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Abstract

Counting the number of maximal independent sets is #P-complete
even for chordal graphs. We prove that the number of maximal in-
dependent sets in a subclass G® (Right power set graphs) of chordal
graphs can be computed in polynomial time using Golomb'’s non-

linear recurrence relation. We provide a recursive construction of
i+
G and prove that there are 2 1 ) maximum independent

sets in GR. We also provide a polynomial time algorithm to solve
the maximum independent set problem (MISP) in a superclass F,
of complement of GE.

Keywords: Maximum independent set; Golomb's recurrence; Power set
graphs

1 Introduction

Counting the number of independent sets and number of maximum in-
dependent sets in a graph is #P-complete [7] and counting the number
of independent sets of size k in a graph is #W/{1]-complete {2]. Indeed,
counting the number of maximal independent sets in chordal graphs is #P-
complete [6]. In addition, counting the number of independent sets in a
planar bipartite graph of maximum degree four is also #P-complete (8]. In
this paper, we give a recursive construction of a subclass GE of chordal
graphs and count the number of maximal independent sets of GE in poly-
nomial (logarithmic) time using the following non-linear recurrence relation
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by Golomb [1, 3]
n—1
n=1+[[w 5 wn=1
i=1

This equation generates a sequence {y,} = {1,2,3,7,43,1807,3263443, ...}
and it occurs in Lucas test for primality of Mersenne numbers [4]. We prove

i+ . . .
that there are 2(— 4%~ ) maximum independent sets in GE. Moreover,

we provide a polynomial time algorithm to solve MISP in a superclass F,
of complement of GE.

For graph terminologies, we refer [9]. The graphs considered in this paper
are finite, simple and undirected. Here K, denote the complete graph on
n vertices. A clique (independent set) is a subset of vertices of a graph G
which are pairwise adjacent(non-adjacent) in G. The cardinality of a max-
imum clique (independent set) in a graph G is called cligue (independence)
number and is denoted by w(G)(a(G)). An independent set of a graph G is
mazimal if it is not properly contained in any other independent set of G.
The join G1®G; of vertex-disjoint graphs G, and Gy is a graph with V(G1®
G2) = V(G1)UV(Gz) and E(G1 ©G2) = E(G1) U E(G,) U[V(G,1), V(G2))
where [V(G1),V(G2)] = {(z,4) : = € V(Gi1),y € V(G2)}. Also, the
co-join(or disjoint union) G, UGy of vertex-disjoint graphs G; and G2 is a
graph with V(G1UG:) = V(G1)UV(G,) and E(G1UG?) = E(G,)UVE(G3).

2 Right power set graphs G

In this section, we discuss a subclass GR of chordal graphs and its comple-
ment graph class GE, and provide a recursive construction of GE. Let
us denote {1,2,...,n} as [n] and P([n]) as the power set on [n]. For
A € P([n]) \ {9}, let m(A) := min {@ : a € A}. Let A;, A be
two non-empty distinct subsets of [n]. We define Left(A;, 42) := A, if
m((A1 \ A2) U (A2 \ A1)) € A;, else Left(A;, Ag) := A;. For a subset
A = {by,b2,bs,..., i} € P([n]),l > 2, where by < by < ... < b, we say the
subsets of the form {bs,bs,..., b}, {bs,bs,...,01},...,{bi=1, b} and {&}
are right subsets of A. Note that for a right subset A; of A, (i) A; C Az
(ii) A; \ A3 is a right subset of A; \ A3 for every proper subset A3 of A;
and (iii) if a € A;, then b € A, for all b € A; such that b > a. If a proper
non-empty subset A; of A is not a right subset of A;, then there exists
b e Ay \ A; such that m(4;) < b.

The right power set graph GR is a graph with vertex set V(GE) = P([n]) \
{0} such that (4,, A2) € E(GE) if and only if A, is the right subset of A,
(or vice versa) where A;, A; € V(GE).
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The left power set graph GL is a graph with vertex set V(G%) = P([n])\ {0}
and the edge set E(GL) defined as follows:

e For any A;,A; € V(GL), if A1\ A2 # 0 and Ax \ Ay # 0, then
(AlaA2) € E(G,l;), and

e For any Ay, Ay, Az € V(GL), if A1\ Az # 0, A2\ A; # 0, and A;, A2 C
As , then (As, Left(A;, A2)) € E(GL).

The Figure 1 depicts the graphs G§ and G£. Note that the complement
graph of G is G, which is true in general.

) ) {1}/{2} @)
1.2) 23 a4/ fes
12,3 .2.3)
GE Gf

Figure 1: The graphs G¥ and G§

Lemma 2.1. For a positive integer n, the complement graph of G% is GE.

Proof. 1t is enough to prove that for any two distinct sets A;, A2 € P([n]) \
{0}, (A1, A2) € E(GE) if and only if (Ay, A2) ¢ E(GF).
First, we prove that (A4;,A2) € E(GE) implies (4;, A2) ¢ E(GE). There
are two cases: (i) Neither A; C Az nor A2 C A;. So A;(A2) is not a right
subset of A3(A4;) and hence (A;, A2) ¢ E(GER). (ii) W.lo.g., assume A; C
Aj. Since (A1, A2) € E(GL) and A, \ A2 = 0, by definition, there exists a
subset A3 of Ay such that A; \ Az # 0, A3\ A; # 0 and Left(4,, A3) = A;.
Note that Left(A;, A3) = A; implies a = m(A4; \ A3) < b = m(A3 \ A4;).
Moreover, a € A;,b ¢ A; and b € Az implies A4; is not a right subset of As.
Since A; C A, Aj is not a right subset of A;. Hence (4,, Az) ¢ E(GE).
Next, we prove that (A, A2) ¢ E(GL) implies (A;, A2) € E(GR). Sup-
pose (A;, A2) ¢ E(GL). Then either A; \ A2 =0 or A2\ A; =0. Wlo.g,
assume A; C As. It is enough to prove that A, is a right subset of As.
On the contrary, suppose A; is not a right subset of A2. Then there exists
b € Az\A; such that a = m(A,) < b. Define aset Az = (A4;\{a})U{b}. Itis
clear that, A; and Aj are proper subsets of A;. Alsoa € A;\As,b € A3\ Ax
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and Left(A;, A3) = A;. This contradicts (A1, A2) ¢ E(G%). Therefore, A,
is a right subset of A, and hence (A4;, 4;) € E(GE). O

Next, we construct the components of GE recursively by defining a sequence
of graphs M,, as follows (see Figure 2):

1. M, is a graph with V(M) = {1} and E(M;) = 0.

2. For any positive integer ¢ > 1, M, is a graph with vertex set
-1

V(M) = {i}Ju{AU{i}: Ae UV(M )} and edge set

EM;)=E;U{(A,{i}):Ae V(M )\ {#}} where .
E;={(A,B): A,B € V(M) and (A\ {s}, B\ {i}) € | JE(M;)}.

=1

{3}

. '3)

ar {12 {1,2,3}
M1 Mz M3

Figure 2: The graphs My, Mo, M3, My

In the next section, we compute the clique number, independence number
for GE and GL.

3 Enumeration of independent sets and cliques

Observation 3.1. a. Let A,B € V(GE) such that A, B 7é {n}. Then
(A, B) € E(GR) if and only if (A\ {n}, B\ {n}) € E(GE_)).

b. V(M1UM2U...UMn)= [n])\{@} , V(Mn ='P([n] \P(['n—l])
forn > 1.
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c. For a cligue Ay, As,...,A, in M,, there exists a chain of subsets
A1 C A2 C...C Ap where A; is a right subset of Aj, 1 <i<j<p.
Theorem 3.1. For a positive integer n,

n-1
1. M,, is isomorphic to the join of Ky and U M;.
i=1

n

2. GE=JM;=M,uGE .
i=1

8. M, and GE are subclasses of chordal graphs.

n—1
Proof. Define f: V(M,)— V(K. & UM,) as follows: Let V(K) = {z}

i=1

For every A € V(M,),

_ JAN{n}, if A {n}
d (A)_{z, if A={n}

It is easy to verify that f is bijective function which preserves adjacency. By
n

the construction, M,, is the nth component of GE. Hence GE = M; =
n n
i=1

M,UGE .

Also note that, M, is constructed by taking co-join of M{, Ms,..., M,
and finally applying join with K;. It is clear that M; , My and M3 are
chordal. If a graph G is chordal, then K; & G is also chordal. Hence M,
and G® are chordal. 0

Theorem 3.2. For a positive integer n,

~

w(Mp) =14+ w(Mp_y) forn>1, w(M) =1 and w(M,) =n.
2. w(GR) = a(GE) =n.

3. a(M,) = 2a(Mn_,) forn > 3, a(M1) = a(M3) = 1, a(M3) = 2, and
hence a(M,) = 2"~2,

4 a(GR)=w(GL)y=2""1, n>3.

5. The number of mazimum independent sets in M, is 22"_3,271. > 3.
Also, the number of mazimum independent sets in GE is 22"~ . Sim-

ilarly, the number of mazimum cliques in GL is 22" n > 2.

n-1

6. N(M,) = 1+ [[N(M:) and N(GR) = N(GE_ )1+ N (GR,)] where

i=1
N is the number of mazimal independent sets.
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7. [n] and all its right subsets forms a unique clique of size n in M,.
Also, they form a unique independent set of size n in GL.

Proof. The proof of 1,2, 3,4 are simple applications of Theorem 3.1.
We know that w(M;) = 1, w(M;) =2, w(Ms) =3 . Assuming the

result for n — 1,
n—1

w(My) = w(Ky @ | M)
i=1
= w(Ky) + maz{w(M),w(Mz),...,w(Mn_1)}
=1+4+w(M,_1)=n  (By induction)

Now,

W(Gf’) = w(UMi)
=1

= ma:c{w(M;),w(M2)» o !w(Mn)}
= w(Mn) =N

n-—-1
oMa) = o(i@ | M)
i=1
= maz{a(K1),a(M1) +a(M2) + ...+ a(M,_1)}
n—1
= > (M)
=1
n—2
= Z a(M;) + a(Mpn_1) = 20(Mp—1) {By induction)
i=1
But we know that a(M;) = 1, oa(Mz) = 1, and a(M3) = 2; hence
a(Mﬂ) = 2n—2’ n Z 3
By Theorem 3.1,

a(GF) = ia(Mi) = 2"~1

t=1
Let us denote the number of maximum independent sets by ni. By the
construction of M,,
ni(M,) = ni(Mnp_1) Iu’(M,,_z)---m'(Mg) m’(MQ

= ni(Mp-1)ni(Mp_1)
= (ni(Mp-1))?
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Since ni(M;) = 1 and ni(M,) = 2, we get ni(M,) = 22""° for n > 3 and
ni(GR) = 22"7*,

Again by Theorem 3.1 (1) , we can obtain Golomb’s non-linear recurrence
relation

n-—1
NMp) =1+ J[NV@L) 5 N) =1 (1)
i=1

Also by Theorem 3.1 (2), we obtain
N(GR) = N(GR- DL + N(GEy)] (2)

Hence by Equations (1) and (2), the number of maximal independent sets
in GR can be computed in O(log|V(GE)|) time.

By Observation 3.1(¢), {1,2,3,...,n},{2,3,...,n},{3,...,n},...,{n=1,n},
{n} forms a unique clique of size n in M,. And hence these sets forms a
unique independent set of size n in G%. (]

As a consequence of Theorem 3.2, we have

Corollary 3.1. Counting the number of mazimal independent sets in GR
can be done in polynomial (log|V(GR)|) time. (By Theorem 3.2(6))

L
Corollary 3.2. There are 20" ") mazimum cliques in GL. (By The-
orem 3.2(5))

4 Power set graphs

We discuss a superclass F,, (Power set graphs) of GL and prove that the
class admits a polynomial time algorithm to solve the MISP. A graph G €
Fn if V(G) =P([n]) \ {0} such that

1. for every A;,A; € V(G), if A; \ A2 # 0 and Az \ A; # 0, then
(A1, 42) € E(G), and

2. for every Ay, Az, Az € V(G), if A1, Az C Ag, A1\A; # 0 and A\ A; #
@, then at least one of A; and A; is adjacent to A3 in G.

Observation 4.1. Let L; = {A € P([n]) : |A| =14} fori > 1. Fora
graph G € Fp,, (i) L; NV (G) induces a cligue, (i) V(G) can be partitioned
into at most n cliques, (iii) every vertez in L; N V(G) is not adjacent to
atmost one verter in L; NV(G) for1 £ j <i < n and (iv) a(G) <n and
V(G)|=2"-1.
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{1} {3}
{1,2} {2,3}

11,2,3}

Figure 3: A graph G € F3

Algorithm 1 Finding a maximum independent set of G € F,
Input: A graph G € F,
Output: A maximum independent set of the graph G
I:=90
foralli=n,n—-1,...,1do
forall AeL; do
i-1

Sa:={B:(A,B)¢E(G) & Be|JL;}
i=1

S + MIS(Sa)
if (|I] <|S]|) then
I« SUA
end if
end for
end for
Return

Observation 4.1 lead us to a polynomial time algorithm to compute MISP
in F,. In Algorithm 1, MIS(S,4) finds the power set of S4(|S4| < n =
log(JV(G)| + 1)) and computes a maximum independent subset of S4 in G
by an exhaustive search which takes O(|V(G)|?log|V(G)|). As this step is
repeated for every vertex in G, the time complexity is O(|V (G)[3log|V (G))).

5 Conclusion

In this paper, we provided a subclass G? of chordal graphs for which the
number of maximal independent sets can be computed in O(log|V(GF)|)

time. We gave a recursive construction of the class GE and proved that

IvVek+1 .
there are 2(— % ) maximum cliques in G%. In addition, we proved that

MISP for the class F,, a superclass of GL can be solved efficiently.

290



References
[1] A. V. Aho, N. J. A. Sloane, Some Doubly Ezponential Sequences, Fi-
bonacci Quarterly 11(1970), 429-437.

(2] J. Flum, M. Grohe, The parameterized complezity of counting problems,
SIAM J. Comput. 33(2004), 892-922.

[3] S. W. Golomb, On Certain Nonlinear Recurring Sequences, Amer.
Math. Monthly 70(1963), 403-405.

(4] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers,
The Clarendon Press, Oxford, Third Ed., 1954.

[5) R. Motwani, R. Raghavan, Randomized Algorithms, Cambridge Univer-
sity Press, 1997.

(6] Y. Okamoto, T. Uno, R. Uehara, Counting the number of independent
sets in chordal graphs, Journal of Discrete Algorithms 6(2008), 229-242.

[7) J. 8. Provan, M. O. Ball, The complezity of counting cuts and computing
the probaobility that a graph is connected, SIAM J. Comput. 12(1983),
777-788.

(8] S. P. Vadhan, The complezity of counting in sparse, regular, and planar
graphs, SIAM Journal on Computing 31(2) (2001), 398-427.

[9] D. B. West, Introduction to graph theory, Prentice Hall, USA, 1996.

291



