Counting the maximal independent sets in power set graphs

M. A. Shalu a and S. Devi Yamini b

Indian Institute of Information Technology Design & Manufacturing
(IIITD&M) Kancheepuram,
Chennai-600127, India.
e-mail: shalu@iiitdm.ac.in a, mat10d001@iiitdm.ac.in b

Abstract

Counting the number of maximal independent sets is #P-complete even for chordal graphs. We prove that the number of maximal independent sets in a subclass G_n^R (Right power set graphs) of chordal graphs can be computed in polynomial time using Golomb's nonlinear recurrence relation. We provide a recursive construction of G_n^R and prove that there are $2^{(\frac{|V(G_n^R)|+1}{4})}$ maximum independent sets in G_n^R . We also provide a polynomial time algorithm to solve the maximum independent set problem (MISP) in a superclass \mathcal{F}_n of complement of G_n^R .

Keywords: Maximum independent set; Golomb's recurrence; Power set graphs

1 Introduction

Counting the number of independent sets and number of maximum independent sets in a graph is #P-complete [7] and counting the number of independent sets of size k in a graph is #W[1]-complete [2]. Indeed, counting the number of maximal independent sets in chordal graphs is #P-complete [6]. In addition, counting the number of independent sets in a planar bipartite graph of maximum degree four is also #P-complete [8]. In this paper, we give a recursive construction of a subclass G_n^R of chordal graphs and count the number of maximal independent sets of G_n^R in polynomial (logarithmic) time using the following non-linear recurrence relation

by Golomb [1, 3]

$$y_n = 1 + \prod_{i=1}^{n-1} y_i$$
 ; $y_1 = 1$.

This equation generates a sequence $\{y_n\} = \{1, 2, 3, 7, 43, 1807, 3263443, \ldots\}$ and it occurs in Lucas test for primality of Mersenne numbers [4]. We prove that there are $2^{(\frac{|V(G_n^R)|+1}{4})}$ maximum independent sets in G_n^R . Moreover, we provide a polynomial time algorithm to solve MISP in a superclass \mathcal{F}_n of complement of G_n^R .

For graph terminologies, we refer [9]. The graphs considered in this paper are finite, simple and undirected. Here K_n denote the complete graph on n vertices. A clique (independent set) is a subset of vertices of a graph G which are pairwise adjacent(non-adjacent) in G. The cardinality of a maximum clique (independent set) in a graph G is called clique (independence) number and is denoted by $\omega(G)(\alpha(G))$. An independent set of a graph G is maximal if it is not properly contained in any other independent set of G. The join $G_1 \oplus G_2$ of vertex-disjoint graphs G_1 and G_2 is a graph with $V(G_1 \oplus G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \oplus G_2) = E(G_1) \cup E(G_2) \cup [V(G_1), V(G_2)]$ where $[V(G_1), V(G_2)] = \{(x,y) : x \in V(G_1), y \in V(G_2)\}$. Also, the co-join(or disjoint union) $G_1 \cup G_2$ of vertex-disjoint graphs G_1 and G_2 is a graph with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

2 Right power set graphs G_n^R

In this section, we discuss a subclass G_n^R of chordal graphs and its complement graph class G_n^L , and provide a recursive construction of G_n^R . Let us denote $\{1,2,\ldots,n\}$ as [n] and $\mathcal{P}([n])$ as the power set on [n]. For $A \in \mathcal{P}([n]) \setminus \{\emptyset\}$, let $m(A) := \min \{a : a \in A\}$. Let A_1, A_2 be two non-empty distinct subsets of [n]. We define Left $(A_1, A_2) := A_1$ if $m((A_1 \setminus A_2) \cup (A_2 \setminus A_1)) \in A_1$, else Left $(A_1, A_2) := A_2$. For a subset $A = \{b_1, b_2, b_3, \ldots, b_l\} \in \mathcal{P}([n]), l \geq 2$, where $b_1 < b_2 < \ldots < b_l$, we say the subsets of the form $\{b_2, b_3, \ldots, b_l\}, \{b_3, b_4, \ldots, b_l\}, \ldots, \{b_{l-1}, b_l\}$ and $\{b_l\}$ are right subsets of A. Note that for a right subset A_1 of A_2 (i) $A_1 \setminus A_2$ is a right subset of $A_2 \setminus A_3$ for every proper subset A_3 of A_1 and (iii) if $a \in A_1$, then $b \in A_1$ for all $b \in A_2$ such that b > a. If a proper non-empty subset A_1 of A_2 is not a right subset of A_2 , then there exists $b \in A_2 \setminus A_1$ such that $m(A_1) < b$.

The right power set graph G_n^R is a graph with vertex set $V(G_n^R) = \mathcal{P}([n]) \setminus \{\emptyset\}$ such that $(A_1, A_2) \in E(G_n^R)$ if and only if A_1 is the right subset of A_2 (or vice versa) where $A_1, A_2 \in V(G_n^R)$.

The left power set graph G_n^L is a graph with vertex set $V(G_n^L) = \mathcal{P}([n]) \setminus \{\emptyset\}$ and the edge set $E(G_n^L)$ defined as follows:

- For any $A_1, A_2 \in V(G_n^L)$, if $A_1 \setminus A_2 \neq \emptyset$ and $A_2 \setminus A_1 \neq \emptyset$, then $(A_1, A_2) \in E(G_n^L)$, and
- For any $A_1, A_2, A_3 \in V(G_n^L)$, if $A_1 \setminus A_2 \neq \emptyset$, $A_2 \setminus A_1 \neq \emptyset$, and $A_1, A_2 \subset A_3$, then $(A_3, \text{Left}(A_1, A_2)) \in E(G_n^L)$.

The Figure 1 depicts the graphs G_3^L and G_3^R . Note that the complement graph of G_3^L is G_3^R , which is true in general.

Figure 1: The graphs G_3^L and G_3^R

Lemma 2.1. For a positive integer n, the complement graph of G_n^L is G_n^R .

Proof. It is enough to prove that for any two distinct sets $A_1, A_2 \in \mathcal{P}([n]) \setminus \{\emptyset\}, (A_1, A_2) \in E(G_n^L)$ if and only if $(A_1, A_2) \notin E(G_n^R)$. First, we prove that $(A_1, A_2) \in E(G_n^L)$ implies $(A_1, A_2) \notin E(G_n^R)$. There are two cases: (i) Neither $A_1 \subset A_2$ nor $A_2 \subset A_1$. So $A_1(A_2)$ is not a right subset of $A_2(A_1)$ and hence $(A_1, A_2) \notin E(G_n^R)$. (ii) W.l.o.g., assume $A_1 \subset A_2$. Since $(A_1, A_2) \in E(G_n^L)$ and $A_1 \setminus A_2 = \emptyset$, by definition, there exists a subset A_3 of A_2 such that $A_1 \setminus A_3 \neq \emptyset$, $A_3 \setminus A_1 \neq \emptyset$ and Left $(A_1, A_3) = A_1$. Note that Left $(A_1, A_3) = A_1$ implies $a = m(A_1 \setminus A_3) < b = m(A_3 \setminus A_1)$. Moreover, $a \in A_1, b \notin A_1$ and $b \in A_2$ implies A_1 is not a right subset of A_2 . Since $A_1 \subset A_2$, A_2 is not a right subset of A_1 . Hence $(A_1, A_2) \notin E(G_n^R)$.

Next, we prove that $(A_1, A_2) \notin E(G_n^L)$ implies $(A_1, A_2) \in E(G_n^R)$. Suppose $(A_1, A_2) \notin E(G_n^L)$. Then either $A_1 \setminus A_2 = \emptyset$ or $A_2 \setminus A_1 = \emptyset$. W.l.o.g., assume $A_1 \subset A_2$. It is enough to prove that A_1 is a right subset of A_2 . On the contrary, suppose A_1 is not a right subset of A_2 . Then there exists $b \in A_2 \setminus A_1$ such that $a = m(A_1) < b$. Define a set $A_3 = (A_1 \setminus \{a\}) \cup \{b\}$. It is clear that, A_1 and A_3 are proper subsets of A_2 . Also $a \in A_1 \setminus A_3$, $b \in A_3 \setminus A_1$

and Left $(A_1, A_3) = A_1$. This contradicts $(A_1, A_2) \notin E(G_n^L)$. Therefore, A_1 is a right subset of A_2 and hence $(A_1, A_2) \in E(G_n^R)$.

Next, we construct the components of G_n^R recursively by defining a sequence of graphs M_n , as follows (see Figure 2):

- 1. M_1 is a graph with $V(M_1) = \{1\}$ and $E(M_1) = \emptyset$.
- 2. For any positive integer i > 1, M_i is a graph with vertex set

$$V(M_i) = \{i\} \cup \{A \cup \{i\} : A \in \bigcup_{j=1}^{i-1} V(M_j)\}$$
 and edge set $E(M_i) = E_i \cup \{(A, \{i\}) : A \in V(M_i) \setminus \{i\}\}$ where $E_i = \{(A, B) : A, B \in V(M_i) \text{ and } (A \setminus \{i\}, B \setminus \{i\}) \in \bigcup_{j=1}^{i-1} E(M_j)\}.$

Figure 2: The graphs M_1, M_2, M_3, M_4

In the next section, we compute the clique number, independence number for G_n^R and G_n^L .

3 Enumeration of independent sets and cliques

Observation 3.1. a. Let $A, B \in V(G_n^R)$ such that $A, B \neq \{n\}$. Then $(A, B) \in E(G_n^R)$ if and only if $(A \setminus \{n\}, B \setminus \{n\}) \in E(G_{n-1}^R)$.

b.
$$V(M_1 \cup M_2 \cup ... \cup M_n) = \mathcal{P}([n]) \setminus \{\emptyset\}$$
, $V(M_n) = \mathcal{P}([n]) \setminus \mathcal{P}([n-1])$ for $n > 1$.

c. For a clique A_1, A_2, \ldots, A_p in M_n , there exists a chain of subsets $A_1 \subset A_2 \subset \ldots \subset A_p$ where A_i is a right subset of A_j , $1 \leq i < j \leq p$.

Theorem 3.1. For a positive integer n,

- 1. M_n is isomorphic to the join of K_1 and $\bigcup_{i=1}^{n-1} M_i$.
- 2. $G_n^R = \bigcup_{i=1}^n M_i = M_n \cup G_{n-1}^R$.
- 3. M_n and G_n^R are subclasses of chordal graphs.

Proof. Define $f: V(M_n) \mapsto V(K_1 \oplus \bigcup_{i=1}^{n-1} M_i)$ as follows: Let $V(K_1) = \{x\}$ For every $A \in V(M_n)$,

$$f(A) = \begin{cases} A \setminus \{n\}, & \text{if } A \neq \{n\} \\ x, & \text{if } A = \{n\} \end{cases}$$

It is easy to verify that f is bijective function which preserves adjacency. By the construction, M_n is the n^{th} component of G_n^R . Hence $G_n^R = \bigcup_{i=1}^n M_i = \prod_{i=1}^n M_i$

 $M_n \cup G_{n-1}^R$.

Also note that, M_n is constructed by taking co-join of $M_1, M_2, \ldots, M_{n-1}$ and finally applying join with K_1 . It is clear that M_1 , M_2 and M_3 are chordal. If a graph G is chordal, then $K_1 \oplus G$ is also chordal. Hence M_n and G_n^R are chordal.

Theorem 3.2. For a positive integer n,

- 1. $\omega(M_n) = 1 + \omega(M_{n-1})$ for n > 1, $\omega(M_1) = 1$ and $\omega(M_n) = n$.
- 2. $\omega(G_n^R) = \alpha(G_n^L) = n$.
- 3. $\alpha(M_n) = 2\alpha(M_{n-1})$ for $n \ge 3$, $\alpha(M_1) = \alpha(M_2) = 1$, $\alpha(M_3) = 2$, and hence $\alpha(M_n) = 2^{n-2}$.
- 4. $\alpha(G_n^R) = \omega(G_n^L) = 2^{n-1}, n \ge 3.$
- 5. The number of maximum independent sets in M_n is $2^{2^{n-3}}$, $n \geq 3$. Also, the number of maximum independent sets in G_n^R is $2^{2^{n-2}}$. Similarly, the number of maximum cliques in G_n^L is $2^{2^{n-2}}$, $n \geq 2$.
- 6. $\mathcal{N}(M_n) = 1 + \prod_{i=1}^{n-1} \mathcal{N}(M_i)$ and $\mathcal{N}(G_n^R) = \mathcal{N}(G_{n-1}^R)[1 + \mathcal{N}(G_{n-1}^R)]$ where \mathcal{N} is the number of maximal independent sets.

7. [n] and all its right subsets forms a unique clique of size n in M_n . Also, they form a unique independent set of size n in G_n^L .

Proof. The proof of 1, 2, 3, 4 are simple applications of Theorem 3.1. We know that $w(M_1)=1, \quad w(M_2)=2, \quad w(M_3)=3$. Assuming the result for n-1,

$$\omega(M_n) = \omega(K_1 \oplus \bigcup_{i=1}^{n-1} M_i)$$

$$= \omega(K_1) + \max\{\omega(M_1), \omega(M_2), \dots, \omega(M_{n-1})\}$$

$$= 1 + \omega(M_{n-1}) = n \qquad \text{(By induction)}$$

Now,

$$\omega(G_n^R) = \omega(\bigcup_{i=1}^n M_i)
= max\{\omega(M_1), \omega(M_2), \dots, \omega(M_n)\}
= \omega(M_n) = n$$

$$\alpha(M_n) = \alpha(K_1 \oplus \bigcup_{i=1}^{n-1} M_i)$$

$$= \max\{\alpha(K_1), \alpha(M_1) + \alpha(M_2) + \ldots + \alpha(M_{n-1})\}$$

$$= \sum_{i=1}^{n-1} \alpha(M_i)$$

$$= \sum_{i=1}^{n-2} \alpha(M_i) + \alpha(M_{n-1}) = 2\alpha(M_{n-1})$$
 (By induction)

But we know that $\alpha(M_1)=1$, $\alpha(M_2)=1$, and $\alpha(M_3)=2$; hence $\alpha(M_n)=2^{n-2}, n\geq 3$. By Theorem 3.1,

$$\alpha(G_n^R) = \sum_{i=1}^n \alpha(M_i) = 2^{n-1}$$

Let us denote the number of maximum independent sets by ni. By the construction of M_n ,

$$ni(M_n) = ni(M_{n-1}) \underbrace{ni(M_{n-2}) \cdots ni(M_2) ni(M_1)}_{= ni(M_{n-1}) ni(M_{n-1})}_{= (ni(M_{n-1}))^2}$$

Since $ni(M_1) = 1$ and $ni(M_2) = 2$, we get $ni(M_n) = 2^{2^{n-3}}$ for $n \ge 3$ and $ni(G_n^R) = 2^{2^{n-2}}$.

Again by Theorem 3.1 (1), we can obtain Golomb's non-linear recurrence relation

$$\mathcal{N}(M_n) = 1 + \prod_{i=1}^{n-1} \mathcal{N}(M_i) \quad ; \quad \mathcal{N}(M_1) = 1.$$
 (1)

Also by Theorem 3.1 (2), we obtain

$$\mathcal{N}(G_n^R) = \mathcal{N}(G_{n-1}^R)[1 + \mathcal{N}(G_{n-1}^R)]$$
 (2)

Hence by Equations (1) and (2), the number of maximal independent sets in G_n^R can be computed in $O(\log|V(G_n^R)|)$ time.

By Observation 3.1(c), $\{1, 2, 3, ..., n\}, \{2, 3, ..., n\}, \{3, ..., n\}, ..., \{n-1, n\}, \{n\}$ forms a unique clique of size n in M_n . And hence these sets forms a unique independent set of size n in G_n^L .

As a consequence of Theorem 3.2, we have

Corollary 3.1. Counting the number of maximal independent sets in G_n^R can be done in polynomial $(\log |V(G_n^R)|)$ time. (By Theorem 3.2(6))

Corollary 3.2. There are $2^{(\frac{|V(G_n^L)|+1}{4})}$ maximum cliques in G_n^L . (By Theorem 3.2(5))

4 Power set graphs

We discuss a superclass \mathcal{F}_n (Power set graphs) of G_n^L and prove that the class admits a polynomial time algorithm to solve the MISP. A graph $G \in \mathcal{F}_n$ if $V(G) = \mathcal{P}([n]) \setminus \{\emptyset\}$ such that

- 1. for every $A_1, A_2 \in V(G)$, if $A_1 \setminus A_2 \neq \emptyset$ and $A_2 \setminus A_1 \neq \emptyset$, then $(A_1, A_2) \in E(G)$, and
- 2. for every $A_1, A_2, A_3 \in V(G)$, if $A_1, A_2 \subset A_3, A_1 \setminus A_2 \neq \emptyset$ and $A_2 \setminus A_1 \neq \emptyset$, then at least one of A_1 and A_2 is adjacent to A_3 in G.

Observation 4.1. Let $L_i = \{A \in \mathcal{P}([n]) : |A| = i\}$ for $i \geq 1$. For a graph $G \in \mathcal{F}_n$, (i) $L_i \cap V(G)$ induces a clique, (ii) V(G) can be partitioned into at most n cliques, (iii) every vertex in $L_i \cap V(G)$ is not adjacent to atmost one vertex in $L_j \cap V(G)$ for $1 \leq j < i \leq n$ and (iv) $\alpha(G) \leq n$ and $|V(G)| = 2^n - 1$.

Figure 3: A graph $G \in \mathcal{F}_3$

```
Algorithm 1 Finding a maximum independent set of G \in \mathcal{F}_n

Input: A graph G \in \mathcal{F}_n

Output: A maximum independent set of the graph G

I := \emptyset

for all i = n, n - 1, \ldots, 1 do

for all A \in L_i do

S_A := \{B : (A, B) \notin E(G) \quad \& \quad B \in \bigcup_{j=1}^{i-1} L_j\}

S \leftarrow \mathbf{MIS}(S_A)

if (|I| \leq |S|) then

I \leftarrow S \cup A

end if

end for

end for

Return I
```

Observation 4.1 lead us to a polynomial time algorithm to compute MISP in \mathcal{F}_n . In Algorithm 1, MIS (S_A) finds the power set of $S_A(|S_A| \leq n = log(|V(G)|+1))$ and computes a maximum independent subset of S_A in G by an exhaustive search which takes $O(|V(G)|^2log|V(G)|)$. As this step is repeated for every vertex in G, the time complexity is $O(|V(G)|^3log|V(G)|)$.

5 Conclusion

In this paper, we provided a subclass G_n^R of chordal graphs for which the number of maximal independent sets can be computed in $O(\log|V(G_n^R)|)$ time. We gave a recursive construction of the class G_n^R and proved that there are $2^{(\frac{|V(G_n^L)|+1}{4})}$ maximum cliques in G_n^L . In addition, we proved that MISP for the class \mathcal{F}_n , a superclass of G_n^L can be solved efficiently.

References

- [1] A. V. Aho, N. J. A. Sloane, Some Doubly Exponential Sequences, Fibonacci Quarterly 11(1970), 429-437.
- [2] J. Flum, M. Grohe, The parameterized complexity of counting problems, SIAM J. Comput. 33(2004), 892-922.
- [3] S. W. Golomb, On Certain Nonlinear Recurring Sequences, Amer. Math. Monthly 70(1963), 403-405.
- [4] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press, Oxford, Third Ed., 1954.
- [5] R. Motwani, R. Raghavan, Randomized Algorithms, Cambridge University Press, 1997.
- [6] Y. Okamoto, T. Uno, R. Uehara, Counting the number of independent sets in chordal graphs, Journal of Discrete Algorithms 6(2008), 229-242.
- [7] J. S. Provan, M. O. Ball, The complexity of counting cuts and computing the probability that a graph is connected, SIAM J. Comput. 12(1983), 777-788.
- [8] S. P. Vadhan, The complexity of counting in sparse, regular, and planar graphs, SIAM Journal on Computing 31(2) (2001), 398-427.
- [9] D. B. West, Introduction to graph theory, Prentice Hall, USA, 1996.