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Abstract

This paper discusses the permutations that are generated by rotat-
ing k x k blocks of squares in a union of overlapping & x (k + 1)
rectangles. It is found that the single-rotation parity constraints ef-
fectively determine the group of accessible permutations. If there
are n squares, and the space is partitioned as a checkerboard with
m squares shaded and n — m squares unshaded, then the four pos-
sible cases are An, Sn, Am X An—m, and the subgroup of all even
permutations in S,, X Sp—_», with exceptions when k =2 and k = 3.

1 Introduction

Many games with a mathematical flavor involve moving blocks or balls
according to some simple rotational or translational rule in an attempt to
put them into some specified pattern. Generally not all permutations of
the blocks are possible, and potential moves overlap at only a few elements.
For instance, with the Rubik’s Cube the arrangement of the center squares
on the faces is constrained and two rotations can affect at most 3 pieces
in common, while in Hungarian Ring puzzles only 2 of the marbles are
shared by both rotations. The 15-puzzle involves very small moves: tiles
numbered 1 through 15 are placed in a 4x4 grid, and the only moves involve
sliding a tile into the empty spot, so that only two tiles are affected by each
move. Given that in each case small moves and limited overlap are intended
primarily to produce games that are more easily playable by humans, it is
natural to ask what would happen in the opposite extreme. In particular,
would a rotational block-style puzzle with only a few, highly overlapping,
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rotations result in a large or a small number of accessible permutations of
the blocks?

An extreme case of this is to consider rotating k x k blocks of square tiles
in a k x (k + 1) rectangle, or an overlapping union of such rectangles. For
instance, Figure 1 illustrates a tile arrangement of three kx (k+1) rectangles
for k = 6, along with three potential rotations of 6 x 6 blocks of tiles. (There
are three other potential rotations in this particular arrangement.) We find
that in general—somewhat surprisingly—nearly all permutations of the tiles
are possible, despite the minimal overlap shared by the k x (k4 1) regions.
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Figure 1: The six possible 6 x 6 block rotations generate all 119! permuta-
tions of blocks.

We use the notation G = G(g1, g2, . . ., gq) to denote the group generated
by all the possible rotations of k x k squares in the tile arrangement, where
the g; represent the generators, and refer to this as the puzzle group. The
pattern of tiles is admissible if it can be formed by overlapping k x (k + 1)
rectangles and/or (k+ 1) x k rectangles in a sequence such that if k is even
each new rectangle overlaps with the previous arrangement by at least one
tile, and if k is odd then it overlaps by at least two adjacent tiles.

When there are n total tiles, the k x k rotations generate a subgroup of
S,. Furthermore, when k is odd there are at least two disjoint orbits: With
the tile arrangement colored like a checkerboard, the puzzle tiles permute
like-colored squares. (See Figure 2.)

Additional restrictions on G are immediately apparent. First, when k& =
0 mod 4, then each rotation results in an even permutation (of k2/4 four-
cycles), and so G < A,,. Second, when ¥ is odd, then each rotation results
in two orbits of (k? —1)/8 four-cycles each. So assuming the entire union of
k x (k + 1) rectangles is colored as a checkerboard, with m squares shaded
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Figure 2: The two orbits when k is odd.

and n—m squares unshaded, then if k= 1,7 mod 8,then G < A, X Ap_m,
while if £k = 3,5 mod 8, then G < Even(Sy, X Sn—m), that is, G is a subset
of the even permutations in S,, X S,_,,. In this paper we prove that in
fact these are the only restrictions on the feasible permutations, except in
two small cases.

Theorem 1.1. Ifk > 1 then the puzzle group of an admissible figure on n
blocks is given by:

1. If k is even and n # 6 then

oo A, ifk=0 mod4
" 1S, k=2 mod4

2. Ifk is odd and n # 12 then shade the figure as a checkerboard in black
and white. If there are m elements in black and n — m in white then

G = An X Ap_m ifk=1,7 mod 8§
" | Bven(Sm X Sn—m) ifk=3,5 mod 8

where Even(Sm X Sp—m) = (Am X An—m) U ((Sm — Am) X (Sn—m —
A,_n)) is the set of all even permutations in Sy X Spem.

3. If n =86, then
G = PGLy(5) = S
for the projective linear group under an appropriate labeling of ver-
tices.

If k=3 and n =12, then
G=Ss

where the projection of G onto each orbit is Sg.
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2 The proof

Our proof is modeled after Wilson’s approach to finding the permutation
group for a generalization of the 15—-puzzle problem [1]. In order to explain
the method we require a few definitions.

Recall that a permutation group G acting on set X is transitive if it
can send any = to any y (ie. Vz,y € X,39 € G : gz = y), while it
is primitive if it is transitive and does not preserve any bipartition (i.e.
VX' Cc X,3g € G: gX' & {X',(X')°}). In particular, a doubly transitive
group (transitive with stab(z) = {g € G : gz = z} transitive for some z) is
primitive.

Jordan’s Theorem says that a primitive group G containing a 3-cycle is
either A, or S, (e.g. Theorem 13.3 of [2]). With this in mind, our approach
to proving the theorem is to first show that G is doubly transitive on each
of its orbits, and then show that G contains a 3-cycle on each orbit (with
two exceptions). It follows that G contains the product of the alternating
groups on the orbits, which leaves only a small number of potential groups
to consider.

We first consider the most basic type of puzzle group, that on a kx (k+1)
rectangle. The general case will be derived from this at the end of the proof.

There are only two generators to consider; denote the generator on the
left by oy, i.e. a clockwise rotation of the left k x k square region, and the
one on the right by og, i.e. a clockwise rotation of the right k£ x k square
region. The puzzle group is G = (o, or), the group generated by o and
or. Label the tiles of the rectangle by their Cartesian coordinates (¢, j) €
{1,2,...,k}x{1,2,...,k+1}, with the tile in the upper left corner denoted
(1,1), the tile to its right denoted (1,2), and so forth. Then o ((1,1)) =
(1,k), for instance. Let ¥z = yry~! denote conjugation, so that Yz(a)
denotes the location of tile a after y(z(y~'(a))). The conjugate is relatively
easy to compute by using the property that if z(a) = b then Yz(y(a)) = y(b).

2.1 Building Blocks: A few products of generators
It will be useful to note the actions of the generators:
.. ,k+1—1) for j#k+1
i) = {Y ) for g7
(i,k+1) for j=k+1

(G-1,k+2—4) for j#1
(1) for j=1

UR('I:,]')

The most common approach to proving puzzle groups is to work with a

commutator:
(9.h] =ghg™'h7!
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This tends to involve simple shifts from the identity that can be easier to
work with than the original action in the puzzle.
We use a few commutators when showing double-transitivity.

[on, o5 (G,7) = (5,j—2)  when i>1 and j>2
o, or](3,5) = (i+2,7) when i<k—1and 1<j<k+1

We are not concerned with the action outside the specified regions, so we

do not describe it here.
For construction of 3—cycles we find that other expressions which take

into account the order of the rotations can be easier to work with. In this
section we develop those building blocks.

The two simplest formulas we can derive are simply rotations by 360°,
so of = id and o} = id. More generally, since o and og send a tile (i, 5)
to nearly the same location, then a product of four o and or terms will
involve only minor shifts for most tiles. We write out a handful of such
expressions and then combine them to get 3-cycles.

A simple example we will work with is

2 20 o _ ) (5,7+2) ifj<k
oroL(i:9) {(k+1—i,j—(k—1)) 5>k

Tiles are shifted to the right by +2, and when this wraps around the bound-
ary then they are also flipped vertically. Another useful case is

(+1,7+1) ifi<kandj<k+1
orloL(i,5) = < (4,1) ifi=kandj<k+1
(1,i+1) ifj=k+1

Most tiles are shifted down and to the right by one diagonally.
The action of (o5 o[ !)? is a bit more complicated:

(k—=1,k+1) | (k,k+1) ... (3,1)] (2,1)

o501 i) = F-2k+D| @2 ... &b L1
R “L W : : .. : :

(1,k) *2) ... (kE)|(1E=1)

The location of (%, j) in the table is the location it is mapped to. This shows
that a cycle formed by the left side, top, and right side of the rectangle
rotates clockwise by k + 1 tiles, and the rest remains fixed.
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2.2 Double transitivity

Lemma 2.1. The puzzle group for a kx (k+1) rectangle is doubly transitive
on each orbit.

Proof. We begin with the case when k is odd.

Let E be the set of tiles with ¢ + j even (the shaded region in Figures 2
and 3). This is one of the two orbits of G on the set of tiles. Since E* is just
the reflection of E through the centerpoint i » k+1—iand j - k+2—j
then double-transitivity of E also implies double-transitivity on the set of
tiles with ¢ + j odd.

Let a = (-’%‘-, %‘—1) be the square immediately to the left of the center
of oR; this is the center of the o rotation. Rotations preserve the parity
of blocks, i.e. if (i,7) € E then o (i,j) € F and or(i,j) € E, so Ga =
(oL, oR) C E.

Given d in N let Sp = {a} and for d > 1 define

< d}
This is just those tiles with both ¢ and j coordinates at most d from the
center of the or rotation. We show that (or, lov,0) 1, [oL,0R]) Sa=1 2
Sd, and so by induction (og, [ov,07"), [oL,0r])a 2 E\ {(1,1)}. Since
(or, [oL,05"]s [oL,0R]) < stab(1,1) then stab(1,1)a = E'\{ (1,1)}.

For the base case, when d = 1 then a € §) and S; = J3_; o§(a), so the
claim is trivial.

k+1 k+3

el
Y cals-

Su= {(i,j) e E\{(L,1)} :

F 3

'y

Figure 3: [0, 05 l] So contains the left boundary of Ss.

For the inductive step assume that d > 2. If ¢ > 2 and j > 3 then
[ou, 05 Y3, 5) = (3,5 — 2), and so [oL,07"] Sa-1 includes the left boundary
of S;. Rotation of the left boundary under (o) includes all of S4\ S4_;.
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The final case, when d = %‘—1—, does not require the rotation and completes
the proof that stab(1,1)a = E\ {(1,1)}.

When k is even let E be the set of all tiles and a = (%42, ££2). Then
Ga C E trivially. The method of proof is the same, but in the inductive
step [oL, 0% 1] S4-) now misses the top and bottom of the left boundary of
Sy when d < "—“2‘—2 However, [oy,0r"] [ov,0R](i,7) = (i + 2,5 — 2) when
i<k—1land j>1,and soifd < %ﬁ then (or, [o1,05"], [oL,0R]) Sa-1
also contains the lower left tile of Sq. Applying powers of ogr to this covers
S\ Sa-1. 0

2.3 Finding a three-cycle
Having established double transitivity, we now seek a 3-cycle.
Lemma 2.2. If k > 3 then there is a 3-cycle in the k x (k + 1) rectangle
with generators o and or. More precisely:
1. If k is even then

((oRal)M*/4) ] _1n2\20
( a3 (og'o(") )

is a 3-cycle where 03 = op when k = 0 mod 4 and 03 = g when
k=2 mod 4.

2. If k is odd then
_ _ B/3
((or"ou)(chot)e-1120}) (2.1)

is a 3-cycle where

3 ifk#3 mod 18

4 k=3 modT72

2 i k=21,57 mod 72
12 ifk=39 mod 72

and B is the order of (o laL)a (aﬁaf)(k_l)/ 2 of. A 3-cycle on the
other orbit may be obtained by swapping or and oL.

Proof. Case 1 (k even): We consider k =0 mod 4. The methodology
when k =2 mod 4 is the same, but with different cycle structures.

. —1 132 . .
The actions of (cg'o!)” and oo? were described earlier. The expo-
nent in the conjugated term is

.« . & . . < &
(0Ba?)** (4,5) = {(”J'*' 2) fj<3+1

(k+1-45—(k+1) if j>&+1
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It is a short exercise to verify that ((”g”f)k“)aR consists of
e l-cycles: (%, -’25 +1) where1 <i<k
e dcycles: ((5,7), (5 +7,5+1+4), Gk+2-3), (5+4,%5+1-14))
where ¢, j < §
The cycle structure of (A0 *)op (07'07!)? then consists of
e l-cycles: (i, !25 +1)where2<i<k
e 3-cycle: ((1,% +1), (5,k), (5 +2,1))

e 4-cycles: One 4 cycle for each tile

{(i,j)=23i<gand15jsg}

k k
U{(—J) : 2S.7'Sk—1,j7é’+1}
2 2
e 10-cycle: One cycle containing (k/2,1) and (k/2, k+1), among others.

This gives k(k + 1) tiles, and so it is the complete cycle structure. Taking
the 20t* power leaves only the square of the 3-cycle, which is also a 3-cycle.

Case 2 (k odd) : It suffices to show existence of a 3-cycle on the orbit
E = {(i,7) : i+ j even} since reflecting the k x (k + 1) region through its
centerpoint, i.e. i > k+1—iand j > k+2—j, swaps E and E° as well
as o and og, transforming the 3—-cycle on E into a 3—cycle on E°.

The main term is

(0202) D72 .)={(i,k—1+j) if j=1,2

R7L (k+1-14,5—2) if j>2
and so
2 o\(k=1)/2 2. . (i,k—1-3) if j<k-1
ORO gi(t,2) = . . . .
(oret) L&) {(k+1—z,2k—3) if j2k-1
Our theorem uses exponents a > 2. When o = 2 then (2.1) acts as :
(o,’{lal,)z (cr,%or;‘_’)(k_l)/2 oi(4,3) (2.2)
(i +2,k+1—3) if i<k—2 and j<k-2
(k—j,i—(k—2) if i>k—2 and j<k—2
) (Lk+1=3) if i=1 and je€{k—1,k}
T ) (k+1-j,k+1-(i—2) if i>2 and j€ {k—1,k}
(k,3 — i) if ie{1,2} and j=k+1
((k+1—-(G—2),k+1) if i>2 and j=k+1

342



When 3 < a < k then an inductive argument shows that (2.1) acts as :

(O'R UL) (0,2 2)(k-1)/2 Z(z’]) (2.3)
((a—2~y,z+a) if i<k—a+1 and j<a-3
Et+a—k-—1,a—-2—j) if i>k—a+1 and j<a-3

_ G+a,k+a—-1-7) if i<k—a and a—-3<j<k-1
T M k+a—-2-jita—k) if i>k—a and a—3<j<k-1
(a—ik+a—-1-7) if i<a—1 and k—-1<j<k+1
((k+a—-1—j,k+a+1—4) if i>a—1 and k—-1<j<k+1

Main Case: k #3 mod 18

Set a = 3, in accordance with Lemma 2.2. There is a 3-cycle given
by ((1,2), (4,k), (2,k)), a 10-cycle containing (1,1) and 9 other tiles, an
8-cycle containing (2, 1) and 7 other tiles, two 4—cycles with one containing
(k,1) and the other (k,2), and a fixed tile (k — 1,2). We now specialize
further:

Subcase of k =1 mod 6: Since @ = 3 then the most common transition
is when i < k — 3 and 7 < k — 1, in which case

(a;laL) (oo, 2)(k D252 5y = (i +3,k+2— 7) (2.4)

Starting at (1,j), where 4 < 5 < k — 2, this induces a long sequence
alternating between two types of j terms:

(4,3) = (i +3,k+2—-73) > (1+6,7) (2.5)

The pattern doesn’t hold if j < 4 or j > k — 2, which is why we don’t allow
either. In total the sequence contains L‘at?- terms, ending in (%, j).

After this comes a short three-term sequence (k+1 — 3,3) = (k +4 —
Jrk—1) = (3,7). The tile (3,7) satisfies the requirements for (2.4) once
again, leading to another sequence using pattern (2.5), this time with " 4
additional terms, ending in (k — 1,k +2 — j).

Following this is another three-term sequence, (j —1,2) — ( j+2,k) >
(2,k + 2 — 7). Once again repeatedly apply (2.4) to get &4 k 4 additional
terms, ending with (k — 2, 7).

Finally, following this is another three-term sequence, (k +1 —j,1) —
(k+4-34,k+1)—> (1,7). But (1,7) is just what we started with, and so
we are done.

The total number of terms in the cycle is then J‘— + 34 £ " 413+

4 +2 = k+6. There is only one term of the form (1, ]) in each sequence,
so every (1, 7) makes a distinct such sequence, and in particular there are
k — 5 such cycles of order & + 6.
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This, along with the 6 cycles listed before our restriction to k = 1
mod 6, accounts for all k(k + 1) tiles. Since k=1 mod 6 then k+6 =1
mod 6 is not divisible by 3, and taking the (8/3) power of (2.3) then leaves
only a 3—cycle.

Subcase of K =5 mod 6: This is nearly identical to the proof when k =1
mod 6, but with sequences ending at slightly different values. However,
again there are k — 5 cycles of order & + 6, each containing a member of
{(1,7) | 3 < j < k—1}, and so again there is only one cycle of order
divisible by 3.

Subcase of £k = 9,15 mod 18: We again use equation (2.4). Starting
at a tile of the form {(4,7) | 1 <% <3, 3 <j < k— 1} there is a sequence
of k—;—"i subsequent terms, ending on (k — 3 + ¢,7). This is followed by
(k+1—3,3) = (k+4—74,k+2—1) = (3,7), for a total of ££® terms in each
such cycle. This gives a family of 3(k — 5) cycles of order '—‘%ﬁ which, when
combined with the cycles given before Case 2.1, accounts for all k(k + 1)
tiles. Since -’%’— = 1,5 mod 6 then "139 is not divisible by 3, and so once
again there is only one cycle of order divisible by 3.

Secondary Case: k=3 mod 18

The approach used when k # 3 mod 18 still applies. However, some of
the cycles previously found have order divisible by 3 when £ =3 mod 18,
so a different o will be needed. In fact, numerous subcases with different
exponents o are required in order to avoid cycles of order divisible by 3,
and these subcases tend to have many more cycle types. Following is a
chart explaining the cycle structure for these remaining cases. In each case
the cycle type is listed along with exactly one tile from each such cycle.

The simplest case is when £k =3 mod 72.

k=3 mod72 (a=4)

cycle type one tile cycle type one tile

1 (k—1,3) 10 (1,2)

3 1,3) k41l (k—4,1), (k—4,2)

4 (k-2,2), (k—2,3) k+7 {1,5) | 8<ji<k-2}
8 (2,2) k+11 (1,1), (1,k-1)

When k =21 mod 36 then the theorem uses @ = 2. The group action
in this case is given by (2.2). Going through the cycle structure, as in the

344



a = 3 case, we find it to be:

k=21 mod36 (a=2)

cycle type one tile cycle type one tile
1 (53, k+1), (k—1,1) k+4 (1,51
2 {Gk+1) | 3<i< B} By 28 (1,3)
3 (1,1) s (1)

2k +8 {@,5) |4<i< 52}

When k& = 39 mod 72 there is a common set of cycle types, plus addi-
tional cycles depending on the value of k modulo 360.

k=39 mod 72 (a=12)

cycle type one tile cycle type one tile
1 (k—1,11) 8 (2,12)
3 (1,11) 10 (1,12)
4 (k,11), (k,12)

O)I-‘-
©

{(4,5) | 12<i<k—-14,1<j <3}

k = 39,255 mod 360
cycle type one tile
Tme2+19k+42) (1,1), (1,2)

?—2(111 + 16k + k%) (1,18), (1,19)

k=111 mod 360

cycle type one tile

=201187 (2,22), (2,31)

00t 3p it {G,7) | 1<i<8,1<;<3}

=201+4 (1,21), (1,22), (1,30), (1,31)
e {G,4) | k—8<i<k—310<j<12}

k =183,327 mod 360
§(192+ 19k + k%) ~ (1,1), (1,2)
15(111 + 16k + k2)  (1,14), (1,15)

2.4 Proof of Theorem 1.1

Proof of Theorem 1.1. Recall that our proof will utilize the fact that a sub-

group of S, which contains a 3-cycle and is doubly transitive is either A,
or S,.
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The first step is to show that for any admissible figure, G is doubly
transitive on its orbit(s). By Lemma 2.1 G is doubly transitive on its orbits
for a single k x (k + 1) or (k + 1) x k rectangle. Proceeding by induction,
assume that G is doubly transitive on all of its orbits for an admissible
figure constructed from r rectangles of dimension k x (k+1) or (k+1) x k.
Add another k x (k + 1) or (k + 1) x k rectangle to this figure so that
the resulting figure, which is constructed from r + 1 such rectangles, is
admissible. There are at least k tiles which belong to the original figure
but not to the added rectangle. Choose one of these tiles and call it z. By
hypothesis, the stabilizer of = in the original figure is transitive, while the
generators of the new rectangle are transitive. Since the original figure and
the new rectangle overlap in the orbit of z, but not at z itself, then the
stabilizer of = in the new figure is also transitive and the figure is doubly
transitive on the orbit of z. Likewise, if k is odd then z can be chosen to be
in either of the two orbits, so the figure is doubly transitive on each orbit.
Hence for any admissible figure, G is doubly transitive on its orbits.

Next we combine double-transitivity and the 3-cycles already proven to
exist. This greatly limits the number of groups that are possible, and we
then refine this down to a single possible answer in each case.

Case 1 (k > 3 is even) : Lemma 2.2 shows that G contains a 3-
cycle. The previous paragraph establishes that G is doubly transitive, and
so G = A, or S,. Since k is even then each generator consists of "
disjoint 4-cycles. As a result, if ¥ =0 mod 4 then the generators are even
permutations, and so G < A, implying G = A,. If k =2 mod 4 then the
generators are odd permutations and so G # A,, implying G = S,.

Case 2 (k > 3 is odd) : There are two orbits, of some m and (n — m)
tiles each, and so G < Sy, X Sp_m. From Lemma 2.2 there is a 3-cycle o x 1
on the m-element orbit. The proof of Jordan’s Theorem generates A,, by
conjugating this specific 3-cycle and multiplying the resulting terms. Since
T(6x1) =To x1 € Sy x 1 then Jordan’s Theorem implies that A, x1 < G.
Likewise, 1 x A,,—;n < G. Hence A,, X Ap_y £ G.

Each generator consists of "—:ﬂ disjoint 4-cycles, exactly "—28‘—1 in each
of the two orbits.

If k =1,7 mod 8 then =1 is even, and so the K = L disjoint 4-cycles
in each orbit make an even permutatlon in that orbit. It follows that
G < Am X An—m, and so in fact G = Ap, X An—m.

If k=3,5 mod 8 then Ls‘—l- is odd and so the generators o and or act
on each orbit as an odd permutation, but are themselves even permutations,
and 50 Am X Ap—m < G < Even(Sm X Sn—m). However, the only group
satisfying Am X An—m < G < Even(Sm X Sn—m) is G = Even(Sm X Sn—m)-
To see this ohserve that since G < Even(S, X Sn—m) then every g € G
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acts as an even permutation on both orbits or as an odd permutation on
both orbits. It follows that if g € G\ Am X An—m and h € Even(Sp, x
Sn—m) \ (Am X An_r:) then they act as odd permutations on both orbits,
and therefore g h~! acts as an even permutation on each orbit, i.e. gh~1 €
Ap X Ap_m <G andso he gG=G.

Case 3 (k =2) : When n = 6 (a 2 x 3 rectangle) then the generators are

oL = ((172)s (2a 2), (2s 1)1 (la 1)) (26)
OR = ((2,2), (1?2)a (113)a (2a 3))

Equivalently, if we label (1,2) as oo and then number from 0 to 4 coun-
terclockwise starting at (1,1) — 0 and ending at (1,3) — 4, then the
generators are o = (0,00,2,1) and or = (00,4, 3,2). An alternate set of
generators is g, = afl = (00,0,1,2) and gp = a,_‘la,gl =(0,1,2,3,4). The
projective group PGLy(5) includes the following transformations on Zs:

az+b
cz+d

PGL»(5) = {z—) ta,bc deZs, ad—bc;éO}

The generator g; is the transformation 2z — 3/(z + 3), while g is the
transformation z — z + 1, so G < PGLy(5). Those two transformations in
fact generate PGL,(5) (e.g. [1]), and so under an appropriate labeling of
vertices then G = PGL»(5) & Ss.

Suppose instead that n > 6. The proof of Case 1 carries through as
long as there is a 3-cycle. The construction of every admissible figure with
n > 6 starts by overlapping two regions of sizes 2 x 3 and/or 3 x 2. Up to
symmetry (rotation or reflection through an axis) this region will contain
either a 2 x 4, a 2 x 3 joined at a corner square to a 2 X 2, or two 2 x 3
joined at a 90° angle to create a 3 x 3 missing a corner. More concretely,
let oy = oL and o3 = oR be the left and right generators defined in (2.6).
A third generator o3 and a 3-cycle will now be designated in each of the
three cases just discussed:

g3 = ((113)) (1’4)’ (214)7 (2»3))
3-cycle (0202, 01))% = ((1,2), (1,3), (2,4))
g3 = ((2’ 3), (2! 4): (31 4)’ (3?3))

3—cycle [o3,02) = ((2,2), (2,3), (2,4))
o3 = ((2,2),(2,3), (3,3), (3,2))
3-cycle [o3, o) = ((2,1), (2,2), (2,3))
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Case 4 (k=3) : When n = 12 then the pair of generators are

oo = ((1,1),(1,3),(3,3), (3,1)) ((1,2), (2,3), (3,2), (2,1)) (2.7)
or = ((1,2), (1,4), (3,4), (3,2)) ((1,3), (2,9), (3,3), (2,2))

Consider action on the orbit E = {(¢,5) : i+ j is even}. The puz-
zle group G is doubly-transitive on each orbit and contains the 3-cycle
(oL08)?| 5 = ((1,1), (3,1), (1,3)), and so As < G|g. But G|g contains
the odd permutation or|g = ((1,1), (1,3), (3,3), (3,1)), and so G|g = Ss.
It can be verified by brute force (e.g. GAP or Mathematica or a very long
exercise) that |G| = 6!, and so in fact G = Sg.

When n > 12 then once again start with a 3 x 4 region and attach a
3 x 4 or 4 x 3 to make a larger admissible figure. This time two 3-cycles are
needed, one in the orbit E and another in the orbit E¢. Up to symmetry
(rotation or reflection through an axis) this figure will contain either a 3x 5,
a 3x 4 joined by two squares near a corner to a 3x 3 (two cases), or two 3x 4
joined at a 90° angle to create a 4 x 4 missing a corner. More concretely
let 0, = o, and g, = or be the left and right generators defined in (2.7).
A third generator o3 and a 3—cycle on each orbit will now be designated in
each of the four cases just mentioned.

o3 = ((1’3)’ (175)1 (3’ 5)’ (31 3)) ((174)’ (2v5)7 (3’ 4)’ (2v 3))
3-cycles [o1,03)% = ((1,4), (3,2), (2,3))
and (0205'01)%° = ((1,3), (3,5), (2,4))
o3 = ((2,4), (2,6), (4,6), (4,4)) ((2,5), (376)’ (4,5), (3,4))
3-cycles (03 [02,0%])? and (02 [02,03))*
o3 = ((3,3), (8,5), (5,5), (5,3)) ((3,4), (4,5), (5,4), (4,3))
3-cycles [01,03]* and ([o1,03) [02,03])?
o3 = ((2,2), (2)4)t (4,4), (4! 2)) ((2’3)1 (3»4)’ 4,3), (31 2))

3-cycles (02 [02,0%])* and (03020%)%°

In some cases the generator 03 may not appear in either of the regions being
overlapped, such as when overlapping two 3 x 4 regions to make a 3 x 7
region. However, we are studying the group generated by all the possible
rotations of k x k squares in the tile arrangement, and so o3 is still a valid
rotation in the union of the two 3 x 4 regions. O
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