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Abstract

The clique sum ¥ = G[G1,Ga,...,Gy] is the lexicographic sum
over G where each fibre G; is a clique. We show the reconstruction
number of ¥ is three unless T is vertex transitive and G has order
at least two. In the latter case it follows that ¥ = G[Kn] is a
lexicographic product and the reconstruction number is m + 2. This
complements the bounds of Brewster, Hahn, Lamont, and Lipka. It
also extends the work of Myrvold and Molina.

1 Introduction

All graphs in this paper are assumed to be simple, finite, and undirected.
We follow the notation of [4].

Given a graph G and one of its vertices, v, the vertez-deleted subgraph
G — v is the subgraph obtained by deleting v and all the edges incident
with v. The collection of all (unlabelled) vertex-deleted subgraphs is called
the deck of G, denoted D(G). The individual members are cards. In gen-
eral D(G) may contain several isomorphic cards, prompting some authors
to refer to it as a multiset; however, we simply use set notation. A re-
construction of G is a graph H such that G and H have the same deck.
The graph G is reconstructible if every reconstruction is isomorphic to G.
The Graph Reconstruction Conjecture (GRC) states that every simple, fi-
nite, undirected graph G with at least three vertices is reconstructible. It
was posed by Kelly and Ulam {7, 15|. In the premier issue of the Journal
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of Graph Theory (1977) Harary described the conjecture as [one of] the
foremost unsolved problems in the field.

We say G is reconstructible from C C D(G) if G = H for any graph H
such that C C D(H). The reconstruction number of G, denoted rn(G), is
the minimum m such that G is reconstructible from some m cards in its
deck. Reconstruction numbers were introduced in an attempt to understand
how much information is required to reconstruct a graph. They are also
referred to as the existential or ally reconstruction numbers [6, 12, 11]. A
survey on reconstruction can be found at (3].

In 1990, Bollob4s (2] proved almost all graphs have reconstruction num-
ber three. From this result one obtains a natural question: which graphs
have reconstruction number greater than three. Such graphs are said to
have a high reconstruction number.

McKay [8] verified the GRC for all graphs with at most eleven vertices
using Nauty. McMullen [9] and Baldwin (1} calculated the reconstruction
numbers of all graphs with fewer than eleven vertices. From this McMullen
and Radziszowski {10] identified several classes of graphs with high recon-
struction numbers. Many of their classes existed already in the literature,
particularly in the work of Myrvold [12] and Harary and Plantholt [6].

In [5], Brewster, Hahn, Lamont, and Lipka provided a framework which
captures and generalizes all of these classes, many of which are lexicographic
products over vertex transitive graphs. For example, Theorem 19 (5] shows
that the reconstruction number of the lexicographic product of a vertex
transitive graph G around a clique of order m satisfies rn(G[Kpn]) > m+ 2.
In this article we complement the above work through a study of lexico-
graphic sums and products around cliques. In particular we calculate their
exact reconstruction numbers.

The objects of our study are cliqgue sums. Clique sums are special lexi-
cographic sums (defined below).

Definition 1.1. Given graphs G,G,,Gs,...,G, where G has order n, the
lezicographic sum ¥ = G[G,,...,Gy] is the graph with

o V() ={(,j) : i € V(G) and j € V(G;)}; and,
o E(X) = {{(3,7),(k, 1)} : ik € E(G) or i = k and jl € E(G;)}.

The graphs G; are called fibres of the sum. In the case that all the G;
are isomorphic, the sum is the lezicographic product G around G;, denoted
G[Gy].

Informally, ¥ is obtained from G by replacing each vertex i in G with
the graph G;. For adjacent i and k in G, we put all possible edges between
G,; and Gk.
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A lexicographic sum £ = G[G},...,Gr] where each fibre G; is a clique
of order at least 2 is called a cligue sum. For the remainder of the paper
L is used to denote a clique sum. In the case £ = G[K,,| we will call it a
clique product.

In Section 2 we introduce the closed neighbourhood partition. In Sec-
tion 3 we prove and state our main result. Section 4 contains open problems.

2 The Closed Neighborhood Partition

Given a graph G and a vertex v, the neighborhood of v, denoted Ng(v),
is the set {w € V(G)|wv € E(G)}. The closed neighborhood of v, denoted
Ng[v)], is {v} U Ng(v). We omit the subscript when the graph G is clear
from context. For aset S C V(G), N[S] = UyesN[v]. The closed neighbor-
hood partition, or cn-partition for short, is the partition of V(G) induced
by the equivalence relation w ~¢ v if Ng[w] = Ng[v]. Suppose ~¢ parti-
tions V(G) into ¢ cells C},Cs,...,C;. Given cells C; and Cj, define their
cn-difference to be N[C;JAN[C;]. (We thank the referee who pointed out
the terms interval, module, and homogeneous set are also used for such a
partition.)

Key to our work is understanding how the cn-partition of a graph G
and of the cards in its deck are related. In particular, given u ¢ v, under
what conditions do we have u ~g_,, v in the card G — w?

Lemma 2.1. Let G be a graph with cn-partition Cy,Cs,...,C,. Let u,v,
and w be distinct vertices of G. Then

(a) there is a set T C {1,2,...,t} such that the symmetric difference

N[u]AN[v] = U C;.
i€

(b) if u~g v, then u ~vg_y v.
(c) if IN[uJAN[v]| = 2 and u %g v , then u gy, v.

Proof. (a) Suppose £ € N[u]\N[v]. Further suppose z € C; for some 1.
Let y € C;, i.e. N[y = N[z]. Then y € N[u]\N[v]. Hence, we conclude
N(u]AN][v} is a union of cells from the cn-partition.

(b) If Ng[u] = Ng[v}, then clearly Ng—u(u] = Ng—-w[v].

(c) Suppose {z,y} C N[u]AN[v]. Without loss of generality, y # w,
y € N[u) and y € N[v]. Then y € Ng_y[u] and y ¢ Ng_y[v]. Thus
U PG V. O
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Corollary 2.2. Suppose the graph G has cn-partition Cy,Cs,...,C; where
[Cil =2 foralll < j <t Letwe C;. Then G— w has cn-partition
Cl,Cz,...,C,' - {w},...,Ct.

Proof. Let u ~¢ v. Then by Lemma 2.1(b), u ~g—,, v. On the other hand,
suppose u ¢ v. Then by assumption each C; has order at least 2. Thus
by Lemma 2.1(a), |N[u]AN[v]| 2 2. We conclude u %g_. v. a

Corollary 2.3. Suppose u,v, and w are vertices of G such that v #¢g v,
but w ~g_y v. Then {w} = C; for some cell in the cn-partition of G, and
N[u]AN[v] = C;.

3 Reconstructing clique sums

We now focus on the clique sum ¥ = G[G,,Gy,...,Gy) (where, by defini-
tion, each G; is a clique of order at least 2). We begin by examining the
relationship between the cn-partition of G and X.

Lemma 3.1. Let G be a graph and ¥ = G[G),...,Gy| be a cliqgue sum.
Suppose v,w € V(G) and (v,1),(w, j) € V(X). Then v ~¢ w if and only if
('U,i) ~E (w)j)°

Proof. Suppose v ~¢ w. Let (z,k) € V(Z). Assume (z,k) € Ng[(v,1)]. By
definition, either z = v or 2v € E(G). In either case, 2 € Ng[v]. Since
v ~g w, z € Ng[w]. Thus, either zw € E(G), or z = w, from which
we obtain (z,k) € Ng[(w,j)]. We note the latter case follows from the
fact that k and j belong to the same fibre of & and all fibres are cliques.
Similarly, (z,k) € Ng{(v,i)] implies (z,k) € Ng[(w,j)]. Consequently,
(v,3) ~5 (w, j).

On the other hand, assume (v,i) ~g (w, j) and z € N[v]. Then (z,k) €
Ng{(v,7)] and thus (z,k) € Ng[(w,j)]. Hence z € N[w]. Similarly, if
z & N(v], then z € N[w]. The result follows. 0

A consequence of this lemma is that if the cn-partition of G is not
composed of singletons then we can represent ¥ as a clique sum over a
smaller graph. Suppose n—1 and n are vertices of G such that (n—1) ~¢ n.
Then (n — 1,i) ~g (n,j) for all < and j. The subgraph of £ induced
by Gn_1 UG, is a clique and all vertices in this clique have the same
closed neighbourhood. Consequently, if we let G’ = G —n and G}_; be
the clique G,_; V G,, (where V is the join of the two graphs), then ¥ =
G'[G1,Ga,...,Gn_2,G}_,]. A clique sum is minimal if £ = G[G},...,G,)
and n is minimum over all such representations. From the lemma and our
discussion we see that a minimal sum has G with a cn-partition consisting
of singletons. The cells of the cn-partition of ¥ are precisely the fibres of
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¥ and the quotient of the cn-partition of £ must be G. In other words, the
cn-partition of ¥ uniquely determines the graph G in a minimal sum.

Vertex transitivity and the automorphism group of clique sums play an
important role below. We require a classic result of Sabidussi; see {13, 14].
To a pair of graphs (G, H) we associate two conditions.

Condition S;: H is connected whenever G has two vertices © # v such
that N(u) = N(v); and

Condition S,: H is connected whenever G has two vertices u # v such
that N{u] = N[v].

Theorem 3.2 (Sabidussi [13]). Let G and H be graphs. A necessary and
sufficient condition for Aut(G[H|) = Aut(G)! Aut(H) is that the pair
(G, H) satisfies both Condition Sy and Condition S.

The theorem above naturally extends to clique sums. Given a minimal
clique sum ¥ = G[Gy,...,Gy), the above theorem states that an automor-
phism of X must map fibres to fibres. Condition S; is satisfied since each
fibre is a clique. Condition S; is satisfied in a minimal clique sum as there
cannot be vertices u # v such that N[u| = N[v]. Thus any automorphism
of ¥ induces an automorphism of the quotient graph G. Hence, if T is
vertex transitive, we can conclude G is vertex transisitve and & = G[K,]
for some m. This fact is used below.

We now study the cn-partitions of ¥, its cards, and potential reconstruc-
tions of cards of £. To ease notation we refer to a cell of the cn-partition
of a graph G as simply a cell of G. In particular, if {w} is a singleton cell
in the cn-partition of G, we say that {w} is a singleton of G.

Let G1,Ga,...,Gp be the cn-partition of (a minimal clique sum) . By
Corollay 2.2, the card ¥ — v must have n cells in its partition. The cell
G; — {v} is called the deficient cell of ¥ — v and is labelled {w} when it is
a singleton of ¥ — v.

We now consider the set-up where V} = ¥ — v; is a card of ¥ and X
is a graph obtained by adding v, to V; together with some edges incident
with v;. (Note Ng(v;) # Nx(v1) in general.) By Corollary 2.2, if X has
cn-partition X, Xo,..., X, and the card X — = has fewer than t cells,
then X; = {z} for some i. Furthermore, if X — = has ¢t — 2 or fewer cells,
then there are vertices u and v such that v #x v but u ~x_, v. By
Corollary 2.3 there must be at least 2 cells of X, say X; and Xy, neither
equal to X; = {z}, such that N[X;]JAN[X;] = {z}. The set of all vertices
z € V(X) such that X — z has at most ¢t — 2 cells is called the merging
set of X. If X; and X are distinct cells of X and X; U X is a cell in
X — z, we say that z merges X; and X;. Observe that  cannot merge 3
cells, say X;, Xy, X¢, as this would force two cells to have the same closed
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neighbourhoods, i.e. they would not be distinct cells in X. It is possible
that = merges more than one pair. For example, X; may merge with X
and X, may merge with X,,.

We now examine how v; can join to vertices of V; to form X. As a
convention, let C;,Cs, ..., C, be the cn-partition of V;. Note C; = G¢ — vy
for some ¢, and C; = G; for all j # £. For each cell C;, if Nx[v))NC; =
C; or 0, we say that v; joins regularly to C;. Otherwise, we say that v;
mutilates C;. In the case that v; mutilates C;, define A; = Nx[v;] N C;
and A; = C;\A;. Note that A; and A; are cells of X. Also, {v;} is a
singleton of X as it is the unique vertex in X that joins A; and does not
join 4;. If C; U {v;} is a cell in X, i.e. Nx[v1) = Nx[u] for all u € C;, we
say that v; mimics C;. In this case, v; must join regularly to each cell in
V1. Consequently, vy can mimic at most one cell. We call C; U {v;} the
mimicked cell.

We state our main result.

Theorem 3.3. Let ¥ = G[G,,...,Gyr] be a minimal cligue sum. If ¥ is
not vertex transitive or |V(G)| = 1, then rn(X) = 3. Otherwise £ = G[K,,|
and rn(E) =m + 2.

We identify a subset C of D(X) such that for any graph H not isomorphic
to ¥, C ¢ D(H). The set C is defined based on the cases: |V(G)| = 1;
[V(G)| > 2 and X is vertex transitive; and T is not vertex transitive.

When |V(G)| =1, £ = K, for some m. It is well known that rn(K,) =
3 for n > 3. Thus assume for the remainder that |[V(G)| > 2.

As noted above, if ¥ is vertex transitive, then ¥ is a clique product
G[Ky), where G is vertex transitive. For this case, let C = {V1,V,,..., Viny2}
be m + 2 cards of ¥. Note that all cards of C are isomorphic since T is
vertex transitive.

For the third case, let C = {V;, V3, V3}, where V; = & —v;. Pick v; from
a cell of minimum order (of £) and v,, v3 each from a cell of maximum
order (of ). Furthermore, choose the elements of C to contain a pair of
nonisomorphic graphs, which is possible since X is not vertex transitive.
(Clearly, if G is vertex transitive, then all cards are isomorphic. On the
other hand if all elements of D(G) are isomorphic, then it is easy to see
that G is regular. Using this fact, one can extend an isomorphism of G —v
to G — u to an automorphism of G mapping v to u.)

If Vi ¢ D(H), then clearly C € D(H). Thus, we focus on graphs with
V; in their deck. Specifically, as defined above let X be V; together with a
vertex v; and some edges incident with v;. We examine the different ways
of joining v; to V; (with the restriction that X is not isomorphic to ¥£). Our
strategy is to show that cards of X have cn-partitions, X;,..., X;, which
preclude them from being in C, i.e. in each case, C ¢ D(X).

228



Lemma 3.4. (Case 1) Suppose v, mutilates two or more cells of V1. Then
D(X) contains at most two cards of C.

Proof. By Corollary 2.2, V] has cells of size at least 2 with the possible
exception of the deficient cell {w}. As noted above, each mutilated cell C;
from V; gives rise to 2 cells A; and A; in X. Also, {v1} is a singleton in X.
Hence t > n + 3. It suffices to prove that the merging set of X has at most
2 vertices, for then any 3 cards of X will contain a card having more than
n cells.

Suppose u merges X; and Xi in X — u. Suppose to the contrary u is
different from v; and w. As {u} must be a cell of X, the only possibility is
{u} is one of the mutilated cells, say A; or A;. (All cells of X other than
{v1} and {w} have order at least two.) Suppose {u} = A; and @ € A4;. Let
z; € X; be adjacent to u and zx € X be nonadjacent to u. The other
cases are analogous. Since u merges X; and X}, @ must be adjacent to both
of z; and z; or nonadjacent to both. The only vertex that has neighbours
in exactly one of A; or A; is v;. Thus, one of X; or Xj is {v;}. However,
v; mutilates at least two cells of V; and thus cannot cn-differ by a single
vertex from any other cell, a contradiction. O

Lemma 3.5. (Case 2) Suppose vy mutilates one cell of V. Then D(X)
contains at most two cards of C.

Proof. Note that X has t = n + 2 cells, without loss of generality the cn-
partition is: Ci,...,Cp_1,An, An, {v1}. Hence, for each card X — z € C,
2 must belong to the merging set of X. In particular, this means that each
such z is a singleton in X. Observe that X has at most four singletons:
{w}, {1}, An, A,. We first show that the set {X —v;, X — 4,, X — 4.}
is not a subset of C. Then we show that X — w is not an element of C.

Suppose to the contrary X — v, X — An, and X — A4, belong to C.
Hence, A, and A,, are both singletons in X. Consider the card X — A,. In
particular, the vertex in A, and v; are nonadjacent. A cell C;,1 <i < n-1,
and A,, cannot be merged by A, for that would require vertices in C; to
be adjacent in X to A, (to merge) and to be nonadjacent in X to A, (to
have Nx[C;]ANx[A,] = An). However, in X each vertex (other than v;)
joins both A, and A, or neither. Thus, A, is a singleton in X — A,.

Suppose V; does not have a singleton. If ¥ is vertex transitive, then all
elements of C are isomorphic. None contain a singleton and thus X — A,
does not belong to C. On the other hand, if ¥ is not vertex transitive, then
C = {W,V,,Va}. By construction V3 cannot contain a singleton either.
If X — A, is not isomorphic to V}, then X — A, ¢ C. If X — A4, is
isomorphic to V;, then € contains only one copy of V; and at most two of
X — vy, X — An, X — A, can belong to C as required.
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Suppose V, has a singleton. Recall that for clique sums, terms have
order at least two, and Vo = ¥ — vy where vy belongs to a cell of ¥ with
maximum order. We conclude this maximum order is two, and thus all
cells in ¥ have order two. In particular, V3, V2, and V3 each have a unique
singleton. (This is independent of whether ¥ is vertex transitive or not, i.e.
C has three or m + 2 elements.) Recall, the singleton of V} is {w}.

Since each card of ¥ has only one singleton and A, is a singleton of
X — A, the vertex in A,, must merge {w} with some cell X; of X. Thus,
Nx[w]ANx[X;] = An. The only cell of X that could realize such a cn-
difference is X; = {v1}. By Lemma 2.1(a) any other vertex that cn-differs
from w by A, also cn-differs by A,. This implies v; and w are adjacent,
and w is not adjacent to A, UA,. In particular w,v;, A, induce a path of
length two in X.

Now consider X — A,,. The induced path of length two ensures neither
{w} nor A, merge with {v;}. Similar to above, A, is a singleton in X — 4.
By the same reasoning {w} is also a singleton. Therefore, X — A, has at
least two singletons and is not a card of ¥, a contradiction.

Finally, we rule out X — w as a member of C, after which the result
follows. Suppose to the contrary X — w is a member of C. Since X has
n + 2 cells, and all cards of ¥ have n cells, w must belong to the merging
set of X. Thus {w} is a singleton of X. Now X has up to three other
singletons: {v;}, A, and 4,. Consider the subgraph Y of X induced by
these three cells. These 3 cells are the cn-partition of Y. Hence, removing w
does not merge any of these three cells with each other. Also, {v;} cannot
merge with any of Cy,...,C,_; since v; cn-differs with each of these cells
by either A, or A,. This means the unique singleton of X — w is {v;}.
As above, without loss of generality, V2 has a singleton which implies all
cells of £ have order 2. In particular, all elements of C have n — 1 cells of
order 2. Then in X, there are n — 2 cells of order 2 and four singletons.
Since singletons cannot merge in X — w, and {v;} is the unique singleton
of X — w, the cell A, must merge with one of C,...,Cn_1. The result is
a cell of order at least 3 in X — w and hence it is not a member of C. 0O

Lemma 3.6. (Case 3) Suppose v joins regularly to each cell of V| and
X has no mimicked cell. Then D(X) contains at most 2 cards of C.

Proof. Since v, does not mimic any cell of V], the graph X hast = n+1 cells
in its cn-partition: Cp,Cy,...Cp,{v1}. Also, X has at most 2 singletons

since at most one of Cy, (s, ..., C, is a singleton. Since only singletons {z}
in X have the property that X — = has fewer than t cells, no 3 cards of X
can belong to C. O

Lemma 3.7. (Case 4) Suppose vy mimics a cell of Vi. Then D(X) does
not contain C.
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Proof. First suppose that ¥ has cells of the same order m. Then X has a
cell of order m + 1, the mimicked cell. Since each element of C contains
no cell of order m + 1, any z such that X — z is in C must be from the
mimicked cell. In particular, all such cards must be isomorphic. If ¥ is
vertex transitive, C has m + 2 cards and the result follows. If ¥ is not
vertex transitive, then C has cards that are not all isomorphic and the
result follows.

Now suppose T has cells of different orders and minimum order k. Then
the deficient cell of V; and, consequently, X has order k—1. Since v; mimics
a cell, X has n cells and any card of X with n cells must have a cell of
order k — 1 or k — 2. However, V; and V3 have no cell of order ¥ — 1 (or
smaller). The result follows. O

Proof of Theorem 3.3. Lemmas 3.4, 3.5, 3.6, and 3.7 above show rn(X) <
|C|. If |C| = 3, then we are done. On the other hand if ¥ is vertex transitive,
then & = G[K,]. The work above shows rn(X) < m + 2 and Theorem 19
of [5] shows rn(X) > m + 2. O

4 Conclusion

This article extends the results of [12, 11], as unions of components may
be viewed as the lexicographic sum K,[G1,...,Gy), in the case where each
fibre is a clique. A natural question is to study lexicographic sums of other
graphs.

Question 4.1. Can the methods above be applied to lexicographic products
G[H| where G and H are vertez transitive?

Question 4.2. Can upper bounds be found for other classes identified
in [5].

Key to our proofs is the fact that in clique sums each fibre has order
at least two. In general, the cn-partition of a graph may contain a mix of
singletons and larger cliques.

Question 4.3. What is the eristential reconstruction number for clique
sums (or general graphs) with a cn-partition containing a mix of singletons
and larger cliques?

Question 4.4. Can the techniques is this paper be applied to other parti-
tions?
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