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ABSTRACT: If the integer r > 2, say that a composition of the natural
number n is r-regular if no part is divisible by r. Let ¢,(n) denote the number
of r-regular compositions of n (with ¢,(0) = 1). We show that c,.(n) satisfies a
linear recurrence of order r. We also obtain asymptotic estimates for ¢.(n), and
we evaluate ¢,(n) for2<r<5and1<n <10
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1. Introduction

A composition of the natural number n is a representation of n as a sum of one
or more natural numbers. (Representations that differ only in the order of terms
are considered distinct.) If the integer r > 2, say that a composition is r-regular
if none of its parts is divisible by r. Let c,(n) denote the number of r-regular
compositions of n. Formulas for c(n) have previously been obtained in the
cases r = 2, 3. In particular, cy(n) is the number of compositions of n into odd
parts . It is known that c3(n) = F,, the n** Fibonacci number. This statement
appears to have been first made by Cayley [1]; it appears as an exercise in [6],
and follows immediately from a result in [5]. The case r = 3 was settled in [4].
In this note, we generalize these earlier results by showing in Theorem 3 below
that c,.(n) satisfies a linear recurrence of order ». We thereby prove a conjecture
made in [4]. We also obtain asymptotic estimates for ¢,(n) for large n, and we
evaluate ¢ (n) for2<r<5and1<n <10

2. A recursive formula for c.(n)

Our first theorem concerns a recurrence that enables the recursive computation
of the number of compositions of the natural number n all of whose parts satisfy
a given condition.

Theorem 1 Let {a,} be a strictly increasing sequence of natural numbers.
If n is a natural number, let g(n) denote the number of compositions of n
whose parts all belong to {a,}. Define g(0) = 1, and g{a) = 0 if & is not a
non)-negative integer. Then for all n > 1, we have

g(n) = g(n—a).
k>1

Proof: Let the generating function for compositions with exactly k elements
from {a,} be

ae(z) = ()" .
i>1

Let G(z) be the generating function for all compositions of n with summands
from {a,}. Then we have

G(z) =1+ a(z)=(1-_z%)7",
k=1 i=1

and also

G(z) = g(n)z" = (1~ a*)(D_g(n)z") =1.

n=0 i=1 n=0

The conclusion now follows if we equate coefficients of like powers of z. W
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In Theorem 2 below, we use Theorem 1 to obtain a formula for c.(n).
Theorem 2

cr(n) = {c(n—k):r fk} .

Proof: This follows immediately from Theorem 1 and the definition of c.(n).
]

In Theorem 3 below, we obtain a more convenient recurrence for ¢.(n), that is,
a recurrence with a fixed number of terms.

Theorem 3 ¢, (n)=2""'for1<n<r-1lc(r)=2""1-1

q(n):icr(n—k) forn>2r+1.
k=1

Proof: The statement is true by inspection for n < r. If n > r + 1, then
Theorem 2 implies ¢-(n) = Y {c(n — k) : r Jk}, so that

c,(n)=c,(n—1)+c,(n-—2)+~--+c,-(n-—1‘+1)+2{c(n—1‘-—k):r,{’k}.

But Theorem 2 also implies that c.(n—7) = Y_{c(n -7 —k) : r }k}, from which
the conclusion now follows. B

In the table below, we list ca(n), c3(n), cs(n), cs(n) for 1 < n < 10.

n {1]2]|3]|4] 5| 6] 7| 8] 9] 10
o) |1]1]2]3] 5] 8|13] 21| 34| 55
ca(n) | 1] 213|611 [20 |37 | 68125 230
ca(n) |1 24| 7|14 27 |52 | 100 | 193 | 372
cs(n) | 1| 2|48 | 153050 116 | 228 | 448

3. Asymptotics

Before we present an asymptotic estimate for ¢.(n), we do so for a similar rt*
order recurrence , {u,(n)}, which has a simpler generating function. Then we
express c¢,(n) in terms of u,(n). This easily leads to an asymptotic estimate for

cr(n).
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Lemma 1 If the integer r > 2, let the sequence {u,(n)} satisfy the recur-
rence: ’

up(n) = Zu,.(n - 7)

=1
for n > r, with initial conditions:
n-1
u(l)=1, ur(n)=2ur(n—j) for2<n<r-1,.
=1

Let ar(z) = 3_i_; 2. Let p, be the real root of a-(z) =1, with 5 < pr < 1.
Then

23
a(pr)

u.(n) ~

Proof: The generating function for {u.(n)} is given by:

or(@) = ur(n)” = T'—:W .

n=1

Since aj(z) = 1+ X7 _, jz7 !, we know a;(p,) # 0, so g,(z) has a simple pole
at £ = p,. From the local expansion of g.(z) at this dominant pole, we have

e 1 SNZ
g-(x) al(pr)(1 —z/pr)  al(pr) ,;(p’) .

The conclusion now follows. W

Remarks: This method of estimation is mentioned on p. 225 of [2], and
was used in another context in [3].

Lemma 2 Ifr>2andn>1, then

cr(n) = niur(n -3).

=0

Proof: This is easily established by induction on n, making use of
Theorem 3 and Lemma 1. B
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Theorem 4

pr (=P

()~ o= )

Proof: This follows from Lemmas 1and 2. MW
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