22]o
L4(m)(21]-[22]-

La(m -1)

T(m - 3,4)

La(m - 2) = L1(m)[21]-[22]-[32]o
Liym-1)

Ly(m - 1)[21]o[22]-

T(m - 2,4) = La(m)[21]o
Lay(im-1)= Lz(m)[21]_[22]o
Li(m-1)

Ll(m - 1)

La(m - 2) = Ls(m)[21] - [22]o[41]o
Ly(m - 2)

Ly(m - 1)[21}o[22)-

T(m - 4,4) = La(m)(21}-[22]o[41] - [32]o
La(m - 3)

L (m)[21]0[22] -

La(m)[21]o[22] -

This glorious miasma of relationships reduces to the following set of recur-
rence relations on the Conway polynomials of T'(m,4), Li(m), La(m), Ls(m),

and L4(m):
V(T (m, 4))

1

2V(T(m — 1,4)) + 322V(Lz(m)) + 2zV(Ly(m)) +

2V (L4(m)) + V(La(m))

Il

V(L1 (m))

22V(T(m — 3,4)) + 22V(Lo(m — 1)) + 2V(T(m — 4,4)) +

2zV(La(m — 2)) + 2V(L4(m — 1)) + V(La(m — 3))

V(Lz2(m))
V(L3(m))

22V(T(m — 2,4)) + 2:V(Lo(m — 1)) + V(L1 (m — 1))
222[V(T(m — 4,4)) + V(La(m - 2))] + 22V(L1(m - 1)) +

2:V(La(m — 3)) + 2V(La(m — 2)) + V(T(m - 4,4))

V(La(m))

V(La(m - 2))

2V(T(m - 3,4)) + 2V(T(m — 2,4)) + 22V (La(m - 2)) +

168



We can first eliminate V(L3(m)) and then V(L;(m)) by substitution, leaving
only three recurrence relations:

V(T(m,4)) = 2°V(T(m - 1,4)) + 3z2V(La(m)) + 2V(L4(m))
+(z4 + 42% + 1)V(T(m — 4,4)) + (2* + 622)V(Lao(m - 2))
+(22° + 42)V(La(m — 3)) + (2% + 2)V(Ly(m — 2))
+223V(T(m - 3,4)) + 223V(La(m — 1)) + 222V(Lg(m — 1))
+23V(T'(m - 5,4)) + 22V(La(m - 4))

V(Lz(m)) = 22V(T(m - 2,4)) +2zV(Lo(m - 1)) + 22V(T(m - 4,4))
+22V(La(m - 2)) + zV(T(m - 5,4)) + 22V(La(m — 3))
+zV(La(m — 2)) + V(Lz(m - 4))

V(La(m)) = 2*V(T(m - 3,4)) + 2V(T(m - 2,4)) + 2zV(La(m — 2))

+V(Ly(m - 2))

Substituting Ay, = L2(m) and By, = L4(m) and rearranging terms yields
the desired result. a

Unfortunately, even with copious numbers of hand-calculated V(T (m, 4)),
V(L2(m)), and V(L4(m)) for small m, Mathematica does not return a closed
form for these recurrence relations.

5 Conclusion

Explicit formulas were previously known for the Conway and Alexander polyno-
mials for (m, 3) torus knots, but their discoverers used technical or deep meth-
ods to obtain those formulas. Moreover, these formulas only applied directly to
torus knots, not torus links, and so our formula for the Conway polynomial of
the (m, 3) torus links streamlines previous results.

While explicit formulae for the Conway and Alexander polynomials for (m, 4)
torus links seem out of reach, for any particular value of m the Conway (and
thus Alexander) polynomial can be built from our recurrence relations.

As far as we can tell (please prove us wrong!) repeated use of crossing changes
with the skein relation yields nothing intelligible for the Conway polynomial of
(m, n) torus knots with n > 5. We still hope that this elementary approach will
prove applicable to other nicely expressible classes of knots.
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