Cyeclic, Simple, and Indecomposable Three-fold
Triple Systems

Nabil Shalaby Bradley Sheppard Daniela Silvesan

Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John’s, Newfoundland
CANADA A1C 587

April 3, 2014

This paper is dedicated to the memory of Dr. Rolf Rees
(1960-2012).

Abstract

In 2000, Rees and Shalaby constructed simple indecomposable
two-fold cyclic triple systems forallv =0, 1, 3, 4, 7, and 9 (mod 12)
where v = 4 or v > 12, using Skolem-type sequences.

We construct, using Skolem-type sequences, three-fold triple sys-
tems having the properties of being cyclic, simple, and indecompos-
able for all admissible orders v, with some possible exceptions for
v =9 and v = 24¢ + 57, where ¢ > 2 is a constant.
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1 Introduction
A X-fold triple system of order v, denoted by TSy (v), is a pair (V, B) where

V is a v-set of points and B is a set of 3-subsets (blocks) such that any
2-subset of V' appears in exactly A blocks. An automorphism group of an
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TSa(v) is a permutation on V leaving B invariant. An TSy (v) is cyclic if
its automorphism group contains a v-cycle. If A = 1, an TS, (v) is called
Steiner triple system and is denoted by STS(v). A cyclic STS(v) is denoted
by CSTS(v).

An TS, (v) is simple if it contains no repeated blocks. An TSy(v) is
called indecomposable if its blocks set B cannot be partitioned into sets B,
B3 of blocks of the form TSy, (v) and TSy, (v), where A; + Az = A with
A, Az > 1. A cyclic TSx(v) is called cyclically indecomposable if its block
set B cannot be partitioned into sets By, B2 of blocks to form a cyclic
TSy, (v) and TSy, (v), where A} + A2 = A with A3, A2 > 1.

The constructions of triple systems with the properties cyclic, simple,
and indecomposable, were studied by many researchers for one property
at a time; for example, cyclic triple systems for all As were constructed in
[4, 13], simple for A = 2 in [16] and simple for every v and X satisfying the
necessary conditions in [6]. Also, some of the properties were combined in
studies. For example, in [17], cyclic and simple two-fold triple systems for
all admissible orders were constructed, while in [1, 5, 7, 9, 10, 19|, simple
and indecomposable designs for A = 2,3,4,5,6 and all admissible v were
constructed. In [18], simple and indecomposable designs were constructed
for all v > 24X — 5 satisfying the necessary conditions. For the general case
of A > 6, Colbourn and Colbourn (3] constructed a single indecomposable
TSx(v) for each odd A. Shen [15] used Colbourn and Colbourn result and
some recursive constructions to prove the necessary conditions are asymp-
totically sufficient. Specifically, if A is odd, then there exists a constant
vp depending on A with an indecomposable simple TSy (v) design for all
v > vp satisfying the necessary conditions. In [8], the authors constructed
two-fold cyclically indecomposable triple systems for all admissible orders.
The authors also checked exhaustively the cyclic triple systems TSy (v) for
A=2,v<33and X =3, v < 21 that are cyclically indecomposable and
determined if they are decomposable (to non cyclic) or not.

In 2000, Rees and Shalaby [11] constructed simple indecomposable two-
fold cyclic triple systems for all v =0, 1, 3, 4, 7, and 9 (mod 12) where
v =4 or v > 12 using Skolem-type sequences. They acknowledged that the
analogous problem for A > 2 is more difficult.

In 1974, Kramer [9] constructed indecomposable three-fold triple sys-
tems for all admissible orders. We noticed that Kramer’s construction for
v =1 or 5 (mod 6) gives also cyclic and simple designs.

In this paper, we construct three-fold triple systems having the prop-
erties of being cyclic, simple, and indecomposable for all admissible orders
v =3 (mod 6), except for v =9 and v = 24c+ 57, ¢ > 2.
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2 Preliminaries

Let D be a multi set of positive integers with |D| = n. A Skolem-type
sequence of order n is a sequence (si1,...,8;),t > 2n of ¢ € D such that for
each i € D there is exactly one j € {1,...,¢t — i} such that s; = s;4; =
i. Positions in the sequence not occupied by integers i € D contain null
elements. The null elements in the sequence are also called hooks, zeros
or holes. As examples, (1,1,6,2,5,2,1,1,6,5) is a Skolem-type sequence of
order 5 and (7,5,2,0,2,0,5,7,1,1) is a Skolem-type sequence of order 4.

Some special Skolem-type sequences are described below.

A Skolem sequence of order n is a sequence S, = (81, S2,...,52) of 2n
integers which satisfies the conditions:

1. for every k € {1,2,...,n} there are exactly two elements s;,s; € S
such that s; = s; = k, and

2. ifsi=s;=k, i<j,thenj—i=k.

Skolem sequences are also written as collections of ordered pairs {(a;, b;) :
1<i<n, by —a; =1} with UL, {ai, b} ={1,2,...,2n}.

For example, S5 = (1,1, 3,4,5,3,2,4,2,5) is a Skolem sequence of order
5 or, equivalently, the collection {(1,2),(7,9), (3, 6), (4, 8), (5,10)}.

Equivalently, a Skolem sequence of order n is a Skolem-type sequence
witht=2nand D={1,...,n}.

A hooked Skolem sequence of order n is a sequence hS, = (sy,...,52n-1,
San4+1) of 2n + 1 integers which satisfies the above definition, as well as
Sopn = 0.

As an example, hSg = (1,1,2,5,2,4,6,3,5,4,3,0,6) is a hooked Skolem
sequence of order 6 or, equivalently, the collection {(1,2),(3,5),(8,11),
(6,10),(4,9), (7,13)}.

A (hooked) Langford sequence of length n and defect d, n > d is a
sequence L7 = (I;) of 2n (2n + 1) integers which satisfies:

1. forevery k € {d,d+1,...,d+n—1}, there exist exactly two elements
li,l; € L such that l; =1; =k,

2. ifli =1 =kwithi<j thenj—i=k,
3. in a hooked sequence I3, = 0.

We noticed that Kramer’s construction [9] can be obtained using the
canonical starter v—2,v—4,...,3,1,1,3,...,v—4,v—2 and taking the base
blocks {0, 7, b;}(mod v)|: = 1,2,..., %(v—l). So, Kramer’s construction can
be obtained using Skolem-type sequences.

We prove next, that Kramer’s construction for indecomposable triple
systems produces simple designs.
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Theorem 2.1 [9] The blocks {{0,, —~a}(mod v)la =1,..., (v — 1)} for
= 1 or 5(mod 6) form a cyclic, simple, and indecomposable three-fold
triple system of order v.

Proof Let v = 6n + 1. The design is cyclic and indecomposable [9]. We
prove that the cyclic three-fold triple systems produced by {{0,a,—a}
(mod v)ja =1,..., (v — 1)} is also simple.

Suppose that the construction above produces {z,y, 2} as a repeated
block. Any block {z,y,z} is of the form {0,%,6n + 1 — i} + k for some
i=12,..., %(v —1) and k € Zgn+1. Hence, if {z,y, 2} is a repeated block
we have

{0,i1,6n+1 —i1}+k1 = {0,i2,6n+1—i2}+k2

whence,
{0,i2,6n+1-—i2} = {0,i1,6n+1—i1}+k
for some 13,12 € {1,2,..., %(v —1)} and some k € Zgn41-

If k =0, we have i3 = 6n+ 1 —4; and i; = 6n + 1 — 42, which is
impossible since 6n + 1 —4; > iz and 6n + 1 — i3 > %; by definition (i.e.,
i1,i2 € {1,2,...,3n} while 6n+1—4;,6n+1—-i3 € {3n+1,...,6n}.

If k = i3, we have htie= ?n +,1 . or

n+l—i;+ia=6n+1-—1s
i1 +ipg=6n4+1—15
6n+1—14) +ig=6n+1.

Since both i; and iy are at most 3n, it is impossible to have i; + i3 =
6n + 1. Also 71 # 2.
hWh+bn+l—ixg=6n+1
bn+l—ij+6n+l—ig=is+6n+1

i1 +ig=6n+1-14 or i1 +6n+1—1d2=1p
6n+1—ix 44 =6n+1 bn+1—-4+6n+1—ix=6n+1.

Since 6n + 1 — iy > i3, it is impossible to have i; + 6n 4 1 — i3 = 1.

It follows that our design is simple. The case for v = 6n + 5 is similar.
]

In order to completely solve the case A = 3, we have new constructions
that give cyclic, simple, and indecomposable three-fold triple systems for
v =3 (mod 6), v# 9 and v # 24c+ 57,c > 2.

If K = 6n+1—1i3 we have {

3 Simple Three-fold Cyclic Triple Systems

Lemma 3.1 For every n = 0 or 1 (mod4), n > 8, there is a Skolem
sequence of order n in which s; = s =1 and szn—2 = S2n = 2.
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Proof To get a Skolem sequence of order n for n =0 or 1 (mod4), n > 8,
take (1,1, hL3~2), replace the hook with a 2 and add the other 2 at the
end of the sequence.

For n = 8, take hL§ = (8,3,5,7,3,4,6,5,8,4,7,0,6), for n = 12 take
hL3® = (9,11,3,12,4,3,7,10,4,9,8,5,11,7,6,12,5,10,8,0,6) and for the
remaining hL3 % hook a hL; ™3 (see [14], Theorem 2, Case 1) to (3,0,0, 3).

For n =1 (mod 4), n > 9, take hL3 2 (see [14], Theorem 2, Case 1). B

Example 3.1 From the above lemma we have Sg = (1,1,8,8,5,
7,3,4,6,5,8,4,7,2,6,2), Sy = (1,1,9,11,3,12,4,3,7,10,4,9,8,5,11, 7, 6,
12,5,10,8,2,6,2) and S = (1,1,9,6,4,14,15,11,4,6,13,9,16,7,12,10, 8,
5,11,14,7,15,5,13,8,10,12, 3,16, 2,3,2).

We use the following construction to get cyclic TS3(2n 4 1) for n =0
or 1 (mod 4):

Construction 3.1 (18] Let S, = (s1,82,...,52,) be a Skolem sequence
of order n and let {(a;,b;)|1 < i < n} be the pairs of positions in S, for
which b; — a; = i. Then the set F={{0,%,0:}|]1 < i < n}(mod2n+1) is a
(2n+1,3,3) — DF. Hence, the set of triples in F form the base blocks of
a cyclic TS3(2n + 1).

Then, we apply Construction 3.1 to the Skolem sequences given by
Lemma 3.1 to get cyclic three-fold triple systems that are simple and inde-
composable.

Construction 3.2 Let S, = (sy1,52,...,52n) be a Skolem sequence of order
n given by Lemma 3.1, and let {(a;,bi)|1 < i < n} be the pairs of positions
in Sy, for which b;—a; =1i. Then the set F={{0,%,b;}|1 < i < n}(mod 2n+
1) form the base blocks of a cyclic, simple, and indecomposable TS3(2n+1).

Example 3.2 If we apply Construction 3.2 to the Skolem sequence of or-
der 8: (1,1,8,3,5,7,3,4,6,5,8,4,7,2,6,2) we get the base blocks {{0, 1,2},
{0,2,16}, {0, 3,7}, {0, 4,12}, {0,5, 10}, {0, 6,15}, {0, 7,13}, {0, 8,11} }

(mod 17). These base blocks form a cyclic TS3(17) by Construction 3.1.
We are going to prove next that this design is also indecomposable and
simple.

Theorem 3.2 The TS3(6n+ 3), n = 2 produced by applying Construction
3.2 are simple, except for v=24c+ 57, ¢c> 2.

Proof Let v=2n+1,n=0o0r 1 (mod4),n > 8.
Suppose that the construction above produces {z,y,z} as a repeated
block. With regards to Construction 3.2, any block {z,y, z} is of the form
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{0,4,b;} + k for some i = 1,2,...,n and k € Zan+;. Hence, if {z,y,2} is a
repeated block we have

{0, 1, bi‘} + k= {01 t2, biz} + k2
whence,
{0’i2;biz} = {Oiil! bil} + k

for some iy,i2 € {1,2,...,n} and some k € Zan41.
If kK = 0, we have iy = b;, and i, = b;, which is impossible since
bi, > i1 +1 and by, > iz + 1 from the definition of a Skolem sequence.
i1+i2=2n+1 o i1 +i2 = by,

If £ = i3, we have r
> bi, + i = by, by, +i2 = 2n+ 1.
Since both i; and i3 are at most n, it is impossible to have ¢; +i3 = 2n+1.
i1+ bi, =2n+1 i3 +i2 = b;
If K = b;,, we have 2 !
= bi, +bi, =i24+2n+1 bi, +11 =2n+1

i + bi2 = iq
biy +b;, =2n+ 1.
Since b;, > iz , it is impossible to have i; + b;, = i2.
So, to prove that a system has no repeated blocks is enough to show

or

; o = bs ; i0 = bs
that {4 T 2= 0 ut 2= are not satisfied. Also,
b,-l+1.2=2n+1 b,-,+7,1=2n+1
we show that ¢ = 3 and b; = ";—" is not allowed, which means that our

systems has no short orbits.

For n = 8 and n = 12, it is easy to see that the Skolem sequences of
order n given by Lemma 3.1 produce simple designs.

For n = O(mod 4), n > 16, let S, be the Skolem sequence given by
Lemma 3.1. This Skolem sequence is constructed using the hooked Langford
sequence hL;~3 from [14], Theorem 2, Case 1. Since d = 4, will use only
lines (1) — (7),(14), (8%), (10%) and (11x) in Simpson’s Table. Note that
n—3 =9+ 4r in Simpson’s Table, son =12+ 4rand v =254+8r,r > 1in
this case. Because we add the pair (1,1) at the beginning of the Langford
sequence hL;"s, a; and b; will be shifted to the right by two positions.
To make it easier for the reader, we give in Table 1 the hL} ™3 taken from
Simpson’s Table and adapted for our case.

So, the base blocks of the cyclic designs produced by Construction 3.2
are {0,1,2},{0,2,v—1},{0,3,v— 2} and {0,%,b; +2} fori=4,...,n and
1= bi — Q4.

We show first that i = J and b; + 2 = % is not allowed in the above
system. In the first three base blocks is obvious that i # 3. For the
remaining base blocks we check lines (1) — (7), (14), (8+), (10%) and (11x) in
Table 1.
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a; + 2 b +2 i=bj—a; 0<3<
1) 2r+3—-j7 2r+7+j 4425 r
(2) r+2—3j 3r+9+4+3 2r4+7+4+2; r-1
3) 6r+12—-3 6r+17+4j 5425 r—1

(4) 5r+12—j Tr+18+45 2r+6+2j

(5) 3r+8 T+ 17 4r 49 -
(6) 4r +9 8r 421 4r +12 -
) 2r+6 6r +13 4r4-7 -
(14) 2r+5 6r + 16 4r +11 -
(8x)  dr+11 8r + 19 4r +8 -
(10%) 4r + 10 6r + 15 2r+5 -
(11x) 2r+4 6r + 14 4r +10 -

Table 1: hL}™3

. _ 2548
4+2j5 i 0.
2r4+74+7= -(—)'25"'8"
2r+7+2g—-i'*i’£ 0
3r+9+4j= M e
5+2j=25;|:8r @

.” (2548 =¥
67’-}-17-!-]—-'(3—7.'l
2r +6+2j = B48r 0
Tr+18+j = -1518—'1 ’

— 2548r
dr+9= 2asiery 0.
Tr 417 = 22548n)
4r +12 = 2548r
8 4921 = g25+sr1 0.
4r+7=i§8—' 0
6r +13_2525+8r2 .
. 4r + 11 = 248
Line (14) {6 16 525+8,2 <0

Line (1)
Line (2)
Line (3)
Line (4)

Line (5)

Line (6)

Line (7)

/—’\_\t—Mf—’H/—Mf-M/—Mf"J\—\

4r + 8 = -SJ'—B—T
Line (8+) { stasrery 0.

Line (10%) {2r+5 = 238r 0
me (1U* 2(2548r) V.
6+ 15 = 225180
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. 4r + 10 = 2480
Line (11x) 2(35+8 &0
6r + 14 = Js_rl

Therefore, this systems has no short orbits.

Next, we have to check that it Z? =bi, ord " + Z? = bi
bil+zg=2n+1 b, +i1=2n+1
are not satisfied.
. 4 - = 7 . . = ﬂ
Lines (1) —(1): 4+ 2'7.1 +a+2s ‘21- I J-l 10r427
44 2jo+2r+ 7+ =2548r Jo = 5

which is impossible since 7; > 0 and also integer.
44 2j 7 jo =3 j
Lines (1) - (2): 21+ T2 =30+ 9+
2r+74+2jo+2r+7+35 =25+ 8r

. _ =2r—15
J,l 3 . which is impossible since j; > 0 and also integer.
Ja=7T-2-25
) =6 ,
Lines (1) — (3): 4+2.7.1+5+2_72 ’ r+ 17+ jo
5+2jo+2r+T7+ 5 =254 8r

s
=72 which is impossible since jo < r — 1.

j2=2'l'+9
4423 j2 =7 :
Lines (1) — (4) + ]1+2'1"+6+2]2 .r+18+12
2r +6+2j2 +2r + 7+ 51 =25+8r
j; _ {;:‘: which is impossible since js < 7.
4r +25+13=Tr+17 0
j+6r+16=25+8r '
Lines (1) — (6): é%r+2j+16=8r+21
j+6r+4+19=2548r
Lines (1) . z%r +274+11=6r+13 0.
j+6r+14=25+8r
. 4r +2j+15=6r + 16
Lines (1) — (14): =V
(1) - (14) {j+6,,+13=25+8r 0
_ Ar+2j+12=8r +19
Lines (1) — (8+): «
nes (1) — (8%) {j+67‘+15=25+8r ’

Lines (1) — (10%): ?r+23+9=6r+15 s
J+4r+12=25+8r

Lines (1) — (5): {
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. 4r+2j+14=6r+14
Lines (1) — (11%): J+6r4 17 =25+ 8r 0.

We implemented a program in Mathematica that checks all the pairs
of rows in Simpson’s table using the above approach. The code for the
program and the results can be found in [12]. From the results, we can
easily see that if we check any combination of two lines in Simpson’s Table
the conditions are not satisfied in almost all of the cases. There are two
cases where this conditions are satified. The first case is when we check line
3 with line 1, and we get that for r = 44 3¢, 71 = 2¢, and jo = 6+2¢, ¢ > 2
the system is not simple. This implies that our system is not simple when
v = 24¢c + 57, ¢ > 2. The second case is when we check line 3 with line 2.
Here, we get 7 = 5 and therefore v = 59. But v = 59 is not congruent to 3
(mod 6). A TS3(59) is simple, cyclic, and indecomposable by Theorem 2.1.

Forn = 1(mod 4),n > 9, let S, be the Skolem sequence given by Lemma
3.1. This Skolem sequence is constructed using a AL} ~2 ([14], Theorem 2,
Case 1). Since d = 3, will use only lines (1) — (6), (14), (7’), (8) and (10') in
Simpson’s Table. Note that n—2 = 7+4r in Simpson’s Table, so n = 94+ 4r
and v = 1948 in this case. Because we add the pair (1, 1) at the beginning
of the Langford sequence hL}~2, a; and b; will be shifted to the right by
two positions.

Table 2 gives the hL3~2 from Simpson’s Table adapted to our case.

a; +2 bi 42 i=b—-a; 0<j<
(1) 2r+3—-3 2r+6+j 3425 r
(2) r+2—3j Ir+8+45 2r+6+2; r-—1
(3) 6r+10—3 6r+14+3; 4425 r—1
(4) 5r+10—j Tr+15+5 2r+5+2j r
(5) 3r+7 r + 14 dr +7 -
(6) 4r + 8 8r 417 4r 49 -
(14) 2r+4 6r 412 4r + 8 -
(7) 2r+5 6r+11 4r 4+ 6 -
(10%) 4r+9 6r+13 2r+4 -

Table 2: hL3™2

So, the base blocks of the cyclic designs produce by Construction 3.2
are {0,1,2},{0,2,v— 1} and {0,%,b; + 2} for i = 3,...,n. Using the same
argument as before, we show that these designs are simple.

First, we show that i = % and b; + 2 = £ is not allowed in the above
system. In the first two base blocks is obvious that i # §. For the remaining

base blocks we check lines (1) — (6), (14), (7') and (10’) in Table 2.
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, 3425 = 1848r
Line (1) { 3 oi1048 <0
2r4+64j= —"(‘—3-—12
2 +6+25= —"’—ﬂ’—'l
Line (2) {37‘+8+] 19+8r2 0.
. 4+2J — 19:{:381‘
Line (3) {61' Fldtg= (19_,_8,2 < 0.
. 2r+5+2j= &f—sz
Line (4) {7T+ 154 = 09_*_8,,2 < 0.
, ar 47 = 10480
Line (5) {7'r+ 4= §19+8,.1 <0
dr + 9 = 19480 o
Line (6) {8 172 2‘1931 & 0
. 4r 48 = 13480
Line (14) {6 +12= (19.,_8,2 < 0.
Line (7') {6r+ 11— §19+8r2 <0
2r + 4 = 13480 o

Line (10) 6 +13 = £19+8,.) & 0.

iy + 12 = b;, . i +1ip = by,
b¢,+i2=2n+1 b52+i1=2’n+1
are not satisfied. As with the previous case, the results can be found in
[12]. As before, when we check line 3 and line 1 the conditions are satisfied.
But, in this case v = 24¢ + 35, ¢ > 1 which is not congruent to 3 (mod
6). So, a TS3(24c¢ + 35) for ¢ > 1 is cyclic, simple, and indecomposable by
Theorem 2.1.0

Next, we have to check that {

Lemma 3.3 For everyn = 2 or 3 (mod 4), n > 7, there is a hooked Skolem
sequence of order n in which 81 = s2 =1 and son—1 = S2n41 = 2.

Proof For n =2 or 3 (mod4), n > 7, take hS, = (1,1,L372,2,0,2).

When n = 2 (mod 4), take L3~? ([14], Theorem 1, Case 3). When
n =3 (mod 4), takeLs—(G 7,3,4,5,3,6,4,7, 5)andforn>11takeL"'
(see [2], Theorem 2). W

We are going to use the following construction to get cyclic TS3(2n +1)
for n = 2 or 3 (mod 4):

Construction 3.3 [13] Let hSn, = (s1,52,...,52n-1,52n+1) be a hooked
Skolem sequence of order n and let {(a;,b;)|1 < i < n} be the pairs of
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positions in hS, for which b; — a; =i. Then the set F={{0,i,b; + 1}]1 <
i <n}{mod 2n+1) is a (2n +1,3,3) — DF. Hence, the set of triples in F
form the base blocks of a cyclic TS3(2n +1).

Then, we apply Construction 3.3 to the hooked Skolem sequences given
by Lemma 3.3 to get cyclic TS3(2n + 1) for n = 2 or 3 (mod 4) that are
simple and indecomposable.

Construction 3.4 Let hS, = (81, 82,...,52n—1, S2n+1) be a hooked Skolem
sequence of order n given by Lemma 3.3, and let {(a;,b;)|1 < i < n} be the
pairs of positions in hS, for which b; — a; = 1. Then, the set F={{0,1,b;+
1}1 < i < n}(mod 2n + 1) form the base blocks of a cyclic, simple, and
indecomposable T'S3(2n + 1).

Example 3.3 If we apply Construction 3.4 to the hooked Skolem sequence
of order7: (1,1,6,7,3,4,5,3,6,4,7,5,2,0,2) we get the base blocks {{0,1, 3},
{0,2,1}, {0, 3,9}, {0, 4,11}, {0, 5,13}, {0, 6,10}, {0, 7,12} }(mod 15). These
base blocks form a cyclic TS3(15) by Construction 3.3. We are going to
prove next, that this design is indecomposable and simple.

Theorem 3.4 The TS3(6n+3), n > 2, produced by applying Construction
3.4, are simple.

Proof The proof s similar to Theorem 3.2. Let v = 2n+1,n = 2 or 3 (mod 4),
n > 10.

For n = 2(mod 4), n > 10, let hS, be the hooked Skolem sequence

given by Lemma 3.3. This hooked Skolem sequence is constructed using
the Langford sequence Lg'z from [14], Theorem 1, Case 3. Since d = 3,
will use only lines (1) — (4), (6),(9),(11) and (13) in Simpson’s Table. Note
that m =n — 2 = 4r in Simpson’s Table,son =4r+2, v =8r +5,r > 2,
d =3, s = 1, in this case. Because we add the pair (1,1) at the beginning
of the hooked Langford sequence th_z, a; and b; will be shifted to the
right by two positions. To make it easier for the reader, we give in Table 3,
the L3~2 taken from Simpson’s Table and adapted for our case (omit row
(1) when r = 2).

So, the base blocks of the cyclic designs produce by Construction 3.4
are {0,1,3},{0,2,1} and {0,%,5; +2+1} for i =3,...,n and i = b; — a;.

First, we show that ¢ = § and b; +2+1 = 23" is not allowed in the
above system. In the first two base blocks is obvious that ¢ # 3. For
the remaining base blocks we check lines (1) — (4), (6), (9), (11) and (13) in
Table 3. 645
. 4425="°"
Line (1) 99, 4545~ 28r+6)
7 2 2 and also integer.

& r = ! which is impossible since
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a; +2 b +2 i=b—a; 0<j<

(1) 2r—j 2r+4+j 4+2j r—23
(20 r+2-3 B3r+3+j 2w+1+2 r—1
(3) 6r+1—j 6r+4+; 3+2j r—2
(4) Br+2—j Tr+4+j 2r+2+2 r—2
(6) 2r+3 4r +3 2r -
9) 3r+2 r+3 ar +1 -
(11) 2r+1 6r +3 4r 42 -
(13) 2r+2 6r +2 4r -

Table 3: L7~2

; — 8r+5
Line (2) z: i i Ij"_ asnys) & T = 3 which is impossible since
=3

r > 2 and also integer.
Line (3) 3+2 = 8r3 : & r = —2 which is impossible since
. 2(8r45 =3
6r+5+ j= J':;_l

r > 2 and also integer.

2% 4+ 2 = _.:t§ .
Line (4) 7: : 5 ijj_ 2(er *+5) & 1= —} which is impossible since

7 > 2 and also integer.
2r = 8rt5 {41' +1= 5

Line (6) {4 +43 2(6r+5) < 0. Line (9) e 2__'t_ e 0.

r = dr = _'Iﬁ

Line (11) {Z :Z Ws) & 0. Line (13) {6 Taiemn
9.
Next, we have to show that ut z? = b, or ttiz = by

bi, +io=2n+1 bi, +i1=2n+1

are not satisfied. The results for this can be found in [12]. As before, when
we check line 3 with line 1, the conditions are satisfied. But v = 24c + 5,
¢ > 2 in this case which is not congruent to 3 (mod 6). So, by Theorem 2.1,
there exists a cyclic, simple, and indecomposable TS3(24c + 5) for ¢ > 2.

For n = 3(mod 4),n > 11, let hS, be the hooked Skolem sequence glven
by Lemma 3.3. This hooked Skolem sequence is constructed using a L"‘
([2], Theorem 2). Since d = 3 will use only lines (1) — (4),(6) — (10) in
[2]. Notethat m=n—-2=4r+1,r>2,e=41in [2], son =4r + 3 and
v = 8r + 7 in this case. Because we add the pair (1,1) at the beginning of
the Langford sequence Lg—Q, a; and b; will be shifted to the right by two
positions.
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Table 4 gives the L2 from [2] adapted to our case.

a; +2 bi+2 i=bi—a; 0<j<
1) 2r+2-3j 2r+46+4j 4425 r—2
2) r+2-j5 3r+5+5 2r+3+25 r-—2
(3) 3 4r+4 d4r+1 -
(4) 2r+4 4r +5 2r+1 -
(6) r+3 57 +5 4r 42 -
(M 2r 45 6r+5 4r -
(8 2r+3 6r+6 4r +3 -
9) 6r+4—3 6r+7+73 3+25 r—2

(10) 5r+4—3 Tr+6+3 2r+242j r-—-2

Table 4: L} ™2

So, the base blocks of the cyclic designs produce by Construction 3.4
are {0,1,3},{0,2,1} and {0,%,b; + 2+ 1} for i = 3,...,n. Using the same
argument as before, we show that these designs are simple.

First we show that i = § and b; + 2+ 1 = £ is not allowed in the
above system. In the first two base blocks is obvious that ¢ # 3. For the
remaining base blocks we check lines (1) — (4), (6) — (10) in Table 4.

Line (1) {4 2 8r3 : & 7 = 2 which is impossible since
. 2847 1
2r+7435= J’:;__l

r 2> 2 and also integer.
) 2r +3+2j = &7
Line (2) 34 64— 2@,:_,,.,2 &S
T > 2 and also integer.
4r +1 = 87 2r+1= 831
Line (3 3 & 0. Line (4 3 < 0.
(){4r+5=4—l”§+7 “@ 4r + 6 = 26040 ’

=

which is impossible since

. 4r +2 = 87‘3:]:7 . 4r = 8r33:7
Line (6) 5r 4+ 6 = 26r+7) < 0. Line (7) 6r 4 6 — 2677 0.
- 3 - 3

4dr 4+ 3 = 817 3+42j = 8ri?
Line (8 3 < {. Line (9 3 &
( ){6r+7=i—2“g+7 ®) 6r +8+j = 2550

. 2r +2+2j = 847
Line (10) {71' £74 5= HereD) e 0.
i1+ iy =by, i1+ = by,
by, +ia=2n+1 b, +i1=2n+1
are not satisfled. The results for this can be found in [12]. Here, for

Next, we have to check that
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v =23c—1, ¢ > 4 and for v = 55 the conditions are satisfied but these
orders are not congruent to 3 (mod 6). Therefore, by Theorem 2.1, there
exists cyclic, simple, and indecomposable TS3(3¢ — 1) for ¢ > 4 and cyclic,
simple, and indecomposable TS3(55). B

4 Indecomposable Three-fold Cyclic Triple Sys-
tems

In this section, we prove that the Constructions 3.2 and 3.4 produce inde-
composable three-fold triple systems for v = 3 (mod 6), v > 15.

Theorem 4.1 The TS3(v) produced by Constructions 3.2 and 3.4 are in-
decomposable for every v= 3 (mod 6), v > 15.

Proof Suppose that v = 3 (mod 6) and write v = 2n+1,n = 0 or 1 (mod 4),
n>8.

Now, for an TS3(2n + 1) to be decomposable, there must be a Steiner
triple system STS(2n + 1) inside the TS3(2n + 1).

If 2n+1 = 3 (mod86), let {z;,z;,zx} be a triple using symbols from
Nopt1 = {0, 1,... ,2n}. Let d,'j = min {IIL‘; - .’L‘jl, 2n+1— I:L‘; - :L‘jl} be the
difference between z; and z;. An STS(2n + 1) on N2,41 must have a set of
triples with the property that each difference d, 1 < d < n, occurs exactly
2n 4 1 times. Assume there is an STS(2n + 1) inside our TS3(2n + 1) and
let fo be the number of triples inside the STS(2n + 1) which are a cyclic
shift of {0, c, ba}.

It is enough to look at the first two base blocks of our TS3(2n + 1).
These are {0,1,2} (mod 2n + 1) and {0,2,2n} (mod 2n + 1). Then the
existence of an STS(2n+1) inside our TS3(2n+1) requires that the equation
2f1 + f2 = 2n + 1 must have a solution in nonnegative integers (we need
the difference 1 to occur exactly 2n + 1 times).

Casel: =1

Suppose we choose one block from the orbit {0, 1, 2}(mod 2n+1). Since
this orbit uses the difference 1 twice and the difference 2, and the orbit
{0,2,2n}(mod 2n+1) uses the differences 1, 2 and 3, whenever we pick one
block from the first orbit we cannot choose three blocks from the second
orbit (i.e., those blocks where the pairs (0,1), (0,2) and (1, 2) are included).
So, we just have 2n — 2 blocks in the second orbit to choose from. But we
need 2n — 1 blocks from the second orbit in order to cover difference 1
exactly 2n + 1 times.

Therefore, we have no solution in this case.

Case 2: f1 =2

Since fo = 2"2" 3 is not an integer, we have no solution in this case.
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Case 3: f, =38,5,...,n(orn —1)

Similar to Case 1. So, there is no solution in this case.

Case 4: f; =4,6,...,n(orn —1)

Similar to Case 2. So, there is no solution in this case.

Case 5: f1 =0

Note that our cyclic TS3(v) has no short orbits (Theorem 3.2), while a
cyclic STS(v) will have a short orbit. Therefore, if a design exists inside
our TS3(v), that design is not cyclic.

Now, we choose no block from the first orbit and all the blocks in the
second orbit (i.e., fi = 0, fo = 2n + 1). Therefore differences 1, 2 and
3 are all covered each exactly 2n + 1 in the STS(v). From the remaining
n — 2 orbits {0,1,b;}, i > 3 there will be two or three orbits which will use
differences 2 and 3. Since differences 1, 2 and 3 are already covered, we
cannot choose any block from those orbits that uses these three differences.
So, we are left with n — 4 or n — 5 orbits to choose from. We need to cover
differences 4,5,...,n (n — 3 differences) each exactly v = 2n + 1 times.

We form a system of n — 3 equations with n — 4 or n — 5 unknowns in
the following way: when a difference appears in different orbits, the sum of
the blocks that we choose from each orbit has to equal v, i.e., if difference
4 appears in {0,5,bs}, {0,7,b7} and {0,10,b;0} we have f5 + f7 + fio =
v or if difference 4 appears in {0,7,b7} twice and in {0,9,b9} once, we
have 2f; + fo = v. The system that we form has two or three entries in
each row non-zero while all the others entries will equal zero. The rows in
the system can be rearranged so that we get an upper triangular matrix.
Therefore, the system of equations is non-singular and it has the unique
solution f;; = fi, = ... = fi, = v for some 4 < 41,43,...,% < n and
fir = fi = ... = fj, =0 for some 4 < j1,ja, ...,k < n. But this implies
that the ST'S(v) inside our TS3(v) is cyclic, which is impossible.

Therefore, we have no solution in this case. It follows that our TS3(2n+
1) is indecomposable.

Now, suppose that v =2n+ 1, n = 2 or 3 (mod 4), n > 7. Let f,
be the number of triples inside the STS(2n + 1) which are a cyclic shift of
{0, @, bs + 1}. Using the same argument as before, it is easy to show that
the equation 2f2 + fi = 2n + 1 has no solution. Therefore our TS3(2n + 1)
is indecomposable. B

5 Cyeclic, Simple, and Indecomposable Three-
fold Triple Systems

Theorem 5.1 There exists cyclic, simple, and indecomposable three-fold
triple systems, TS3(v), for every v =1 (mod 2), v > 5,v # 9 and v #
24c+ 57, ¢ > 2.
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Proof Letv = 1or5 (mod 6) and take the base blocks {0, o, —a}(mod v)|a =
0,1,..., é(’u —1). By Theorem 2.1, these will be the base blocks of a cyclic,
simple, and indecomposable three-fold triple system.

Let v = 3 (mod 6), and write v =2n+1, n =0 or 1(mod4), n > 8.
Apply Construction 3.2 to the Skolem sequence of order n given by Lemma
3.1. These designs are cyclic by Construction 3.1, simple for all v except
v = 24¢ + 57, ¢ > 2 by Theorem 3.2 and indecomposable by Theorem 4.1.

Let v = 3 (mod 6), and write v =2n+ 1, n =2 or 3(mod4), n > 7.
Apply Construction 3.4 to the hooked Skolem sequence of order n given
by Lemma 3.3. These designs are cyclic by Construction 3.3, simple by
Theorem 3.4 and indecomposable by Theorem 4.1. B

6 Conclusion and Open Problems

We constructed, using Skolem-type sequences, three-fold triple systems
having all the properties of being cyclic, simple and indecomposable, for
v = 3 (mod 6) except for v = 9 and v = 24c + 57, ¢ > 2. Our results,
together with Kramer’s results [9], completely solve the problem of find-
ing three-fold triple systems having three properties: cyclic, simple, and
indecomposable with some possible exceptions for v = 9 and v = 24c + 7,
c>2.

In our approach of finding cyclic, simple, and indecomposable three-fold
triple systems, proving the simplicity of the designs was a tedious and long
task. Another approach that we tried was in constructing three disjoint
(i.e. no two pairs in the same positions) sequences of order n and taking
the base blocks {0,¢,b; + n},i = 1,2,...,n. These base blocks form a
cyclic TS3(6n+1). Also, someone can take three disjoint hooked sequences
of order n and taking the base blocks {0,1,b; + n},i = 1,2,...,n together

with the short orbit {0, 3, %’}. These base blocks form a cyclic TS3(6n+3).

Example 6.1 For n = 5, take the three disjoint hooked sequences of order
n:

(1,1,4,1,1,0,4,2,3,2,0,3)
(2,3,2,3,3,0,3,4,1,1,0,4)
(4,5,5,5,4,0,5,5,5,2,0,2)

Then the base blocks {0,1,7},{0,1,10},{0,1,15},{0,2,8}, {0, 2,15},

{0,2,17}, {0, 3, 10}, {0, 3,12}, {0, 3, 17}, {0, 4, 10}, {0, 4,17}, {0, 4,12},
{0,5,12}, {0,5,13}, {0, 5,14}, {0, 11, 22} are the base blocks of a cyclic, sim-
ple, and indecomposable TS3(33).

The simplicity is easy to prove here since the three hooked sequences
that we used share no pairs in the same positions. On the other hand, on
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first inspection, to prove the indecomposability of such designs appears to
be more difficult. Also, someone needs to find three disjoint such sequences

for all admissible orders n.

Problem 8.1 Can the above approach of finding cyclic, simple, and inde-
composable three-fold triple systems of order v be generalized for all admis-
sible orders?

Problem 6.2 Are there cyclic, simple, and indecomposable T'S3(24c+57),
c> 27

Problem 6.8 Are there cyclic, simple, and indecomposable designs for A >
4 and all admissible orders?

Problem 6.4 For ) > 3 what is the spectrum of those v for which there
exists a cyclically indecomposable but decomposable cyclic TSy (v)?

Example 6.2 Let V = {0,1,2,3,4,5,6,7,8}. Then the blocks of a cyclic
TS3(9) are:

{0,1,2},{0,2,7}, {0, 3,6}, {0, 4,8}
{1,2,3},{1,3,8},{1,4,7},{1,5,0}
{2,3,4},{2,4,0},{2,5,8},{2,6,1}
{3,4,5},{3,5,1},{3,6,0},{3,7,2}
{4,5,6},{4,6,2},{4,7,1},{4,8,3}
{5,6,7},{5,7,3},1{5,8,2}, {5,0,4}
{6,7,8},{6,8,4},{6,0,3},{6,1,5}
{7,8,0},{7,0,5},{7,1,4},{7, 2,6}

{8,0,1},{8,1,6}, {8,2,5},{8,3,7}

This design is cyclic, simple, and is decomposable. The blocks {0,1,2},
{3,4,5},{6,7,8},{1,3,8},{4,6,2}, {7,0,5}, {0,3,6}, {1,4, 7}, {2, 5,8},
{0,4,8},{3,7,2},{6,1,5} form an STS(9). The designs is cyclically in-
decomposable since no CSTS(9) exists.

7 Appendix
We implemented a program in Matematica that checks all the pairs in

Simpson’s tables for simplicity. The code and the results can be found at
http://arxiv.org/abs/1404.0528.
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