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ABSTRACT. In this note we consider the lexicographical ordering by
spectral moments of trees with given degree sequence. Such questions
have been studied for a variety of different categories of trees. Partic-
ularly, the last tree in this ordering among trees with given degree se-
quence was recently identified in two independent manuscripts. The
characterization of the first such trees, however, remains open. We
make some progress on this question in this note, by making use of
the interpretation of the spectral moment in terms of numbers of
paths and the product of adjacent vertex degrees, the first trees are
characterized with the additional condition that the nonleaf vertex
degrees are different from each other. We also comment on the case
when there are repetitions in the vertex degrees.

1. INTRODUCTION
For a graph G with |V (G)| = n and adjacency matrix A(G), let
A(BG), A2(G),. .., An(G)

be the eigenvalues of A(G) in non-increasing order. The k-th spectral mo-
ment of G, denoted by Si(G), is defined as

Y@
i=1

for k =0,1,...,n — 1. The sequence of spectral moments of G
S(G) = (So(G), 51(G), . . ., Sn=1(G))

introduces a natural lexicographical ordering of graphs on given number
of vertices, called the S-order. That is, a graph G, appears earlier in the
S-order than a graph G if and only if from some k,

5:i(G1) = Si(G2)
for 0 <i<kand
Sk+1(G1) < Sk41(G2).
S-order has been used in producing graph catalogs [3] and has been ex-
tensively studied for different categories of graphs such as trees, unicyclic

This work was partially supported by grants from the Simons Foundation (#245307).

JCMCC 96 (2016), pp. 33-40



graphs, and bicyclic graphs [4, 14, 15]. In particular, trees received much
attention in recent years. The S-order among trees with given maximum
degree [7], trees with given diameter [13], quasi-trees 8] have been explored.
Most recently, the S-order in a more general setting, i.e., among trees with
given degree sequence (the non-increasing sequence of internal vertex de-
grees), is considered [1, 6]. The last such tree is characterized. Through
comparisons of such extremal trees with different degree sequences, the au-
thors of [1, 6] also obtained extremal results on other categories of trees. To
find the first such tree among trees with a given degree sequence, however,
seem to be a different question and was left open.

In this note, we aim to characterize the first trees in S-order among
trees with given degree sequence, with the additional constraint that the
nonleaf vertices have different degrees. We call such trees the alternating
greedy trees, defined in the form of the algorithm to construct such a tree.
This concept has only appeared (to our best knowledge) in the study of
the Randié index [12] and was not formally defined.

Definition 1 (Alternating greedy trees). Given the degree sequence
{dls d2) ey dm},
the alternating greedy tree is constructed through the following recursive
algorithm:
(i) If m —1 < d,,,, then the alternating greedy tree is simply obtained by
a tree rooted at v with dp, children with degrees

di,...,dm-1 and 1""’1(d,,.—m+1) 16

(ii) Otherwise, m — 1 > d,, + 1. We produce a subtree T\ rooted at r
with d,,, — 1 children with degrees

di,... 04, _;
(iii) Consider the alternating greedy tree S with degree sequence
{ddmr sy dm—l},

let v be a leaf with the smallest neighbor degree. Identify the root of T} with
v.

As an example (Figures 1, 2, 3), for the given degree sequence
{8,7,6,6,5,5,3,3,3,2} :

e T3 is constructed with degrees {8, 2} (as in (ii)), leaving the degree
sequence {7,6,6,5,5,3,3,3} (as in (iii)) with the corresponding
alternating greedy tree Sy;

e To construct S;, T is formed with degrees {7,6,3}, leaving the
degree sequence {6,5,5,3,3} with the corresponding alternating
greedy tree So;
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e To construct Sz, T3 is formed with degrees {6,5,3}, leaving the
degree sequence {5, 3} to provide us the trivial S3 (as in (i));

o Attaching T3 to S3 (as in (iii)) yields S;. Then attaching T5 to S,
yields S;. In the final step, it is obvious that the two choices for
attaching T} to S) yield two different such alternating greedy trees.
Consequently, unlike the greedy trees, alternating greedy trees are
not necessarily unique.

FiGURE 1. Construction of T}, T, T3, and S3

FIGURE 2. The alternating greedy tree S; from T5, T3 and S3.

FIGURE 3. The alternating greedy trees T or T' from T}
and SI.

Theorem 1.1. Among trees of given degree sequence {di,ds,...,dm},
where d; # d; for 1 < i # j < m (hereforth referred to as a “distinct”
degree sequence), the first tree in S-order must be an alternating greedy
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As commented in [12} and from Definition 1, it is easy to see that the
following fact, established in Section 2, implies the extremality of the al-
ternating greedy trees.

Lemma 1.2. For a tree T with given (distinct) degree sequence that appear
the first in the S-order and a longest path P(vp,Ve+1) = VoVl ... UtUpq1 IR
T. Fori < 42, we must have

deg(vi) < deg(ve41-i) < deg(vx) fori <k <t+41-—1 (1)
if i is even; and

deg(v;) > deg(ves1-i) > deg(ve) fori <k <t+1-—i (2)
if 1 is odd.
Remark 1. In fact, applying conditions (1) and (2) on all paths of a
tree forces the neighbors of leaves to have the largest degrees, the vertices
at distance two from the leaves to have the smallest degrees, etc. More
specifically, denote by Ly the set of vertices whose closest leaves are at
distance k (i.e., Lo is the set of leaves, L, are neighbors of leaves, etc.),
Lemma 1.2 implies that:
The largest degrees are assigned to vertices in Ly;
The smallest degrees are assigned to vertices in La;

The remaining largest degrees are assigned to vertices in L3;
. ...

This is ezactly how we construct an alternating greedy tree with a given
degree sequence. Hence, to prove Theorem 1.1, we only need to show
Lemma 1.2.

2. PROOF OF LEMMA 1.2

First note the following beautiful result that represents the spectral mo-
ment of a graph with the number of closed walks.

Lemma 2.1. (2] The k-th spectral moment of G is equal to the number of
closed walks of length k.

When trees are under consideration, closed walks of length < 6 simply
result from paths of length < 3. Consequently, for a tree T with given de-
gree sequence, it is easy to see that Si(T') is a constant for £ =0,1,2,3,4,5
and

Se(T1) — Ss(T2) = 6 (¢7y (Ps) — 1, (Fa))
for two trees T} and T, where ¢7(Py) is the number of P, in T. One can
see, for example, [6] and the references thereof for more detailed analysis
on the k-th spectral moment of trees.
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Note that a P, in a tree T must have its “middle” edge on some edge
uv € E(T), with (deg(u) — 1)(deg(v) — 1) choices for the two end vertices
of this Py. Therefore, we have

¢r(Pa)= Y (deg(u)—1)(deg(v) — 1) =: R(T). 3)
weE(T)

Since all trees with a given degree sequence share the same Si(T) for 0 <
k < 5 but not for k = 6, by the definition, the first trees in S-order are
exactly the ones whose Sg(T') is minimized. Therefore, to show Lemma 1.2,
it suffices to show that minimizing (3) implies (1) and (2).
First of all, since vp and v, are both leaves, we have
1 = deg(vo) = deg(ve+1) < deg(vx)

for any 0 < k <t + 1. Hence (1) holds for i = 0.

The proof of Lemma 1.2 follows in an inductive manner on 7. Assume
now that (1) and (2) hold for ¢ =0,..., i, we consider the case when iy is
even and show (2) for ¢ = ip + 1, the case for odd 7 is similar.

Let D denote the set of degrees of the vertices v;, io +1 < j <t —dp. If

deg(vig+1) = maxD (4)
and
deg(vt—i,) = max (D — {deg(vig+1)}) (5)
both hold, we have
deg(vio+1) > deg(ves1-(io+1)) > deg(vk)

forip+1 <k <t+1-—(ip+1). This is exactly (2) for i = ig + 1.

Suppose now (for contradiction) that T minimizes R(.) and at least one
of (4) and (5) is not true. Without loss of generality, assume that (4) does
not hold. Then there exists an s, 1o + 1 < s <t — 19, such that

deg(v;) > deg(vio41).
Note that, by applying inductive hypothesis (1) to i = iy, we must have
deg(vss1) > deg(vi,).
Consider the tree
T’ = (T/{vigVio+1,Vs¥s+1}) U {ig Vs, Vig+1Vs41} (6)

obtained from T by reversing the segment v;;4;1...v, and the pendant
components (Figure 4).
Under this operation, the contribution

(deg(u) — 1)(deg(v) - 1)

37



‘U:o+1 Vs+1 Vi1

/Y"/\/l/\/\/\

FIGURE 4. Constructing T' from T

to (3) stays the same for any edge uv except for vigVip4+1, UsUs41, VipUs and
Vig+1Vs+1- Thus

R(T") - R(T)
=(deg(vi,) — 1)(deg(vs) — 1) + (deg(vig +1) — 1)(deg(vs+1) — 1)
— (deg(vs,) — 1)(deg(vio41) — 1) — (deg(vs) — 1)(deg(vst1) — 1)
= (deg(vi, — deg(vs+1)) - (deg(vs) — deg(vig+1))
<0,

contradicting the minimality of T' with respect to R(.).

Therefore, one can conclude that for any tree T with given degree se-
quence, R(T) (and hence ¢(T')) is only minimized when (1) and (2) are
satisfied for any longest path in the tree.

Remark 2. The constraint that all nonleaf vertex degrees are pairwise
different is not absolutely necessary. With a little more technical details,
one can show that the same conclusion holds if none of the vertex degrees
are repeated more than twice. We provide the rather simple argument here
with slightly stronger constraint and comment on the case when the vertex
degrees are repeated “many” times in the next section.

Also note that, reiterating our argument in the inductive step will pro-
vide an algorithm that will always generate a tree 7' with smaller R(.).
Such an algorithm terminates in finite steps as we either reach the conclu-
sion or decrease the value of R(.) in every step.

3. ON DEGREE SEQUENCES WITH REPEATED DEGREES

With repeated degrees, conditions (1) and (2) are no longer necessary
conditions for achieving the minimum R(.). For instance, on a longest
path with internal vertex degrees {4,4,4,4,3,2,2}, both of the following
arrangements obtain the same minimum contribution to R(.) from edges
on this path:

e {deg(vp),...,deg(ve)) = (1,4,2,4,3,4,2,4,1);
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o (deg(vo),...,deg(vg)) = (1,4,3,4,2,4,2,4,1).
The former is what conditions (1) and (2) claim while the latter is not.
Consider, for instance, the two trees T and T” in Figure 5 with the same
degree sequence, we have Si(T") = Si(T") for 0 < k < 7. Simple calcula-
tions (by making use of Lemma 2.1) shows that Sg(T") > Ss(7”) and hence
T’ appears earlier in the S-order than T (an alternating greedy tree).

AT £ D

FIGURE 5. Trees T (left) and T” (right) with degree se-
quence {4,4,4,4,4,4,3,2,2,2}

Note that the tree T”, while being non-isomorphic to T, is still an alter-
nating greedy tree as shown in Figure 6. Thus, although we cannot establish
Theorem 1.1 through Lemma 1.2 when repeated degrees are present, it is
still possible that the first tree in S-order has to be an alternating greedy
tree. But the study of Sk(.) for k£ > 8 appears to be much more complicated
and a novel idea may be needed.

FIGURE 6. T is an alternating greedy tree

Question 3.1. With repeated vertez degrees, is it still true that the first
tree in S-order has to be an alternating greedy tree?

4. CONCLUDING REMARKS

We show that the first tree in S-order among trees with given (distinct)
degree sequence must be an alternating greedy tree. Making use of the
fundamental representation of the spectral moments with number of paths,
the question is somewhat reduced to finding minimal sum of products of
adjacent vertex degrees, one that is very similar to the study of the Randié¢
index and weight of trees {5, 9, 10]. Part of a recent paper on the number
of walks in graphs has also done similar analysis [11].
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However, because of the nature of S-order, more subtle argument will
be needed to answer the question when the nonleaf degrees are repeated.
We briefly commented on this question.
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