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Abstract

In the paper “Eternal security in graphs” by Goddard, Hedet-
niemi and Hedetniemi (2005, [4]), the authors claimed that, for any
Cayley graph, the eternal m-security number equals the minimum
cardinality of a dominating set. However, the equality is false. In
this note, we present a counterexample and comment on the eternal
m-security number for Cayley graphs.

1 Introduction

Goddard, Hedetniemi, and Hedetniemi [4] studied the problem of determin-
ing the eternal 1-security number of a graph. They defined this problem
as finding the minimum cardinality of an eternal 1-secure set of the graph.
This cardinality was first considered by Burger et al. [2].

The same authors also investigated a related problem: determining the
eternal m-security number of a graph, denoted by o, (some authors denote
the eternal m-security number by 4%°). This problem consists in finding
the minimum cardinality of an eternal m-secure set of the graph. For a
better understanding, we state the problem in a formal way. To this end,
given a simple graph G = (V, E), we first define the concepts of a shift and
of a dominating set.

Take two sets of vertices A, B C V. A shift from A to B is a bijective
function f: A — B such that, if f(u) = v, then u = v or uv € E. Notice
that there is a shift from A to B only if |A| = |B|.
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A set D C V is a dominating set of G if, for each v € (V \ D), there is
a vertex u € D such that uv € E. We denote the minimum cardinality of
a dominating set of G by v(G).

A dominating set Dy C V is an eternal m-secure set of G if, for any
sequence of vertices v1,ve,... € V, one can construct a sequence of domi-
nating sets D;, Ds,... of G such that, fori =1,2,...:

1. There is a shift from D;_, to D;;
2. v; € Di.

The problem of determining o, admits the following interpretation.
Consider guards placed on the vertices of a graph with at most one guard
per vertex. Suppose that an attack occurs at a vertex. To defend the
attack, one guard must move from an adjacent vertex to the attacked one,
unless it already had a guard. The other guards may move to prepare
to defend a next attack. The problem is to find the minimum number of
guards so that attacks can be defended indefinitely. The computation of
the eternal 1-security number of a graph corresponds to a version of this
problem in which only one guard can move per defense. We shall use this
interpretation in later arguments since it is more intuitive, although not
strictly formal.

In Goddard et al. [4], the authors established the value of o,,, for graphs
from several classes. They also presented bounds on o, for general graphs.
One class studied by the authors is that of Cayley graphs, for which they
stated Theorem 1 reproduced below. However, we found that this result is
not valid. Prior to write down the theorem and exhibit the counterexample,
we recall the definition of a Cayley graph.

A Cayley graph is a simple graph G = (V, E) defined as follows. Con-
sider a group I and a set C of elements of I satisfying;

(i) C does not contain the identity of T;
(ii) If z € C, then 27! € C (z~! is the inverse of element z in I').

The Cayley graph G = CG(T, C) of I" with respect to C is such that V =T
and zy € E if and only if z = hy,h € C. For connecting the vertices of
G, the elements of C and C itself are called connectors and connecting set.
One can prove that G is connected if and only if C generatesT.

The theorem presented in Goddard et al. [4] follows. We disprove it by
showing a Cayley graph for which v < o,,,.

Theorem 1 (Goddard et al. {4, Theorem 10}). For any Cayley graph G,
Y(G) = o (G).

This paper is organized as follows. In the next section, we briefly de-
scribe the groups used for constructing the graph that invalidates Theorem
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1. In Section 3, we discuss the proof given by Goddard et al. [4]. In Section
4, we present the counterexample that we encountered. In Section 5, we
comment on computational tests we carried out with Cayley graphs in an
attempt to establish the exact relation between v and o, for this class.
Finally, in Section 6, we make some final remarks.

2 Groups Dg, Z3 and D¢ X Z3

In this section, we define the groups Dg, Z3 and Dg x Z3. For more details
on these groups, see, for example, the textbook by Dummit and Foote (3].

A regular polygon of n sides have 2n symmetries: n rotations and n
reflections. Because of this number, the set of its symmetries is denoted
by D,,. The set D5, under the operation of composition is a group. This
group is called the dihedral group and, with some abuse of notation, is also
denoted only by Ds,.

The elements of the dihedral group Da,,, in multiplicative notation, are
given by

Dyn = {1,7,7%,...,7"" 1 s,sm, 572, ... sr™ 1Y,

with 1,7,72,...,7""! corresponding to the n rotations and s, sr,sr2,...,
s 1 corresponding to the n reflections of the polygon. This group admits
the following presentation:

Doy ={r,s|r" =s*=1,rs = sr7}).

From this presentation, one can obtain the result of operations on elements.

The group Ds is the defined by the symmetries of a triangle. To facilitate
the arguments made further in this paper, we display the multiplication
table of this group in Figure 1.

Now, the set of possible remainders after dividing an integer by 3 is
Z3 = {0,1,2}. Under the operation of addition modulo 3, this set is a
group. This group is an instance of the cyclic group and is denoted Z3, like
the set itself.

The groups Dg and Z3 can be used to form a new group through their
direct product. The direct product of D¢ and Z3 is denoted Dg x Z3 and is
defined as follows.

The set of elements of the group Dg x Z3 is given by the Cartesian
product of the sets Dy and Z3 — also denoted Dg x Z3. We have that

Dg x Z3 = {(1,0),(1,1),(1,2),(r,0),(r, 1), (r,2),
(r%,0), (r?,1),(r%,2),(s,0), (s, 1), (s,2),
(s7,0), (sr, 1), (s7,2), (sr2,0), (s72,1), (s72, 2)}.
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Figure 1: Compositions of symmetries for Dg

The operation of the group occurs componentwise: the result for the first
half of the elements is shown in Figure 1 and the result for the second half
is given by the addition modulo 3.

3 The proof by Goddard et al. [4]

We use the group Dg to exhibit a flaw in the proof by Goddard et al. [4] to
Theorem 1. The group Dg is non-abelian (non-commutative) and it is its
non-commutative property that allows us to reach our goal.

First of all, let us define a Cayley graph G; = CG(Ds,C)) of this
group. For that, we choose the connecting set C; = {s, st}. From the table
in Figure 1, we have that G; is the graph depicted in Figure 2(a).

st sT st
1 r 1 r 1 r
8 sr? s sr? s sr2
r? r? 2
(a) Gy (b) D, (black vertices) (c) hD; (black vertices)

Figure 2: The Cayley graph G, and the sets of vertices D; and hD;

Now, let us follow the proof given by Goddard et al. [4]. Consider the
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dominating set Dy = {r?, sr} pictured in Figure 2(b). Suppose an attack
occurs at 7. The only vertex in D; adjacent to r is sr. As they are adjacent,
for some h € Cy, r = h(sr). By Figure 1, h = s.

Let zA and Az, for an element = € Ds and a set A = {a1, a2, ...,ax} C
De, stand for
zA = {za,,zay,...,zax} and
Az = {a12, a2z, . . ., axx} respectively.

Goddard et al. [4] claimed that
hDy = sD; = {sr?,s(sr)} = {sr?,r}

is a dominating set. However, as it is clear from Figure 2(c), this is not
true.
We raise the possibility that the authors mistakenly considered the map-
ping
f(v) = hv, for each vertex v of G; (1)

an automorphism of G,. Instead, by a known result for Cayley graphs [1],
it is the mapping

f(v) = vh, for each vertex v of G, 2)

which is an automorphism of G;.

We also observe that, in general, a mapping of the form (2) does not
correspond to a shift from one dominating set to another. As an example,
let us consider applying a mapping of the form (2) to a dominating set of
the Cayley graph Gy = CG(Dg,C3) defined by the connecting set Cp =
{s,sr,7,7?} - see a drawing of G in Figure 3(a). The dominating set
is Dy = {sr,sr?} - shown in Figure 3(b). Let us choose h = sr2. The
outcome is: sr is mapped to the adjacent vertex r, but sr? is mapped to
the non-adjacent vertex 1 — the resulting dominating set is shown in Figure
3(c).

At last, we point out that the proof by Goddard et al. [4] and their
result are valid for a subclass of Cayley graphs. This subclass consists of
graphs defined as follows.

A Cayley graph G is obtainable from an abelian group if there is an
abelian group I' and a connecting set C such that G = CG(T',C). Note
there may also be a non-abelian group IV and a connecting set C’ satisfying
G = CG(I",C"). For graphs defined in this way, mappings of the forms (1)
and (2) coincide (because the elements commute). For this reason, the
following theorem holds.

Theorem 2. For any Cayley graph G obtainable from an abelian group,
Y(G) = om(G).
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sr ST ST

1 r 1 r 1 T
8 sr2 8 sr2 s sr2?
2 2 72
(a) G2 (b) D2 (black vertices) (c) D2h (black vertices)

Figure 3: The Cayley graph G2 and the dominating sets Dy and Dph

4 A counterexample

We present a Cayley graph G such that ¥(G) < 0,(G). The construction
of G follows immediately. In the sequel, we prove our claim.

We construct G = CG(Dg x Z3,C) from the group D¢ x Z3. For sim-
plicity, we label the vertices of G as v, v2,...,v1s according to the corre-
spondence shown in Table 1. We choose the connecting set

C= {(s’ 1)7 (31 2)’ (sr, 1)» (37‘, 2): ("" 1): (7'2, 2)}
to provide the edges of G. The graph is pictured in Figure 4.

n Vo v3 Vg Us Vs
(1,0) | (1,1) | (1,2) (r,0) (r,1) (r,2)

V7 Ug Vg V10 V11 V12
(r2,0) | (*2,1) | (+%,2) | (5,0) (s,1) (s,2)

V13 V14 V1s V16 U7 ;]
(s7,0) | (sm,1) | (57, 2) | (s72,0) | (s72,1) | (572,2)

Table 1: Labels of vertices of G

We prove our claim in Theorem 6. Before doing so, we provide three
lemmas. In the first one, we observe that v(G) = 3. In the second lemma,
we show that vertex v; is contained in only one minimum dominating set.
In the last lemma, we argue that no vertex is contained in more than one
minimum dominating set. Finally, after the latter, we exhibit all minimum
dominating sets of G.
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Lemma 3. It holds that v(G) = 3.

Proof. As G is 6-regular, two vertices dominate at most 14 vertices. Since
G has 18 vertices, we have that v(G) > 2.

Observing Figure 4, we can see the set {v;,vs,vs} is a dominating set.
Therefore, v(G) = 3. O

Lemma 4. The vertez v, is contained in only one minimum dominating
set.

Proof. Let us construct & minimum dominating set D that contains v;. By
Lemma 3, we have that D has three vertices. So, our task is to choose two
more vertices.

Figure 4: A Cayley graph G such that ¥(G) = 3 and 0,,(G) = 4.

Since D contains vy, we can see in Figure 4 that 7 vertices are already
dominated by D: the vertices with thick border. Also in Figure 4, we can
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see that every vertex except vs and vs is adjacent to at least two already
dominated vertices. Thus, two such vertices dominate at most 10 more
vertices (summing up 17 vertices). Therefore, to construct D, we must
choose at least one of vg and vs.

Suppose we choose vg. By Figure 4, we can see the only way of choos-
ing one more vertex and dominating all vertices not yet dominated, is by
selecting vg. Then, suppose we pick vs. By Figure 4, we can see vg must
also be chosen for us to end up with a minimum dominating set. Hence
D = {v),vs,v8}. a

Lemma 5. No vertex of G is contained in more than one minimum dom-
inating set.

Proof. Suppose some vertex v; is contained in two different minimum dom-
inating sets Dy = {v;,v;, vk} and Dy = {v;,v,vm}. Since G is vertex-
transitive (by a known result for Cayley graphs [1]), there is an auto-
morphism o mapping v; to v;. But, then, D] = {v1,a(v;),a(vk)} and

5 = {v1, a(v;), a(vm)} are two different dominating sets containing v,
which contradicts Lemma 4. a

We can state, from Figure 4, that the following 6 sets are dominating
sets of G:

{vl)vsva}’ {'U3,1)5,‘U7}, {’U2,U4,'Ug}, (3)
{v11,v1s, v16}, {v10, V14, V18}, {12, V13, 17}

By Lemma 5, these are the only minimum dominating sets.
Theorem 6. It holds that ¥(G) < o (G).

Proof. To prove the theorem, we consider three guards defending the ver-
tices of G. First of all, it is obvious that, to defend the vertices of a graph,
guards must always be placed on vertices that form a dominating set, be-
cause an attack at an undominated vertex cannot be defended. In the case
of three guards defending the vertices of G, they must always be placed on
a minimum dominating set of G.

Consider then an attack at vertex v;. By Lemma 4, D; = {v1,vs,vs}
is the only minimum dominating set containing v,. This fact implies that,
after defending an attack at v,, guards must be placed on the vertices of
D,.

Consider now an attack at vertex vi3. As listed in (3), Dy = {v12, t13,
vy} is the only minimum dominating set containing v13. As a consequence,
after defending an attack at v;3, guards must be placed on the vertices of
D,. However, as we can see from Figure 4, guards cannot move from
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vertices v, vs and vg to vy2, vi3 and vy7, because v;3 and v;7 are adjacent
to vg but to neither v; nor vsg.

Hence, there is a sequence of three attacks that cannot be defended by
the three guards. So, at least four guards are needed to defend the vertices
of G. Therefore, 0,,(G) = 4 > 3 = 7(G) and the theorem is proved. a

5 Computational testing

The graph presented in the previous section was found through extensive
computational testing. In this section, we describe some elements of this
experiment and report relevant information.

5.1 Data

We searched 7871 Cayley graphs of non-abelian groups of order up to 31
and of order 33 catalogued by Royle [5]. These graphs have degree (recall
that Cayley graphs are regular) less than half of the number of vertices.
We denote them by set 1.

We also searched 7871 Cayley graphs which are the complements of the
graphs of set 1. These are graphs having degree greater or equal than half
of the number of vertices. We refer to them as set 2.

5.2 Results

One interesting outcome of our experiments is that, for almost all graphs,
we found that ¥ = ¢,,. Just for 61 out of 7871, i.e., 0.77% of them, we
obtained a different result. Another relevant fact is that, in these cases, the
result was always that v + 1 = o,,. We also noted that for all graphs of
set 2, v = o,

Motivated by the above findings, we searched for a graph for which v+
1 < op,. However, as determining o,, becomes much more time-consuming
as the graphs get bigger, an exhaustive search over a huge number of Cayley
graphs of non-abelian groups rapidly becomes impractical. We then moved
to the strategy of generating specific graphs to attain our goal.

One successful example is the graph G, consisting of two disconnected
copies of the graph G presented in Section 4. This graph is a Cayley graph
of the group (Dg x Z3) x Z3. One can see that ¥(G3) =6 < 8 = 0,,(G2).
Moreover, it is possible to generate the graphs

e G4 consisting of four disconnected copies of G;
e (g consisting of eight disconnected copies of G}

e and so forth.
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For G,',i = 4, 8, “aey Jm(Gi) - ’)’(G,') =1.
It is worth emphasizing, however, that G; is not a connected graph. We
could not discover a connected Cayley graph such that v+ 1 < op,.

6 Conclusion

We disproved a result by Goddard et al. {4] on the eternal m-security num-
ber of Cayley graphs. We did this by presenting a Cayley graph for which
v < 0m. We remarked, however, that the result of Goddard et al. is valid
for a large subclass of Cayley graphs: the Cayley graphs obtainable from
abelian groups.

We also determined computationally the value of oy, for 7871 Cayley
graphs of non-abelian groups. For almost all of them, we got that v is
indeed equal to o,,. For the remaining graphs, we found that v +1 = 0.
We leave open the question of whether there exists a connected Cayley
graph having v+ 1 < o,.
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