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Abstract

We examine the Borda voting method, which has numerous interest-
ing mathematical properties. We determine when a candidate can win
a Borda election with all ith place votes and present a method of con-
structing ballots that yield such a victory. Then we present a connection
between Borda elections and semi-magic squares. We show how a Borda
election result gives rise to a semi-magic square, and we show that given
any semi-magic square there exists at least one Borda election result cor-
responding to it.

1 Introduction

Election outcomes often have important and far-reaching consequences. Whether
it be a country deciding on its next leader, a business selecting a health insur-
ance provider for its employees, or an academic department determining who
receives a scholarship, many lives are significantly affected by election results.
Indeed, an election outcome depends not only on the votes of the people, but it
also is a direct result of the election method employed to arrive at the outcome.
One such method is the Borda method, and in this paper we focus on math-
ematics connected to the Borda method. We determine when a candidate can
win a Borda election with all ith place votes and present a method of construct-
ing ballots that yield such a victory. Then we present a connection between
Borda elections and semi-magic squares. We will show how a Borda election
result gives rise to a semi-magic square, and we show that given any semi-magic
square there exists at least one Borda election result corresponding to it.

2 The Borda Voting Method

The eighteenth century French mathematician Jean Charles de Borda proposed
a weighted voting method to select members of the French Academy of Sciences;
the French Academy adopted this method and used it for several years [4]. When
using this method, which has come to be called the Borda voting method, each
voter determines a strict ranking of the n candidates. Such a ranking is called
a preference ballot. On each ballot the first-ranked candidate receives n — 1
points, the second-ranked candidate receives n — 2 points, and so on, down to
the last place candidate receiving 0 points. The ith ranked candidate receives
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n —1i points. The points from all ballots are totaled, and the candidate with the
highest total wins. If there is a tie, something outside the Borda voting method
must be used to break it. For example, the number of first place ranks of the
tied candidates could be compared.

Examination of the Borda Election Method leads to some interesting math-
ematical discoveries. First, we look at the various place rankings that Borda
winners receive.

2.1 Borda Elections and Place Rankings
Our first proposition is a simple observation.

Proposition 1. In a Borda election with V voters and n candidates, the win-
ning candidate receives more than Vﬁ'-;—ll points.

Proof. The proof is a simple application of the pigeonhole principle. Any voter’s
ballot is made upof 0+1+2+---4+n~1= 1("7'-11 points to distribute. Thus,
the total number of points to be distributed in the Borda election is Vﬂﬂ;—l)-.
If all n candidates receive < Vi"T"12 points, then the total number of points
allotted would be less than Vﬂ”z—_ll, unless all candidates tie by receiving ex-
actly V‘"—;Q points. Thus, the Borda winner must receive more than V@;—lz

points.
o

We will investigate what sort of votes (first place, second place, and so on)
a Borda winner can receive.
The next corollaries follow easily from the above proposition.

Corollary 1. In a three-candidate election, the Borda winner must receive at
least one first place vote.

One first place vote is insignificant in a three-candidate Borda election with
a large number of voters. However, in an election with a relatively small number
of voters, it is noteworthy that the winner must be the first choice of at least
one voter.

Corollary 2. In a three-candidate election, the Borda winner has more first
place rankings than last place rankings.

Corollary 3. If the winner of a three-candidate Borda election has received
only one first place vote, then this candidate must have received no last place
votes.

Corollary 4. In order for a Borda winner to achieve victory amongst n can-
didates with only ith place votes, we must have i < 2.

Proof. By Proposition 1,
n+1

, n-—1 ,
(n-z)V>TV = i<
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This means that in order for a candidate to win with all ith place votes,
the voters must rank the candidate better than half of the total number of
candidates. For example, if we have an election with 4 candidates, then a
candidate could possibly win with all first or all second place votes but not with
all third or last place votes. Similarly, if we have an election with 5 candidates,
then a candidate could not win with all third, fourth, or last place votes.

Lemma 1. If candidate A receives all the ith place rankings with i < 2{—‘-, then
223042 ¢ (n — 1)(n - i).

Proof. Rearranging the second inequality gives the first inequality, and the steps

are reversible.
0O

Next we show that a candidate can win with all ith place votes, if i < ﬂ2ﬂ

Theorem 1. Ifi < Mz'—‘ (or equivalently, "2;1 < n — i), then there ezists a
Borda election with V voters and n candidates (with V > n) where candidate A
wins with all ith place votes.

Proof. If i = 1, the candidate has received all first place votes. In this case, the
result is clear, so we consider the cases where i > 1.

Let n be the number of candidates, V' the number of voters, V > n, and
suppose 1 < i < l’# and candidate A receives all of the ith place rankings.

Write V = ¢(n - 1) + r with c and r integers, 0<r<n-1,¢>0.

First, let us consider the case where r = 0. We can divide up the voters into
groups of size c. All voters give n — 1 points to candidate A. All of the voters in
the first group of size ¢ can assign their ranks so that each of the remaining n—1
candidates receives points 0,1,...,n —i—1,n—i+1,...,n ~ 1. For example,
candidate B could receive a 0 from Voter 1, a 1 from Voter 2, a 2 from Voter
3, ...,an—1 from Voter c. We can do the same thing with the second group
of voters of size ¢ and so on. In the end each candidate receives each of the
possible ranks ¢ times.

Thus, each non-A candidate receives a total of Lg"“'l points, and A
receives ¢(n — 1)(n — i) points.

By Lemma 1, we know 5("3—',;?"—*2'-1 <c(n—1)(n-1).

Thus, for 7 = 0 we have created a Borda election where A wins with all ith
place votes.

Now let us consider the case where 7 = 1, that is V = ¢(n — 1) + 1. We
distribute points according to the same method as for r = 0 except that each
non-A candidate also receives one additional value from {0,1,...,n—1}\{n—4}.

We show that ¢(2%Y — (n —4)) +n — 1 < (¢(n — 1) + 1)(n — i), and so
every candidate will have fewer points than candidate A.

This is equivalent to showing 0 < 5;,‘—2 —ceni—i+ ¢+ 1.

Depending on the parity of ¢, the largest that i can beisi = 3 ori = -";—1
If we can find an election where A wins with 7 equal to these large values, we
can find an election where A wins with ¢ equal to smaller values.

Substituting ¢ = % into 0 < ‘—'233 —cni—i+L+1, wehave 0 < Z(c-1)+1.
This is true for all positive n and all ¢ 2> 1.
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Simlla.rly, substituting ¢ = "T"l into 0 < —21 —cni—i+ F +1, we have
0< (c—%)n+ 3. This is true for all positive n and all ¢ > 1.

Thus, we can find a Borda election where A wins with all ith place votes
andV=c(n—-1)+1.

Now we consider the cases where 1 <r<n-—1.

If = 2, we again distribute points as in the case where » = 0 and then
add two remaining rankings to each candidate’s total number of points. Choose
these two rankings for each candidate so that they add to n — 1 or to n — 2. For
example, (n —1) +0, (n - 2} +1, ..., would be the sums of the two remaining
rankings. Upon reaching the point where a ranking’s pairing would have been
n — 4, add the next smaller ranking. If, for example n — i = n — 3, then we pair
n — 4 with 2, and so on.

Thus, c(m ~(n—=19))+n-1< c(n—1)(n-%)+2(n—i), since 2 'T' <n-—i.

If r = 3, we may add n — 1 to the left of this inequality and n —1 to the right
by using an analogous argument to that for r = 1. If 7 = 4, we have a similar
situation to that when r = 2, and so on.

Thus, for all r with 0 < r < n—1, we have found an election where candidate

A wins with all ith place votes.
O

We will now express this proof as an algorithm.

Algorithm for Creating Borda Ballots where Candidate A Wins with
All ith Place Votes, withi< 2fl and V=¢(n-1)+r0<r<n-1

1. Place candidate A in ith place on all V ballots.

2. Set aside r ballots. On the remaining c(n — 1) ballots, place the remaining
n — 1 candidates in each of the remaining places ¢ times, so that each of

these candidates receives a total of

r=ok} — (n —1) ) points.

3. Now consider the r ballots that have been set aside. These r ballots have
candidate A in ith place and n — 1 unfilled spots remain. Now assign each
remaining candidate to pairs of ballots so that this candidate receives
points that sum to n — 1 or n — 2 per pair of ballots. If r is odd, one
unfilled ballot will be leftover. Put each of the remaining n — 1 candidates
in any spot on this ballot.

This algorithm allows us to prove a more general version.

Corollary 5. If we have V voters and n candidates, V > n, together with a
list of integers k; such that 1 < k; < %‘ forij=12,...,V, then we can find
Borda ballots with candidate A in places k; such that candidate A wins.

Proof. Let us first consider a list of integers k; such that 1 < k; < l}'—l for
j=1,2,...,V. I all of the k; are equal, the result follows immediately from
Theorem 1. Otherwise, let ¢ = max(k;). By the previous algorithm, we can
construct V Borda ballots where A wins with all ith place votes. Now on each
ballot we switch candidate A with the candidate in k;th place for j = 1,2,...,V.
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Candidate A’s points will increase and the other candidates’ points will decrease

or remain the same. Thus, we have created an election where A is the winner.
(i}

Some questions arise as to how far we can push this idea.

Remark 1. If A wins a Borda election, must A receive more votes in ith place
with 1 < i < 2L than in ith place with 2L < i< n?

The answer to this question is no, as seen in the example in Table 1. Con-
sider the situation where there are 8 voters and 8 candidates, and candidate A
receives 2 first place ranks and 6 fifth place ranks. For the rankings in Table 1,
candidate A is the winner.

Table 1: Candidate A Wins with Two First Place Votes.

Rankings Candidate || Score
A>C>E>G>H>F>D>B A 32
A>B>D>F>H>G>E>C B 31
G>F>E>D>A>C>B>H C 31
F>E>D>C>A>B>G>H D 31
E>D>C>B>A>G>F>H E 31
D>C>B>G>A>F>E>H F 31
C>B>G>F>A>E>D>H G 31
B>G>F>E>A>D>C>H H 6

The next point, Remark 2, illustrates the importance of re-voting if a candi-
date is added to a pool, even though the added candidate may have no chance
of winning. Similarly, if a candidate withdraws from an election, it is important
that the new outcome be found.

Remark 2. If we have a Borda election where A wins and we add a candidate
X to the Borde rankings such that A receives more total points than X, must A
still win the Borda election?

The answer to this question is no, and we provide an example in Table 2 to
illustrate this.

Table 2: Candidate A Wins Only Without Candidate X.

Number of Ranking New Ranking

Voters
5 A>B>C||A>B>X>C
2 A>C>B|A>C>B>X
4 B>A>C | B>X>A>C
3 B>C>A||B>C>X>A
4 C>A>B||C>X>A>B
2 C>B>A||C>B>X>A

We notice that in the original election A is the winner with 22 points, followed
by B with 21 points, and C receives 17 points. After adding X to the rankings,
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A receives 29 points, more than X who receives 26 points. However, now the
winner of the election is B with 37 points, and C receives 28 points.

3 Borda Elections and Semi-Magic Squares

In this section we examine the connections between Borda Elections and semi-
magic squares.
We introduce the following definitions:

Deflnition 1. A candidate distribution for a Borda election with n candi-
dates and V voters is an n-tuple (a1, ai2,...,ain) where a;; = the number of
jth place rankings for candidate i. Note that Z;.':l aij =V for alli.

Definition 2. A place distribution for a Borda election with n candidates
and V voters is an n-tuple (a1j,a2;,...,an;) where a; = the number of jth
place rankings for candidate i. Note that Y :_, a;; =V for all .

Definition 3. A Borda matriz is an n X n matriz whose rows are candidate
distributions for a Borda election and whose columns are place distributions for
a Borda election.

Remark: We note that any permutation matrix can be thought of as corre-
sponding to a single Borda ballot. For example, if candidate A is represented
by row 1, candidate B is represented by row 2, and candidate C is represented
by row 3, the permutation matrix

010
P=1|0 0 1
1 00

corresponds to the ballot with election ranking C > A > B.

Definition 4. [9/ A semi-magic square is a square matriz whose entries are
non-negative integers and whose rows and columns sum to the same number.

The following theorem, attributed to Garrett Birkhoff, is useful in the con-
text of semi-magic squares.

Theorem 2. [6] Let A be an n x n semi-magic square with row sum V. Then
A is the sum of V permutation matrices.

Remark: The expression of A as a sum of permutation matrices is not unique
in general.

Since any permutation matrix corresponds to a Borda ballot, we have the
following corollary:

Corollary 6. Given an n X n semi-magic square A with row sum V, we can
create a Borda election that matches its candidate and place distributions.

Remark: In general, these election rankings are not unique. For example,
we have three sets of election rankings in Table 3 corresponding to the same
semi-magic square S.
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Table 3: Three Borda Elections Corresponding to the Same Semi-Magic Square.

Number of | Ranking Number of | Ranking Number of | Ranking
Voters Voters Voters

6 A>B>C 9 A>B>C 4 A>B>C
4 A>C>B 1 A>C>B 6 A>C>B
3 B>A>C 0 B>A>C 5 B>A>C
2 B>C>A 5 B>C>A 0 B>C>A
5 C>A>B 8 C>A>B 3 C>A>B
4 C>B>A 1 C>B>A 6 C>B>A

10 8 6

S=1]56 10 9

[9 6 9]

The following theorem follows readily from the previous definitions and
Corollary 6.

Theorem 3 (Borda Matrices and Semi-Magic Squares).
1. Every Borda matriz is a semi-magic square.
2, Bvery semi-magic square is a Borda matriz.

We now present an application involving Borda matrices and semi-magic
squares.

3.1 Application

Example 1. In an election with 4 candidates and 2 voters, ezactly 300 different
combinations of ballots can result.

There are 24 different elections where the ballots are identical. If the ballots
are not identical, then there are 24 choices for the first one, 23 choices for
the second one, and the order in which the ballots appear does not matter, so
this gives A;& = 276 different combinations of ballots. Altogether, this gives
244-276=300 different combinations of ballots.

Example 2. There are 282 4 x 4 semi-magic squares with row sum 2.

In 1973 Ehrhart and Stanley both proved that the number of n x n semi-
magic squares with row sum ¢ is a polynomial of degree (n — 1)2 with rational
coefficients [1, 5]. By using such a polynomial of Beck and Pixton, we find there
are 282 4 x 4 semi-magic squares with row sum 2 [2].

Open Question 1. Determine how many different Borda ballot combinations
correspond to a given semi-magic square. In other words, determine how many
different Borda elections correspond to a given Borda matriz.

For example, as we have seen, in a 4-candidate, 2-voter Borda election there
are 300 possible elections but only 282 corresponding semi-magic squares. In
this case, one can easily show that each of the 18 semi-magic squares with two
pairs of equal columns has two different corresponding elections.
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4 Conclusion

The voting method employed in an election is a matter of great importance.
Preference ballots contain valuable information; the Borda method uses such
ballots. We investigate numerous mathematical connections related to the
Borda voting method.

We show that in order for one of n candidates to win an election with all
ith place votes it is necessary that 23! < n —i. Given such an 7, we find an
algorithm to create winning Borda ballots for a candidate with all ith place
votes.

A Borda election result yields a Borda matrix, that is, a semi-magic square.
Conversely, given any semi-magic square, there exist preference ballots that
correspond to it. In some cases, different Borda election ballots correspond to
the same semi-magic square. It is an open problem to determine the number of
different elections that correspond to the same semi-magic square.

The vote is in, mathematics connected to the Borda voting method is mag-
ical.
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