On r-Regular Compositions

Neville Robbins
Mathematics Department
San Francisco State University
San Francisco, CA 94132 USA
nrobbins@sfsu.edu

ABSTRACT: If the integer $r \ge 2$, say that a composition of the natural number n is r-regular if no part is divisible by r. Let $c_r(n)$ denote the number of r-regular compositions of n (with $c_r(0) = 1$). We show that $c_r(n)$ satisfies a linear recurrence of order r. We also obtain asymptotic estimates for $c_r(n)$, and we evaluate $c_r(n)$ for $2 \le r \le 5$ and $1 \le n \le 10$.

2010 MSC: 05A19

<u>KEYWORDS</u>: composition, regular, linear recurrence

1. Introduction

A composition of the natural number n is a representation of n as a sum of one or more natural numbers. (Representations that differ only in the order of terms are considered distinct.) If the integer $r \geq 2$, say that a composition is r-regular if none of its parts is divisible by r. Let $c_r(n)$ denote the number of r-regular compositions of n. Formulas for $c_r(n)$ have previously been obtained in the cases r=2,3. In particular, $c_2(n)$ is the number of compositions of n into odd parts. It is known that $c_2(n)=F_n$, the n^{th} Fibonacci number. This statement appears to have been first made by Cayley [1]; it appears as an exercise in [6], and follows immediately from a result in [5]. The case r=3 was settled in [4]. In this note, we generalize these earlier results by showing in Theorem 3 below that $c_r(n)$ satisfies a linear recurrence of order r. We thereby prove a conjecture made in [4]. We also obtain asymptotic estimates for $c_r(n)$ for large n, and we evaluate $c_r(n)$ for $2 \leq r \leq 5$ and $1 \leq n \leq 10$.

2. A recursive formula for $c_r(n)$

Our first theorem concerns a recurrence that enables the recursive computation of the number of compositions of the natural number n all of whose parts satisfy a given condition.

Theorem 1 Let $\{a_n\}$ be a strictly increasing sequence of natural numbers. If n is a natural number, let g(n) denote the number of compositions of n whose parts all belong to $\{a_n\}$. Define g(0) = 1, and $g(\alpha) = 0$ if α is not a non)-negative integer. Then for all $n \ge 1$, we have

$$g(n) = \sum_{k>1} g(n-a_k) .$$

Proof: Let the generating function for compositions with exactly k elements from $\{a_n\}$ be

$$g_k(x) = (\sum_{i \ge 1} x^{a_i})^k .$$

Let G(x) be the generating function for all compositions of n with summands from $\{a_n\}$. Then we have

$$G(x) = 1 + \sum_{k=1}^{\infty} g_k(x) = (1 - \sum_{i=1}^{\infty} x^{a_i})^{-1} ,$$

and also

$$G(x) = \sum_{n=0}^{\infty} g(n)x^n \to (1 - \sum_{i=1}^{\infty} x^{a_i})(\sum_{n=0}^{\infty} g(n)x^n) = 1.$$

The conclusion now follows if we equate coefficients of like powers of x.

In Theorem 2 below, we use Theorem 1 to obtain a formula for $c_r(n)$.

Theorem 2

$$c_r(n) = \sum \{c(n-k) : r / k\}$$
.

Proof: This follows immediately from Theorem 1 and the definition of $c_r(n)$.

In Theorem 3 below, we obtain a more convenient recurrence for $c_r(n)$, that is, a recurrence with a fixed number of terms.

Theorem 3
$$c_r(n) = 2^{n-1}$$
 for $1 \le n \le r - 1$; $c_r(r) = 2^{r-1} - 1$

$$c_r(n) = \sum_{k=1}^r c_r(n-k) \text{ for } n \ge r+1.$$

<u>Proof:</u> The statement is true by inspection for $n \le r$. If $n \ge r + 1$, then Theorem 2 implies $c_r(n) = \sum \{c(n-k) : r \not | k\}$, so that

$$c_r(n) = c_r(n-1) + c_r(n-2) + \cdots + c_r(n-r+1) + \sum \{c(n-r-k) : r / k\}$$
.

But Theorem 2 also implies that $c_r(n-r) = \sum \{c(n-r-k) : r \nmid k\}$, from which the conclusion now follows.

In the table below, we list $c_2(n)$, $c_3(n)$, $c_4(n)$, $c_5(n)$ for $1 \le n \le 10$.

1	n	1	2	3	4	5	6	7	8	9	10
ľ	$c_2(n)$	1	1	2	3	5	8	13	21	34	55
ſ	$c_3(n)$	1	2	3	6	11	20	37	68	125	230
ſ	$c_4(n)$	1	2	4	7	14	27	52	100	193	372
Ī	$c_5(n)$	1	2	4	8	15	30	59	116	228	448

3. Asymptotics

Before we present an asymptotic estimate for $c_r(n)$, we do so for a similar r^{th} order recurrence, $\{u_r(n)\}$, which has a simpler generating function. Then we express $c_r(n)$ in terms of $u_r(n)$. This easily leads to an asymptotic estimate for $c_r(n)$.

Lemma 1 If the integer $r \geq 2$, let the sequence $\{u_r(n)\}$ satisfy the recurrence:

$$u_r(n) = \sum_{j=1}^r u_r(n-j)$$

for $n \geq r$, with initial conditions:

$$u_r(1) = 1$$
, $u_r(n) = \sum_{j=1}^{n-1} u_r(n-j)$ for $2 \le n \le r-1$,.

Let $a_r(x) = \sum_{j=1}^r x^j$. Let ρ_r be the real root of $a_r(x) = 1$, with $.5 < \rho_r < 1$. Then

$$u_r(n) \sim \frac{\rho_r^{-n}}{a_r'(\rho_r)}$$
.

Proof: The generating function for $\{u_r(n)\}$ is given by:

$$g_r(x) = \sum_{n=1}^{\infty} u_r(n) x^n = \frac{x}{1 - a_r(x)}$$
.

Since $a'_r(x) = 1 + \sum_{j=2}^r j x^{j-1}$, we know $a'_r(\rho_r) \neq 0$, so $g_r(x)$ has a simple pole at $x = \rho_r$. From the local expansion of $g_r(x)$ at this dominant pole, we have

$$g_r(x) \sim \frac{x/\rho_r}{a_r'(\rho_r)(1-x/\rho_r)} = \frac{1}{a_r'(\rho_r)} \sum_{n=1}^{\infty} (\frac{x}{\rho_r})^n$$
.

The conclusion now follows.

Remarks: This method of estimation is mentioned on p. 225 of [2], and was used in another context in [3].

Lemma 2 If $r \ge 2$ and $n \ge 1$, then

$$c_r(n) = \sum_{j=0}^{n-1} u_r(n-j) .$$

Proof: This is easily established by induction on n, making use of Theorem 3 and Lemma 1.

Theorem 4

$$c_r(n) \sim \frac{\rho_r^{-n}(1 - \rho_r^{r-1})}{a_r'(\rho_r)(1 - \rho_r)}$$

Proof: This follows from Lemmas 1 and 2.

4. References

- 1. A. Cayley Theorems in trigonometry and on partitions Collected Works v. 10, 16
- 2. P. Flajolet & R. Sedgewick Analytic Combinatorics Cambridge University Press (2009)
- 3. A. Knopfmacher & N. Robbins On binary and Fibonacci compositions Annales. Univ. Sci. Budapest. Sect. Comp. 22 (2003) 193-206
- 4. N. Robbins On Tribonacci numbers and 3-regular compositions (to appear in Fibonacci Quarterly)
- 5, A. Sills Compositions, partitions, and Fibonacci numbers Fibonacci Quart. 49 (2011) 348-354
- 6. R. P. Stanley Enumnerative Combinatorics v. 1 (1986) Wadsworth