Constructing the Spectrum of Packings and
Coverings for the Complete Graph with 4-stars

Danny Dyer*, Sadegheh Haghshenas', and Nabil Shalaby*
Department of Mathematics and Statistics, Memorial University of Newfoundland, St.
John's, Newfoundland, Canada, A1C 557

Abstract: The packing and covering numbers for the 4-stars were determined by
Roditty in 1986. In this paper we improve and extend these results by finding a corre-
sponding maximum packing and minimum covering of the complete graph with 4-stars
for every possible leave graph and excess graph.

1 Introduction

For basic graph theory definitions refer to [4). All graphs we use are finite and con-
tain no loops or multiple edges unless otherwise stated. Let G be a graph. A G-
decomposition of a graph H is a partition of the edge set of H into graphs isomorphic
to G. A G-design of order n and index A is a G-decomposition of the complete multi-
graph K?. In this paper we only deal with A = 1 and hence, consider a G-design of
order n as a G-decomposition of the complete graph K,. In fact, a G-design is a gener-
alization of a BIBD(n, k, 1) where G is the clique K. G-designs were first introduced
by Rosa and Hell in 1972, in their attempt to solve the spectrum problem for P, a path
on three vertices [5].

The spectrum problem for a graph G is to find the set D of positive integers n such
that there exists a G-design of order n if and only if n € D. The obvious necessary
conditions for the existence of a G-decomposition of K, are |V(G)| < n forn > 1,
n(n - 1) = 0 (mod 2|E(G)|), and n — 1 = 0 (mod d) where d is the greatest common
divisor of the degrees of the vertices in G.

In 1975, Wilson proved that these necessary conditions are asymptotically sufficient
[13). However, in order to completely solve the spectrum problem for a particular graph
G, it still remains to determine the specific conditions for n such that a G-design of or-
der n exists. The spectrum problem has been considered for many classes of graphs [1].

In 1978 Huang and Rosa solved the spectrum problem for trees of nine vertices or
less [6). Stars are one of the infinite classes of trees for which the spectrum problem
is completely solved. The k-szar S, is a connected graph on & + 1 vertices with one
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vertex of degree k and k vertices of degree 1. We call the vertex of degree k the center
of the star and the vertices of degree one the leaves of the star. A k-star with center x
and leaves y,y2,...,Yk-1, Yk is denoted by (X; ¥1,¥2, .+« » Ya=1, Y&)-

In 1975 Yamamoto et al. [14] and in 1978 Tarsi [11] solved the spectrum problem
for k-stars where k = 1 by proving the theorem below.

Theorem 1 ([14]). For k 2 1, K, has an S y-decomposition if and only if
n=1o0rnz=2k and n(n-1) =0 (mod 2k).

For the complete graphs which cannot be decomposed into stars, we are still interested
in getting as close to a decomposition as we can. This leads to the notions of packing
and covering. A G-packing of a graph H is a set of subgraphs of H such that each
subgraph is isomorphic to G and every edge of H is contained in at most one subgraph.
Those edges which are not contained in any of the subgraphs of the packing form a
graph called the leave graph. A maximum G-packing of H is a packing with the small-
est possible number of edges in the leave graph. A G-covering of a graph H is a set
of subgraphs of H such that each subgraph is isomorphic to G and every edge of H is
contained in at least one subgraph. Those edges which are contained in more than one
subgraph of the packing form a graph called the excess graph. A minimum G-covering
of H is a covering with the smallest possible number of edges in the excess graph. We
assume that the leave graph and excess graph have no isolated vertices.

For graphs G and H, the G-packing number (G-covering number) of H is the number
of copies of G in a maximum G-packing (minimum G-covering) of H. The packing
(covering) problem for a graph G is to determine the G-packing number (G-covering
number) of K,. Roditty solved the problem for all trees of order seven or less (7], [8],
{91, and [10]. In particular, he proved that for n > 2k and & < 6, the S;-packing num-
ber of the complete graph K|, is l_ﬂ'z—zﬂj and the S;-covering number of K, is [ ﬁ"u;lz].
However, he did not determine all the possible leaves and excesses in his constructions.
We refer to this problem as the spectrum problem for packing and covering.

In 1997 and 1998, Caro and Yuster established a Wilson-like result for the packing
and covering problems. In fact, in 1997 [2], they proved that for any graph H with
h edges, there exists a positive integer no(H) such that for all integers n > no(H) the
H-packing number of X, is L%";I_%_U, where d is the greatest common divisor of all
degrees of H, unless n = 1 (mod d) and &;—Q = b (mod —Zdﬁ) where 1 < b < d in which
case the packing number is L%L%JJ ~ 1. They also proved in 1998 [3] that for any
graph H with h edges, there exists a positive integer no(H) such that for all integers
n > no(H) the H-covering number of K, is [£[ %11, where d is the greatest common
divisor of all degrees of H, unless d is even, n = 1 (mod d) and "(Ld"-) +1 =0 (mod %),

)

in which case the covering number is I'Li:l-'l + 1.
Let m and n be positive integers. The disjoint union of graphs G and H, denoted G + H,

is the union of graphs G and H with disjoint vertex sets. The join of simple graphs G
and H, denoted G v H is the graph obtained from the disjoint union G + H by adding
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the edges {{x, y}lx € V(G), y € V(H)). Also for any graph G, mG is the graph consisting
of m pairwise disjoint copies of G. Furthermore, we denote the complete multigraph
on n vertices with multiplicity m by K7 [12].

We will use the following lemmas in the proof of our main theorems.

Lemma 2. Let s be a positive odd integer. The graph K; Vv 3(32'—”K| has an §4-
decomposition.

Proof. Label the vertices of K with the elements of Z; having the subscript 2 and
the remaining vertices with the elements of le,-_n, having the subscript 1. Then, the

following stars form a decomposition for X; v 3“2‘ ”Kl (see Figure 1). For numbers

with subscript 1 the computations are done modulo ‘l“z“—'z and for those with subscript
2 the computations are done modulo s.

s—-3
7

(iZ;(i*‘j’*‘ l)2v3j]1(3j+ l)l\(3j+2)|)v ie ZS, j= Ovls'--v

Figure 1: S 4-decomposition of K5 V 6K,

Lemma 3. Let s be a positive odd integer and sK; be the union of s disjoint edges.
For positive integers s and t with s < t the complete bipartite graph K, can be packed
with (t — 1)-stars with an sK; as the leave graph.

Proof. Label the vertices of the part of size ¢ with elements of Z, having subscript 1
and the vertices of the other part with elements of Z; having subscript 2. The following
stars form a maximum packing of K, with (1—1)-stars with the s edges {0y, 15}, {1;,2,},
e {8 = 2)y, (s = 1)}, and {(z — 1),,0,} as the leave graph (see Figure 2). For numbers
with subscript 1 the computations are done modulo ¢ and for those with subscript 2 the
computations are done modulo s.
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Gy i+ Dyyee o, ((+1-2)),i=0,1,...,5 - L.

Figure 2: § 4-packing of K35 with the leave 3K>

Lemma 4. For any positive integers s and k the complete bipartite graph K s has an
S 4-decomposition.

The proof is trivial.

2 Main Results

In 1986 Roditty solved the problem of packing and covering the complete graph K,
with 4-stars.

Thegrem 5 ([9)). The S4-packing number of the complete graph K, is L@J Sfor
nz71.

Theorem 6 ([9]). The S4-covering number of the complete graph K, is I'@'I Jor
nz7.

Here, we find a corresponding maximum packing and minimum covering of the com-
plete graph with 4-stars for every possible leave graph and excess graph.

2.1 All the Possible Leave Graphs in the S ;-packing of K,

Theorem 7. Let n > 7 be an integer and the leave graph in a maximum packing of the
complete graph K, with 4-stars have i edges. For any graph H with i edges there exists
a maximum packing of K, with 4-stars such that the leave graph is isomorphic to H.
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Proof. By Theorem 1, K, has an S ;-decomposition for n = 0 or 1 (mod 8). We show
that for the remaining cases we have maximum packings with all the possible leave

graphs.

Case 1. n = 2 (mod 8)

By Theorem 5, the leave is a single edge and the proof is complete in this case.
Case 2. n =3 (mod 8)

In this case, the leave graph has three edges. The non-isomorphic possible leave graphs
are Si3, K3, S; + K3, Py, and 3K;.

In order to get an S3 as the leave, write K, = K3 vV K,,_3. Since n = 3 (mod 8),
we have n -3 = 0 (mod 8) and hence K,,-3 has an § 4-decomposition, R, by Theorem 1.
Label the vertices of K,-3 with the elements of Z,_3 having subscript 1 and the vertices
of K3 with the elements of Z3 having subscript 2. Now, the vertices 0y, 1,,2;, 05, 13,2,
the nine edges between the vertices with different subscripts, and the three edges be-
tween the vertices with subscript 2 form a K3 vV 3K;. By Lemma 2, K3 Vv 3K has an
S 4-decomposition, §. Now, the vertices 3,4y,...,{n — 5);, the vertices 0, 15, 2;, and
the edges between these two sets of vertices form a complete bipartite graph which has
one part of size a multiple of 4. Therefore, by Lemma 4 this complete bipartite graph
has an S 4-decomposition, T. Hence, RU S U T form a maximum packing of K, with
4-stars with the 3-star ((n — 4);; 02, 12, 2,) as the leave graph.

In order to obtain 3K, as the leave, again write K,, = K3 V K,,_3. Label the vertices as
above and let R and S be the same decompositions. Now, the vertices 31,4,,...,(n - 9),,
the vertices 0,, 13, 25, and the edges between these two sets of vertices form a complete
bipartite graph with one part of size a multiple of 4. Hence, by Lemma 4, this complete
bipartite graph has an §4-decomposition, T. Now, the vertices (n — 8),, (n — 7),, (n - 6),
,(n —5),(n — 4),, the vertices 0, 15,2, and the edges between these two sets of ver-
tices form a K35. By Lemma 3, K35 has a maximum packing, Q, with the leave 3K;.
Hence, RU S U T U Q forms a maximum packing of X, with 4-stars with the leave
graph 3K;.

Now, to get K3 as the leave, write K, = K V K,—;. Label the vertices of K,,..; with the
elements of Z,,_, and the single vertex of K; with co. Since n = 3 (mod 8), by Theorem
5, Kp-1 has a maximum packing with 4-stars, R, with the edge {(n — 3),,(n — 2),} as
the leave graph. Moreover, the vertices 0y, 11, ..., (n —4),, the vertex oo, and the edges
between these two sets, form a graph Kj,-y,1, which has an §4-decomposition, S, by
Lemma 4. Therefore, R U S forms a maximum S 4-packing of X, with the leave Kj.
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Figure 3: S 4-packing of K, with the leave K3

In order to get P, as the leave, again write K, = K; V K, label the vertices as above,
and let R be the same maximum packing with the same leave as above. The vertices
1,2,...,n — 3, the vertex co, and the edges between these two sets of vertices form
a complete bipartite graph with one part of size a multiple of 4. Hence, by Lemma
4, this complete bipartite graph has an S 4-decomposition, S. Therefore, RU S forms a
maximum packing of K, with 4-stars where the three edges {n—3,n~2}, {n-2, 0}, and
{00, 0) are left, which form a P, (see Figure 4, in which each thick line demonstrates a
4-star).

Figure 4: S 4-packing of Ky; with the leave Py

Finally, to get S, + K; as the leave, again write K, = K V K,_1, label the vertices as
above, and let R be the same maximum packing with the same leave as above. The
vertices 2,3,...,n — 2, the vertex oo, and the edges between these two sets of vertices
form a complete bipartite graph with one part of size a multiple of 4. Hence, by Lemma
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4, this complete bipartite graph has an § 4-decomposition, S. Therefore, RU § forms
a maximum packing of K, with 4-stars where the three edges {n — 2,n — 3}, {00, 0},
and {oo, 1) are left which form an S, + K> (see Figure 5, in which each thick line
demonstrates a 4-star). This completes the proof in this case.

Figure 5: § 4-packing of Ky with the leave K; + S,
Case 3. n =4 (mod 8)

By Theorem 5 the leave graph has two edges in this case. Hence, the possible leaves
are S; and 2K;. In order to get S, as the leave, write X, = K| vV K,,_,. Label the
vertices of X,,—; with the elements of Z,_; and the single vertex of K| with co. Since
n = 4 (mod 8), K,,—; has a maximum packing, R, with 4-stars with an S; as the leave as
stated in case 2. Let the edges in this leave be {n—2,n-3}, {n—2,n—4), and {n-2,n-5}.
Now, the vertices 0, 1,...,n — 5, the vertex oo, and the edges between these two sets of
vertices form a complete bipartite graph with one part of size a multiple of 4. Hence,
by Lemma 4, this complete bipartite graph has an S 4-decomposition, S. Therefore, we
are left with the edges (n —2,n -3}, {n-2,n-4},{n-2,n~ 5}, {oo,n - 4}, {00, n -3},
and {oo,n — 2). Therefore, RUS U {(n —2;n-3,n—-4,n -5, )} forms a maximum
packing of K, where the two edges {co, n - 3} and (0o, n — 4) are left which form an S,.

In order to get 2K as the leave, write K, = K; Vv K,,-4. Label the vertices of K,,-4
with the elements in Z,_4 having subscript 1 and the vertices of K4 with the elements
of Z4 having subscript 2. Since n = 4 (mod 8), K,,_4 has an §4-decomposition, R. The
vertices 0y, 11,2, the vertices 03, 12,2, 3, the edges within the set with subscript 2,
and the edges between these two sets of vertices form a graph which we call H#. The
following 4-stars form a maximum packing of H, S, with 4-stars and leave the edges
(02,2;} and {13, 33} which form a 2K;. For numbers with subscript 2 the computations
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are done modulo 4.
(i3 (i + 1)2,01, 11, 2))3 € Za.

Now, the vertices 3;,44,...,(n - 5);, the vertices 0z, 12,2, 3, and the edges between
these two sets of vertices form a complete bipartite graph with one part of size a multi-
ple of 4. Hence, by Lemma 4, this complete bipartite graph has an S s-decomposition,
T. Therefore, RU S U T forms a maximum packing of K, where the edges {02, 22} and
{13, 35) are left which form a 2K5. This completes the proof in this case.

Case 4. n =5 (mod 8)

In this case, again by Theorem 5, the leave graph has two edges. Write K, = K; VK.
Since n = 5 (mod 8), we have both of the possible leave graphs for K, by the previous
case. Let H be one of the leaves. Since n - 1 is a multiple of 4, by Lemma 4, K| ,-| has
an S 4-decomposition. So, the leave graph is H and the proof is completed in this case.

Case 5. n = 6 (mod 8)

By Theorem 5, the leave has 3 edges in this case. Write K, = K3 V K,,_3. Since
n = 6 (mod 8), we have all the possible leaves of S,-packings of in K,-3 from case
2. Let H be one of those leaves and R be the corresponding packing. Label the ver-
tices of K,,_3 with the elements of Z,_3 having subscript 1 and the vertices of K3 with
the elements of Z3 having subscript 2. The vertices 0y, 1,2, the vertices 02, 13,2,
the edges between these two sets of vertices, and the edges between the vertices in
the second set form a K3 v 3K,. By Lemma 2, this graph has an §4-decomposition,
S. Now, the vertices 3(,4,,...,(n —4),, the vertices 0, 15, 25, and the edges between
these two sets of vertices form a complete bipartite graph with one part of size n — 6.
Since n = 6 (mod 8), n — 6 is a multiple of 4 and hence, this complete bipartite graph
has an §4-decomposition, T, by Lemma 4. Therefore, RU S U T forms a maximum
packing of K, with 4-stars with the leave H and this completes the proof in this case.

Case 6. n = 7 (mod 8)

In this case, again by Theorem 5, the leave graph is a single edge and the proof is
complete. o

Note that for n = 6 the only possible leave will be K3, which shows that the condition
n 2 7 in the theorem is necessary. We prove our statement as follows. Label the ver-
tices of K with the elements of Zg. Any maximum packing contains 3 stars. Without
loss of generality we assume the first star to be (0; 1,2, 3, 4). We have two options for
the next star center.

Assume we choose vertex 5 as the center of our next star. We can choose the leaves of
the star to be the vertices 1, 2, 3, and 4 or choose one of the leaves to be the vertex O and
the others to be three of the vertices 1, 2, 3, and 4. The first choice is impossible since
every vertex will have degree at least two and we cannot add the third star. Hence,
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without loss of generality assume the second star to be (5;0,1,2,3) and we have to
choose (4; 1,2, 3, 5) as the third star and the leave graph will be the triangle with the
edges (1,2}, {2,3), and (3, 1}.

Now, assume we choose one of the vertices of degree one to be the center of our sec-
ond star. Without loss of generality we can take (1;2, 3, 4, 5) as the second star. Hence,
the only possibility for the third star will be (5;0, 2, 3,4) which gives a triangle with
the edges {2, 3), {3,4), and {4,2) as the leave graph which completes the proof of our
statement.

2.2 All the Possible Excess Graphs in the S ;-covering of K,

In the previous subsection we illustrated how we can achieve all the possible leave
graphs in an S 4-packing of K,,. Now, we show that we can obtain every possible excess
graph in a minimum § 4-covering of K, as well.

Theorem 8. Let n > 8 be an integer and the excess graph in a minimum covering of
the complete graph K, with 4-stars have i edges. For any graph H with i edges there
exists a minimum covering of K, with 4-stars such that the excess graph is isomorphic
to H.

Proof. Again we know that for n = 0 or 1 (mod 8), X, has an § 4-decomposition. We
show that for the remaining cases we have minimum coverings with all the possible
excess graphs.

Case 1. n =2 (mod 8)

By Theorem 6 the excess graph has three edges in this case. The possible excesses
with three edges are S3, K3, Ps, 3K2, S2 + K2, K3, D, and F, where D is the graph Ki
with an edge attached to one of its vertices and F is the disjoint union of the graphs K;
and K.

We can obtain the excess S 3 from a maximum packing of K, with the leave K, adding
a 4-star which has the leave of the packing as an edge.

For the excesses K3, S3 + K>, 3K, and P4 we use the following construction. Write
K, = K3 V Ky_3. Label the vertices of K,_3 by the elements of Z,-3 having subscript 1
and the vertices of K3 with the elements of Z3 having subscript 2. Since n = 2 (mod 8),
by case 6 in the proof of Theorem 7, K,-3 has an §,-packing with a single edge as the
leave graph,; call the packing R. Let {(n - 5),, (n — 4),} be that single edge. Consider
the vertices 0y, 1}, the vertices 03, 15, 2;, the edges between the vertices in the second
set, and the edges between these two sets. The following 4-stars form a minimum cov-
ering called S with the triangle formed by the edges {0, 12}, {02, 22}, and {15, 25} as the
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excess.

(02; 12, 22,04, 1y),
(12502, 22,00, 1y),
(22: 02, 13,04, Iy).

Now, Consider the vertices 2;,3,,...,(n — 5),, the vertices 0z, 12,2, and the edges
between these two sets. These form a complete bipartite graph with one part of size a
multiple of 4 since n = 2 (mod 8). Hence, by Lemma 4, this complete bipartite graph
has an § 4-decomposition, T. Therefore, RUS UT U((n - 4),; (n — 5}, 02, 12,2;) forms
a minimum covering of K, with a K3 as the excess (see Figure 6, in which the thick
line demonstrates a 4-star).

Figure 6: $ 4-packing of K, with the excess K3

Consider the stars in the minimum covering above. Replacing the star (2;;0;, 12,01, 1})
with (25; 05, (n — 4);, 0y, 1,) gives the path P, as the excess graph.

Replacement of the same star with (25;(n —4);,(n - 5);,0;, 1;) leads to the excess
S, + K.

If we replace the stars (02; 12, 22,04, 11), (12:02,23,01, 11), and (25503, 12,0, 1;) with
(023 12,21,04, 11), (123 34,235,041, 11), and (25;02,41,04, 1), then the excess graph will
be a 3K;.

For the remaining possible excesses, we use the following construction. Again write
K, = K3V K;_3. Label the vertices of K,-3 with the elements of Z,_3 having subscript 1
and the vertices of K3 with the elements of Z3 having subscript 2. Since n = 2 (mod 8),
we have n—3 = 7 (mod 8). Hence, the leave graph in the packing of K3 has one edge
by Theorem 5. Let R be a maximum packing of K,-3 with 4-stars and the single edge
{(n = 5);, (n — 4),} be the corresponding leave graph. The following stars along with
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the ones in R form a minimum covering of K, with 4-stars with the three multiple edges
{02, 15} which is a Kg (see Figure 7, in which the thick line demonstrates a 4-star).

02 12,04, (G + 1),(i+2)),i=0and 3
(12;02’il’(i+ l)],(i+2)|),i= Qand 3

(2:(4j+6),(4j+ 7)), (4j +8),(4j+9)).0<i< 1,0 j <

n-14

JJjeEZ

n-10

(22: (4, @4j+1),(4j+2),(4j+3)).0< j <

((n =415 (n = 5)1, 02, 12,25),
(22;02$ 121 (n - 6)11 (n - 5)[).

L,JEZ

4

‘\\ -
a2

N/

Figure 7: S 4-packing of K, with the excess Kg

In the same covering as above, replace the star (02; 15, 0y, 1, 2;) with (02; 22,0, 14,21)
to achieve the excess D.

Consider the covering with excess D and replace the stars (15;05,0,1¢,2,) and
(12;02,3,4,,5;) with (15;(n -4),,04,11,2) and (15;(n - 4),31,44,5;) to give the
excess F. This proves the theorem in the first case.

Case 2. n = 3 (mod 8)

By Theorem 6, the excess graph is a single edge and the proof is complete in this
case.

Case 3. n = 4 (mod 8)

Again by Theorem 6, the excess graph has two edges. The possible graphs with two
edges are S5, 2K, and K%. The excess S is easily obtained from a maximum packing
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with the leave §».

In order to get the excess 2K, write K, = K; vV K,-|. Label the vertex of K; with
oo and the vertices of K,-; with the elements of Z,—,. Since n = 4 (mod 8), we have
n—1= 3 (mod 8) and hence, the excess graph of a covering of K,,_; with 4-stars has a
single edge. Let that single edge be {n — 3, n — 2. The following stars along with those
in the minimum covering of K,-; form a minimum covering for K, with 4-stars with
the excess 2K>. ’

(oo;4i,4i+1.4i+2,4i+3)"'€{0’1""’n;8}'

(00;0,n—4,n-3,n-2).

The construction below gives the excess K%. Write K, = K3 V K,.3. Since
n = 4 (mod 8), K,,_3 has an S 4-decomposition. Partition the vertices of K3 into a
set of three vertices, a set of two vertices, and a set of n — 8 vertices. First, consider the
set of three vertices. By Lemma 2, K3 V 3K, has an S4-decomposition. Now, consider
the set of n — 8 vertices. Since n = 4 (mod 8), n — 8 is a multiple of 4. Hence, by
Lemma 4, K3 ,-g has an S ;-decomposition. Label the vertices of the set of two vertices
with the elements of Z, having subscript 1 and the vertices of the K3 with the elements
of Z3 having subscript 2. The following stars along with those in the decompositions
of K3, K3 v 3K, and K3 ,—g form a minimum covering of K, with the excess K%.

(01; 11702’ ]2922)1
(ll;olaOZv 12722)'

Case 4. n =5 (med 8)

By Theorem 6, the excess has two edges. Let H be one of the possible graphs with
two edges. Write K, = K; V K,—;. Since n = 5 (mod 8), by case 3, K, has a
minimum covering with the excess H. Since n — 1 is a multiple of 4, K; ,_; has an
S 4-decomposition by Lemma 4. Hence, the stars in the decomposition of K ,-; along
with those in the minimum covering of K,,_; form a minimum covering of K, with the
excess H.

Case 5. n = 6 (mod 8)

By Theorem 6, the excess graph is a single edge and the proof is complete in this
case.

Case 6. n = 7 (mod 8)

In this case, the excess has three edges. For n > 7, write K, = Ks vV K,-5. Let
H be any possible graph with three edges where multiple edges are allowed as well.
Since n = 7 (mod 8), K,,—s has a minimum covering with excess H by case 1. Partition
the vertices of K,_s into a set of six vertices and a set of #n — 11 vertices. Consider the
set of n— 11 vertices. Since n = 7 (mod 8), n— 11 is a multiple of 4. Hence, by Lemma
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4, Ks,-1) has an § 4-decomposition. Now, consider the set of six vertices. By Lemma
2, K5 v 6K has an §4-decomposition. The stars in the decompositions of Ks,-1; and
Ks Vv 6K along with those in the minimum covering of K,,-s form a minimum covering
of K, with the excess H. D

The table below summarizes our results. In this table, D denotes the graph K2 with an
edge attached to one of its vertices and F denotes the disjoint union of the graphs K%
and Kz.

Table 1: All Possible Leaves (Excesses) in the Packings (Coverings) of K, with 4-stars

n (mod 8) Leave (forn = 7) “Excess (for n > 8)
0 0 0
1 0 0
2 Ky S3,K3,P4,3K;,5, + K3, K3, D, and F
3 S3,K3, P4, 3K;, and S2 + Kz K,
4 S, and 2K, S2,2K,, and K3
5 Sz and 2K2 Sz, 2K2, and Elz,
6 S3,K3,P4,3K;, and S5 + K3 K
7 K> S3,K3,Pq,3K5,52 + K>, Kg, D, and F

3 Conclusions and Future Directions

In this paper, we achieved all possible leaves and excesses for the maximum packing
and minimum covering of the complete graph K, with 4-stars. As the next step, we will
try to get all the possible leaves and excesses for the maximum packing and minimum
covering of K, with 5-stars. This case will be more complicated than 4-stars since we
deal with leaves and excesses of size four as well.

It is also tempting to work on generalizations of Theorems 5 and 6 for any k-star.
The problem seems to be solvable by similar constructions as illustrated in this paper
for the cases when n = 2, 3,k, or 2k — 1 (mod 2k).

As another direction, we are going to find the spectrum for packings and coverings
of the complete graph K, with all trees of five vertices.
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