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Abstract

A cluster of 2n + 1 cubes comprising the central cube and reflections
in all its faces is called the n-dimensional cube. If 2n + 1 is not a
prime, then there are infinitely many tilings of R"by crosses but it
has been conjectured that there is a unique tiling of R™ by crosses
otherwise. The conjecture has been proved for n = 2,3, and in this
paper we prove it also for n = 5. So there is a unique tiling of R®
by crosses, there are infinitely many tilings of R?, but for R® there
is again only one tiling by crosses. We consider this result to be a
paradox as our intuition suggests that ”the higher the dimension of
the space, the more freedom we get”.

Tilings of R™ by unit cubes go back to 1907 when Minkowski conjectured
(17] that each lattice tiling of R™ by unit cubes contains twins, a pair of
cubes sharing a complete n—1 dimensional face. This conjecture was proved
by Hajés [6] in 1942.

In 1930, when Minkowski’s conjecture was still open, Keller [13] suggested
that the lattice condition in the conjecture is redundant, that the na-
ture of the problem is purely geometric, and not algebraic as assumed by
Minkowski. Thus he conjectured that each tiling of R™ by unit cubes con-
tains twins. It is trivial to see that each tiling of R? by unit cubes contains
twins, and it is also easy to verify it for R3. However, a proof that each
tiling of R", 4 < n < 6, contains twins takes in aggregate 80 pages, see
(16]. There was no progress on Keller's conjecture for more than 50 years.
Only in 1992 Lagarias and Shor [14] constructed a tiling of R™,n > 10,
by unit cubes with no twins. First they found such a tiling in R°, which
we consider a very surprising and remarkable result. However, once one
has such a tiling in hand, it is relatively easy to find it for R*,n > 10, as
well. The second part supports our belief that ”the higher the dimension of
the space, the more freedom we get”. Mackey [15] proved that the Keller’s
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conjecture is false for n = 8,9 as well. As to the remaining value of n = 7,
there are only some partial results, see [3].

Since late fifties tilings of R™ by different clusters of unit cubes have been
considered, see e.g. [20] and [22], many of them related to perfect error-
correction codes in Lee metric (also called Manhattan metric in Z™). The
Golomb-Welch conjecture [4] has been a main motivating power of the
research in this area for the last forty years. A perfect e-error correcting
Lee code over Z of block size n, denoted PL(n,e), is a set C C Z™ of
codewords so that each word A € Z" is at Lee distance at most e from
exactly one codeword in C. Similarly, a perfect e-error correcting Lee code
over Z, of block size n, denoted PL(n,q,e), is a set C C Z7 of codewords
so that each word A € Z7 is at Lee distance at most e from exactly one
codeword in C.

Conjecture 1 Golomb-Welch. For n > 3 and e > 1, there is no PL(n,e)
code.

Clearly, the above conjecture, if true, implies that there is no PL(n,q,e)
code for n > 3, e > 1, and g > 2e + 1. For the state of the art on the
conjecture we refer the reader to [10].

In this paper we focus on tilings by n-crosses. An n-dimensional cross
comprises 2n + 1 unit cubes: the "central” one and reflections in all its
faces. A tiling £ of R™ by crosses is called a Z-tiling if centers of all crosses
in £ have integer coordinates. Further, £ is called a lattice tiling if centers
of all crosses in £ form a lattice. A regular (also called a face-to-face) tiling
is a tiling that is congruent to a Z-tiling; otherwise the tiling is called non-
regular. We recall that two tilings 7 and S of R" are congruent if there
exists a linear, distance preserving bijection of R"™ which maps 7 on S. It
seems that Kérteszi [12] was the first to ask whether there exists a tiling of
R3 by crosses. Such a tiling was constructed by Freller in 1970; Korchmaros
about the same time treated the case n > 3. Golomb and Welch showed
the existence of these tilings in terms of error-correcting codes, see Section
3.5 in [20]. Immediately after the existence question has been answered,
the enumeration of tilings has been studied. In [18] Molnér proved:

Theorem 2 Molnar. The number of pair-wise non-congruent lattice Z-
tilings of R™ by crosses equals the number of non-isomorphic Abelian groups
of order 2n + 1.

Szabé [21] constructed a non-regular lattice tiling of R™ by crosses in the
case when 2n + 1 is not a prime. Using refinements of this construction it
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was proved in [9] that in this case there are 2% non-congruent Z-tilings of
R™ by crosses. In a strict contrast to this result it was proved there that,
for n = 2, and n = 3, there is a unique, up to a congruence, tiling of R* by
crosses. It is conjectured in [9], see also [1]:

Conjecture 3 If 2n + 1 is a prime then there exists, up to a congruence,
only one Z-tiling of R™ by crosses.

It seems to us that the above conjecture, if true, would totally go against
our intuition that suggests: the higher the dimension of the space, the more
freedom we get; see also an above comment related to the Lagarias-Shor
result on Keller’s conjecture.

To provide supporting evidence for Conjecture 3 we prove in this paper:

Theorem 4 There exists, up to a congruence, a unique Z-tiling of RS by
crosses.

We note that a sketch of a proof of the above statement has been given in
[11]. However, the sketch is so short that it is impossible for the interested
reader to reconstruct the whole proof from it. Therefore in this paper a
complete version of the proof is provided. Although we proved Conjecture
3 only for n = 5, an essential part of the proof of Theorem 4 holds for all
n = 2(mod 3). We believe that this part will be helpful when proving this
conjecture for some other values of n.

Clearly, if £ is a Z-tiling of R™ by crosses, then centers of crosses in £ form
a PL(n,1) code. It is easy to check that the unique tiling of R® by crosses
is 11-periodic. Thus, as an immediate consequence we get:

Corollary 5 There is a PL(5,q,1) code if and only if 11|q.

As to the non-regular tilings of R™ by crosses, it was mentioned above that
such a tiling exists if 2n + 1 is not a prime. A result of Redei [19] implies
that, if 2n 41 is a prime, then there is no lattice non-regular tiling of R™ by
crosses. It is easy to check that a non-regular tiling of R? by crosses does
not exist. The same result for n = 3 has been proved in [5]. The following
theorem has been proved in [11]:

Theorem 6 Let 2n+ 1 be a prime. If there is a unique Z-tiling of R™ by
crosses, then there is no non-regular tiling of R™ by crosses.
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Combining Theorem 4 with 6 we get:

Corollary 7 There is a unique, up to a congruence, tiling of R® by crosses,
and this tiling is a Z-tiling.

Thus, there is a unique tiling of R® by crosses, there are 2% pair-wise
non-congruent Z-tilings of R* by crosses, but for R® there is again a unique
tiling by crosses.

Also, by means of Theorem 6, it is straightforward that Conjecture 3 is
equivalent to

Conjecture 8 If 2n + 1 is a prime then there exists, up to a congruence,
a unique tiling of R™ by crosses, and this tiling is a lattice Z-tiling.

In the next section we introduce needed notation, definitions and state some
auxiliary results. Theorem 4 will be proved in Section 2.

1 Preliminaries

In this section we recall some notation, notions, and results which will turn
out to be useful in proving the main result of the paper, Theorem 4.

Since the problem of tilings by crosses comes originally from the area of
error-correcting codes we will stick to some of its terminology. Let £ be a
Z-tiling of R™ by crosses. We will denote by 7zCZ™ the set of centers of
crosses in L. The elements of Z™ will be called words while the words in
Tz will be called codewords. We will also say that a codeword W covers a
word V if pp(V,W) < 1. As usual ppy stands for the Manhattan distance
of V.= (vy,...,un) and W = (wy, ..., wn) given by

pr(V, W) =" |vi —wil.

i=1

The weight |V, of V € Z" is given by |V|y := Y _vi = pm(V, O), where

i=1
O = (0,...,0). The following simple observation will be used several times:

Claim 9 Let L be a tiling of R™ by crosses. Then permuting the order of
coordinates of each codeword in Ty and/or changing a sign of a coordinate
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for each codeword in Ty and/or adding a word V € R™ to each codeword
results in a set T' which induces a tiling of R™ by crosses congruent to L.

If £ is a tiling of R™ by crosses then for each word V' in Z™ there is a unique
codeword W in T so that pp(V, W) < 1. Therefore 7z can be also seen
as a decomposition (tiling) of Z™ by Lee spheres Sy ; of radius 1 centered
at O, where S,; = {V € Z",pm(V,0) < 1} = {O} U {e;,i = 1,...,n};
and vice versa, each tiling of Z™ by spheres Sy, ; induces a tiling of R™ by
crosses. As usual, ¢; = (0,...,0,1,0,...,0) where the i-th coordinate equal
to 1.

In general, if S is a subset of R™ (Z™), a tiling £ of R™ (Z") by translations
of S can be described in the form {S + u,u € U}, where u is a vector.
Then L is a lattice tiling if U is a lattice. For the sake of simplicity we will
abuse slightly the language and a subset U/ of R™ (Z") will be understood
sometimes as a set of vectors with the obvious U € U meaning that the
vector u =U — O is in Y. The following theorem stated in [10] turns out to
be useful when proving the main result of the paper.

Theorem 10 Let S be a subset of Z™. Then there is a lattice tiling of Z™
by translations of S if and only if there is an abelian group G of order |S|
and e homomorphism ¢ : Z™ — G so that the restriction of ¢ to S is a
bijection. In addition, if ¢ satisfies this condition, then the lattice tiling of
Z™ by translations of S is given by {S + u,u € ker(¢)}.

As an immediate consequence we get the following.

Corollary 11 Let ¢ : Z™ — Zan41, the cyclic group of order 2n + 1, be
a homomorphism so that, for all1 < i < j < n, ¢(e;) is not an inverse
element to ¢(e;), that is ¢(e;) # —p(e;). Then {Sn1 +u,u € ker¢} is a
lattice tiling of Z™ by Sy 1.

We note that tiling of R™ by crosses given in [10] and other papers is a
lattice tilling. Therefore these tilings can be seen as obtained by Corollary
11.

Let £ be a collection of crosses that tile R™. We will always assume wlog that
the cross Ko centered at the origin belongs to £. Then each cross K € £
can be seen as a translation of Ko by a vector u. So £ = {Ko+u,u€ 7}
For the sake of brevity we will use K, for a cross centered at a point
U=0+nu.
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2 Proof of Theorem 4

Let £ be a Z-tiling of R™ by crosses, and let TCZ™ be the set of centers
of crosses in £. Since we will deal only with Z-tilings by crosses most of
the time we will drop Z- and refer to £ as a tiling of R™ by crosses. We use
the terminology of coding theory; that is, the elements of Z™ will be called
words and the elements of 7, will be called codewords. In this section we
provide a complete proof of Theorem 4.

As mentioned in the introduction Molnar [18] proved that the number of
non-congruent lattice tilings of R™ by crosses equals the number of non-
isomorphic abelian groups of order 2n + 1. As 2n + 1 is a prime for n = 5,
there is only one abelian group of order 11, and thus there is a unique,
up to congruence, lattice tiling of RS by crosses. Thus, to prove the main
result it suffices to show:

Theorem 12 Let £ be a tiling of R® by crosses. Then L is a lattice tiling.

Let W be a codeword in 7z. Then Ni(W), the k-neighborhood of W, will
be the set of codewords V in 7, at the distance at most k from W, that
is, Nke(W) = {V € Tz, pu(W,V) < k}. In the case of W = O, we will
write N instead of Ni(O). We will say that two k-neighborhoods N (W)
and Ni(W’) are equal if {V — W,V € Ny (W)} ={V - W',V € N,(W")};
and we will say that Ni(W) and Nx(W') are congruent if there is a linear
distance preserving transformation mapping Ni(W) on Ni(W’). Clearly,
for each codeword W, the neighborhoods Ny(W), and Np(W) are empty
sets.

The proof of Theorem 12 will be based on:

Theorem 13 Let £ be a tiling of RS by crosses. Then, for each codeword
W in Tz, the neighborhood N3(W) and N3(O) are equal, and N3(O) is
symmetric; that is, if W € N3(O) then —W € N3(O) as well.

Now we show that the above theorem implies Theorem 12.

Proof. of Theorem 12. To show that L is a lattice tiling it suffices to
prove that, for all codewords W, Z € T;, W —Z € T; as well. As Lis a
tiling by crosses, it is not difficult to see that, for each codeword Z € T,
there is a sequence Zy = 0, Zy, ..., Zm-1,%m = Z of codewords in 7 such
that ppr(Zi-1,2:) = 3,i = 1,...,m. Then Z; € N3(Z;—1) and because, by
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Theorem 13, the -neighborhoods N3(Z;—1) and N3(O) are equal, which
in turn implies, again by Theorem 13, that —U; € 7. as well for all ¢ =
1,...,m. Repeatedly applying Theorem 13 we get that W —-U,, W —-U; — U,
WU =Us— ... = Upn=W~—-(21-0)- (22— 2Z1)— ... — (Zm-1—
Zm—2) —(Zm — Zm-1) =W — Z, =W — Z is a codeword. The proof of
Theorem 12 is complete. @

Hence, to prove the main result it suffices to prove Theorem 13. It turns
out that in order to be able to do so one needs to look at "wider” neigh-
bourhoods. In fact, to be able to prove Theorem 13 we will have to prove
the same type of a theorem for 5-neighbourhoods. This recalls a situation
when one wants to prove a statement P by using mathematical induction,
but to be able to prove the inductive step a statement stronger than P has
to be proved.

Theorem 14 Let L be a tiling of R® by crosses. Then, for each W in T,
the neighborhood Ng(W) and N5(O) are equal, and N5(O) is symmetric.

We will do it in four steps. To facilitate our discussion we introduce more
notation and terminology. By a word of type [m{?, ..., m2*] we mean a word
having a; coordinates equal to £m;, ..., o, coordinates equal to +m,, the
other coordinates equal to 0. E.g., both words (-2, -2, -1,-2,0,0) and
(1,0,2,0,—2,2) are of type [23,1!] . There are three types of words V with
its weight|V|,, = 3; either V is of type [3'], or of type [2!,1!], or of
type [13]. Let Z € Nx(W). Then Z will be called a codeword of a type
with respect to W if Z — W is of the given type; the number of codewords
of type [m7*,...,m$*] in Ni(W) will be denoted |[m7*,...,m$]|,,. If the
codeword W will be clear from the context, we will drop the subscript W.
Similarly, each word V,|V|,, = 4, is either of type (4] , or [3!,1!], or [2],
or [2},1?], or [14].

Now we are ready to describe the four phases of proving Theorem 13.

(A) Let £ be a tiling of Z™ by crosses. First we prove a quantitative
statement, which will be proved not only for n = 5 but for all n = 2(mod 3).
We believe that this statement might turn to be very useful when proving
Conjecture 3 for other values of n, where 2n + 1 is a prime. Let W be
a codeword. The statement claims that the number of codewords of type

8
[m7?,...,m%], where Zaimi < 4, with respect to W depends only on n

i=1

and does not depend on L.

71



Theorem 15 Let L be a tiling of R™ by crosses where n = 2(mod 3) and
W be a codeword. Then the number of codewords of given type with re-
spect to W is: |[3Y]|,, = 0, |[2}, 1], = 2n, and |1%]],, = 22G5=2. Fur
ther, |[4']],, = |22, = 0,](3%,11]],, = 2n,|[2%,17]],, = 2n(n — 2), and
|[14]|W — nSn—2!!n—3!.

3

(B) We prove an analogue of Theorem 15 for the number of codewords of
-]
type [m{",...,m%¢], where Zaimi < 5. However, we get the explicit values

for the number of codevvofds1 of individual types only for n = 5, while for
n = 2(mod3) we get those values only as a function of the number of
codewords of type [5'] . We point out, that this is not because the methods
used are not satisfactory but for some values n = 2(mod 3), say n = 62,
there are two (lattice) tilings of Z™ by crosses with different number of
codewords of type [5!] . We stress that for n = 62, the number 2n+1 = 125
is not a prime, hence it does not provide a counterexample to our conjecture.

(C) In this phase we prove that for any two codewords in 7. their 5-
neighborhoods are congruent.

(D) As the last step we show that for any two codewords in 7¢ their 5-
neighborhoods are not only congruent but the two 5-neighborhoods equal,
and this joint neighborhood is symmetric, so we prove Theorem 14.

2.1 Phase A

In this subsection we prove Theorem 15. In fact we prove an extended
version of the statement.

For any codeword W in 7 there are 2n words V of type [2'] with respect
to W. (We recall that this means that V — W is of given type). Each
of them is covered by a codeword of type [3!], or by a codeword of type
[2!,11], with respect to W. On the other hand, each codeword of type [3!]
and of type [21, 11] , with respect to W, covers exactly one word of type
[21] with respect to W. Thus we get, for each codeword W,

|131] +|[2*, 1Y)] = 2n (1)

The above and the following equalities are valid for each codeword W,
therefore in what follows we drop the index w . Also we will not repeat any
longer that all codewords of given type are meant with respect to W.
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In Z™ there are 22(}) words V of type [12]. Each of them is covered either
by a codeword of type [13], or by a codeword of type [2!,1!]. Further,
each codeword of type [1%] covers three of them while a codeword of type
[21,1%] covers exactly one codeword of type [12]. Hence

2811 +310%1 =4() @

Equation (1) and (2) are "global” equations. To get their "local” form we
need to introduce some more notation. Often we will need to express the
number of words, or codewords, in a set .4 having their i-th coordinate
positive, or their i-th coordinate negative. Therefore, to simplify the lan-
guage, we will introduce the notion of the signed coordinate in Z™. For
the rest of the paper by the set of signed coordinates we will understand
the set I = {+1,...,4+n,—1,...,—n}. Let V = (vy, ...,v,) be a word in Z™.
Then the signed coordinates V; of V are given by: V; = |v;) and V_; =0
forv; >0, V;=0and V_; = |v5| for v; < 0,and V; = V_; = 0 for v; = 0.
Eg., if V = (2,0,-5) then V] = 2,V_; =0,V = V_, =0, andV3 = 0,
V_3 = 5. For a signed coordinate i € I, by |4;| we will denote the number
of words in A with a non-zero i-th coordinate. That is, |A;| stands for the
number of words in A with the first coordinate being a positive number,
while | A_3| represents the number of words in A with the third coordinate
being a negative number. If we need to stress that the value of the i-th

signed coordinate is m, we will use |A§m)| for the number of words with

the i-th coordinate equal . Thus, for each i € I, |[2!,1'],| is the number
of words of type [2!,1!] with the i-th signed coordinate being non-zero,

while |[21, 11]52)| stands for the set of codewords of type [2!,1!] with the
i-th signed coordinate equal to 2.

Now we are ready to state the local form of (1) and (2). As for each i € [
there is in Z™ one word V of type [2!] with V; = 2, and 2(n — 1) words U
of type [12] with U; = 1, we get:

133 + |2, 11| =1, (3)

and
2%, 1% + 2[1%)] = 2(n 1. (@

Indeed, if A is a codeword of type [3!] with A; = 3 (and then A; = 0 for
all j # i,j € I) then A covers a word V of type [2!] with V; = 2. However,
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a codeword B of type [2?,11] covers V only if B; = 2, but does not cover it
if B; = 1. On the other hand, a codeword B with B; # 0 covers one word
D of type [12] with D; = 1 regardless whether B; = 2 or B; = 1. Clearly,
a codeword C of type [1%] with C; = 1 covers exactly two words D of type
(12| with D; = 1.

Now we derive identities analogous to (1) - (4) for words of weight equal to
3. As (1) - (4) have been derived in great detail, and the same type of ideas
are used to prove identities (5) - (11) we will leave a part of the proofs to
the reader.

In Z™ there are 2n words of type [3!]. Each of them is covered by a codeword
of type [3!] or [4}] or [31,1!], and each of those codewords covers exactly
one word of type {3!]. Therefore,

(3] + 4] + |(8%, 11| = 2n, (5)
and, for each i € I, we have
|35 + 14| + [18%, 1] = 1. (6)

Further, in Z" there are 2*(3) words of type [2!,1']. They are covered by
codewords of type [2!,1], or [3%,1!], or [2?], or [2!,12%]. Each codeword of
type [22], or [2,1%] covers two such words, while each codeword of type
[21,1%), or [3!,1] covers one of them. Hence

|12, 1)) + [18%, 1] + 2 |122)] + 2| [2,17)| =23('5) )

The above identity has two local forms. There are 2(n— 1) words U of type

[2,1!] with U; = 2, and 2(n — 1) words U of type [2',1!] with U; = 1. For
each i € I we get

][21, 11]§2’| + |[31, 1| + |122)| + 2 |[21, 12]§2’| —2n-1), (8

and
[EE R R

Further, in Z” there are 23(7) words of type [1%]. They are covered by
codewords of type [1%], or [21,12] , or [14]. Each codeword of type (1]
covers four of them. Hence,

9+ 12 2] 4100 = 25 (10

+ %]+ |28 130 =2t -1 @
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The local form of (10) reads as follows:

1+ 12 e+l =2 (") oy

as in Z™ there are 22(";1) words U of type [13] with U; = 1, and each
codeword V of type [1%] with V; =1 covers three of them.

Clearly, there are many solutions of (1),...,(11) in natural numbers. We will
prove, that only one corresponds to a tiling of R™ by crosses.

We will split Theorem 15 into two statements but will determine also the
local values for individual types. We start with the number of codewords
of weight 3.

Theorem 16 Let n = 2(mod 35, L be a tiling of R™ by crosses, and W be
a codeword. Then, the number of codewords of given type with respect to W
is: |[3Y] =0, |[2},1Y]| = 2n, and |[1%]]| = M’;—’z-)- As to the local values,

for eachi €I, |[21,11]§2)| = |[21,11]§l)| =1, that is, |[21,1']i| =2, and
|[13]i| =n-2

Proof. Let W be a codeword in 7z. Clearly, then also the set 7/ =
{U,Ue€ Z",U =V —W forsome V in Tz} is a tiling of Z™ by Lee spheres.
Therefore, wlog we assume W = O. From (3) we have |[2’, 11]:2)| <1,
while from (4) we get |[2!,1!] | is even, hence |[21,11]§2)| < 2414,
On the other hand, there is no i € I with |[21,11]§2)| < {[2%,11],|as

Z | [21, ll]gz)l = Z |[21, 11]51)| . Thus we proved:
i€l i€l

Lemma A. For each i € I, either |[21, 11]i| =0 or ”21’11]il — 9. In the
latter case |[21, 11]52)| = I[21’11]§1)| =1.

Now we are ready to prove that |[3!]| = 0. We consider two cases.

(i) Let |[3'];| = 1. Then, by (6), |[31, 11]§3’| =0, and by (3), |[21, 1)@ =
0, which implies, by Lemma A, that ”21'11]:" = 0. This in turn im-

plies, see (4), |[1%],| = n — 1. Substituting it into (11) gives |[2!,12],| +
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3|[14],]| = (n — 1)(2n — 5). As we deal with the case n = 2(mod 3), then
(n—1)(2n — 5)= 2(mod 3) as well, and therefore |[2!,12] | = 2(mod 3).
Subtracting (9) from (8), and using |[31, ll]ss)l = l[‘Zl, ll]fz)l = '[21, ll]gl)l =
0, weget 2|[21,12)7| = |[2,12)" | +|i3t, 11| As | [24,12],| = |2, 12) |+
| [2, 12]?) , adding l (21, 12]52)| to both sides yields 3 I [2%,17] :2)1 = |[2%,1%],]
+ |[31, ll]sl)l . We showed above that in this case of |[3'];] = 1itis |[2},1%] | =
2(mod 3). Therefore l[3l, IIJEI)I > 0, that is, l[31, ll]ﬁl)l > |[31, 11]§3)|.

(i) Now let |[3!];] = 0. By (3), we get |[21, 11]§2)| = 1, which implies, by
Lemma A, that |[2!,1!],| = 2. This in turn implies, see (4), |[1%],| =n—2.
Substituting it into (11) gives [[2!,12%]) | + 3|[1*].| = (n — 2)(2n — 3). As
(11) gives |[2!,1%], il = (

n = 2(mod 3), it is (n — 2)(2n — 3) = 0(mod 3), and therefore |[2!,1%] | =
0(mod 3). Subtracting (9) from (8), and using |[21, 11]‘(.2)’ = 1[21, ll]gl)l =1,
we get 2 | [21, 12]52’| + |[31, 1] - |ist, 11]§"| = |[2l, 12)®), and adding
[21,12]§2)| to both sides gives 3|[21,12] 52)| + |[31,1‘]§3)| - [31,11]51)| =
|[2‘,12]i| . As |[21,1%],| = O(mod3) in this case, we have [3’,11]53)| -
31, 1| = 0(mod 3), which yields |[31, 14| > ][31, 11]§3)| as

3,1 < 1 for all i € I, see (6).

So, |{3]:| = 1 implies '[31,11]§1)| > |[31,11]§3)|, while [[3];| = 0 gives
181, 1197 > |84, 14162 However, 3 |(34, 14| = 3~ |18*, 14
iel i€l

fore there is no i € I with |[3!];| =1, that is |[3!]| = 0, and, for all i € I,

, there-

Jist, 11" ,and 3|(2,19%) =287 (2)

3
= |{31’1l]$ )

Since |[31]| =0, by (1) we get |[21, 1']| = 2n, which in turn implies, by (2),
that |[13]| = 2282=2. Further, from |[2!,1'],| = 2, we get |[1%],| =n-2.
The proof is complete. m

Now we prove an analogue of Theorem 16 for the values of |[2!,1?]| and

(2411
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Theorem 17 Let L be a tiling of R™ by crosses where n = 2(mod 3). Then,
for each W € Tz, |[2%,1%]| = 2n(n - 2), and |[14]| = 2=B@=3 p,

addition, for alli € 1, it is, |[2!,1%],| = 3(n - 2), l 21,12] (2)| =n-—2, and
|[14] I _("_"")_(";l.

Proof. As with Theorem 16, w.]l.o.g we assume that W = O. In order to
determine the value of |[2!,12]| we need the following lemma:

Lemma 18 For each i € I, it is |[22],| < 1; hence |[2%]| < n/2.

Proof of Lemma 18. Assume by contradiction that thereisi € I, say i =
1, such that | [22], | > 2. Let, w.lo.g, F = (2,2,0,..,0), F' = (2,0,2,0,...,0)
be two codewords of type [2?] with F} = F{ = 2. We proved that, for each
i€l itis |[21,11]§2)| = 1. So there is a codeword B of type [2!,1}],

with B; = 2. We may assume w.l.o.g. that B = (2,...,,0,%+1,0,...0). If
B = (2,-1,0,...,0), then F; — B = (0,3,0,...,0), that is, the codeword
Fy is with respect to the codeword B of type [3'], which is a contradic-
tion as we proved that |[3’]| = 0. So let B = (2,0,0,1,0,...,0). Then
F - B =(0,2,0,-1,0,...,0) and F> — B = (0,0,2,-1,0,...,0). That is,

with respect to the codeword B, we get |[21, ll]fl)l = 2, which contradicts
that |[21, 11]51)| =1 for all i € I. Therefore, [[22]i| <1 for all i € I, which
in turn implies | [22]| = %Z [(2%],| < n. This proves Lemma 18.

i€l

With this in hand we find the values of |[2!,1?]| and |[2!,1%],| . The equal-
ity (8) states that |[2',11](7 | +|[3%, 11]7 |+ [27] |42 |2, 12]‘2’| 3(n — 1),
In addition, by Lemma 16, it is I[Zl 11](2)| =1, by (6) |[31 11](3)| <1,
and by the above lemma |[22],| < 1. As |[2l 1] (2)| +|[3l 1] (3)| +([22],]
is an even number, we get

|24+ |30+ 7)) =2 13)
Therefore |[21 12](2)| = n—2, thus |[2!,12%] |—Z|[21 12 (2)| = 2n(n—2).

By (12), |[2*,1%],]| = 3|[21 12) (2)| = 3(n — 2). The values of |[1%]| and

|[1%],] are easily obtained from (10) and (11), respectively. The proof is
complete. m



To be able to determine the values of |[4!]], |[3?,1!]], and |[2%]|, we need
to consider codewords from the 5-neighbourhood. Each word V,|V|,, =
5, is either of type [5'], or [4%,1'], or [3%,2!], or [31,17], or [22,1!],
or [2!,1%], or [1%]. Let W be a codeword in Tz. Then the number of
codewords Z in the 5-neighbourhood of W of the given type [51] will be
denoted by |[5']], of type [4*,11] by |[4!,1!]], etc.

We start with a series of auxiliary statements.
Lemma 19 For eachi € I, |[31,21]§3)| <1, and |[31,21]£2)| <2

Proof. Assume by contradiction that there are two codewords C! and C? of
type [3!,2!] with C¥ = 3 for k = 1, 2. By (6) we have |[41]il+|[31, 11]53)| =
1 as we know from Theorem 16 that |[31]i| =0.

So, assume first that |[4!],| = 1. Then there is a codeword D, with D; = 4.
Say, w.l.o.g, D = (4,0,...,0), and C! = (3,2,0,...,0), C? = (3,0,2,0,...,0).
AsC'- D =(-1,2,0,...,0), and C?2— D = (-1,0,2,0, ...,0), we arrived at

a contradiction since with respect to D we have |[21, ll]sl)l > 1.

Suppose now that |[31, 1] fs)I =1, i.e., there is codeword E of type [3!,1!]

so that E; = 3;say E = (3,1,0,...,0). If C! = (3,-2,0,...,0) then C! - E =
(0,3,0,...,0) a contradiction as |[3!]| = 0 with respect to all codewords.
So we may assume that C! = (3,0,2,0,..,0), and C? = (3,0,0,2,0,...,0).
Then C! — E = (0,-1,2,0,...,0), and C? — E = (0,~1,0,2,0, ..., 0); i.e.,
with respect to W, |[21, 11]?)' > 1, a contradiction. The proof of the first
part follows.

Now let B be a codeword of type [2!,1'] with B; = 2. Further, let | (3%, 21]22)

> 3, and C},C?, and C® be codewords of type [3!,2!] with C} = 2,
j=1,..3. We assume w.lo.g. thati =1, and B = (2,1,0,..,0). Then
there are at least two of the codewords C7, say C' and C? having the
second coordinate equal to 0, as otherwise the two codewords would be
at distance less than 3. We assume w.lo.g. C! = (2,0,3,0,...,0), and
c? = (2,0,0,3,0,...,0). Hence C* — B = (0,-1,3,0,...,0) and C? —
B = (0,-1,0,3,0,...,0); i.e., with respect to the codeword B we get
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1[31, 11](_1;‘ > 1. This contradicts (12) because |[31, 11]£3)| <lforalliel.
The proof is complete. m

Before we prove the next lemma we get equalities related to covering words
of absolute value 4. In Z™ there are 2n words of type [4!]. By Theorem 16,
there is no codeword of type [3!]. Hence we have

[[41]] + |[6"]] + [[4",1]] = 2n, (14)
and, for all ¢ € I, the local form reads as follows:

|41 +1[5'),] + [, 110 =1 (15)

Further, in Z™ there are 23(7) words of type [3',1']. Each of them is covered
by a codeword of type [3!], or [2!,1!], or [32,1%], or [4!,1}}, or [3!,2!], or
[3,12] . Only codewords of type [3!,1%] cover two words of type [3!,1}].
In addition we know that there is no codeword of type [3!]. Thus,

|[21,11]|+|[31,11]|+|[41,11]|+|[31,2‘]|+2|[3‘,1”]|=8(Z) (16)

For each i € I, there are 2(n — 1) words V of type (3!, 1!] with V; = 3, and,
at the same time, 2(n — 1) words V of type [3!,11] with V; = 1. Thus the
local forms of (16) read as follows:

|28 117+ {3 17| + |14t 100+ 18,207 +
2|(34,13®| = 2(n - 1), ()
and 1 117(D 1 11741 1 917(1) 1 417(2)
|28 10|+ (8% )P+ [l 110 + 134,24+ o)

|34, = 2(n - 0).
In Z" there are 22(7) words of type [2]. Each word of this type is covered

by a codeword of type [2!,1!], or [22], or [3!,2!], or [22,1!]. As each
such codeword covers one word of type [2?] we have

2]+ 2]+ ] =2 (G)
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and, for each i € I, we get

|28 210+ 27 + (84210 + |22 1) =20 - 1) 20)

In Z™ there are 3-23(7) words of type [2!,12]. Each of these words is covered
by a codeword of type [2!,1!], or [1%], or [2},1%], or [31,1%], or [2!,1%],
or [22,1!] . As each codeword of type [2!,1!] covers 2(n — 2) of them, each
codeword of type [13] and of type [2!,13] covers three of them, and each
codeword of type [22,1'] covers two of them, we get

2n-2)|[2 V]| + 3|17 + |21 7] + | (3%, 17| +

3|[2%,1%]] +2|[2%,1Y]| = 24(’3‘) (21)

For each i € I,in Z™ there are 22(";') words V of type [2!,12] with V; = 2.
Hence, a local form of (21) is

2(n —2) (2, 12| + (22 + | 24, 12| + | (3%, 1207 +

3|28, 1)) + |22, 1) =22(n—1). (22)

2

In Z™ there are 8(";') words V of type [2!,12] with V; = 1. It is not
difficult to see that:

|28, 117 + 2(n — 2| 21,1087 + 2 [12], | + | 28,110+
|27+ 2|2 20+ 2% )2+ (23)

2|[22,11) =8(";1),

where | [21, ll]fo)lstands for codeword V of type [2!,1!] with V; = V_; = 0.
As |[21,11]i| = l[21’11]-i| = 2, we have |[21,11]£°)| = 2(n — 2). Finally,
in Z™ there are 24(}}) words of type [1?]. Each of them is covered by a
codeword of type [1%], or [14], or [1%], or [2!,1%]. Clearly each codeword

of type [13) covers 2(n — 3) words of type [1?] , while each codeword of type
[18] covers 5 words of type [14]. Therefore:

2(n = 9)|[1%]] + 1] + | 4510 =24 (F). e
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The local form of (24) reads as follows
(152 + 20— 9) | [1°L,] + |2, + |2 %], 1+

4”?LL=?(”§1)

where |[13]Eo), stands for the number of codewords V of type [13] with
‘/i = V—i = O.

(25)

Now we are ready to prove a lemma crucial for the proof of the next theorem.
(15) states that | [4!],|+|[5'],] + I (4%, 11]54)| = 1. Thus, the lemma covers
all possible cases.

Lemma 20 Leti € I. If|[4}],| =1, then 12%,] =1, |[31,11]§3)| =0, and
(8,2 = 1, while if |[5'],| = 1, then |[27],] =0, |[3%,1")"| = 1, and
8,29 = 0, but if | [41,11)%°] = 1 then |[22],] = 0,|8",11]"| = 1,
and |[31,21]§3)| = 1. In particular, |[31,21]| = |[41]| + |[41, 11]| .

Proof. Assume first that |[41]i| = 1, and let D be a codeword in 7z of
type [4!] with D; = 4. As |[4!],] = 1, then taking into account |[3!],| =0
and (6), we get [31,11]23)| = 0. This in turn implies, due to (13), that
|[22],] = 1. Consider the 3-neighbourhood M of D. By Theorem 16, we
have for A that |[21, 11]§1)| =1 for all 7 € I. That is there has to be in 7z

a codeword B of type [2!,1!] with respect to D, with B; — D; = —1, that
is (B — D)(_I,) = 1. Thus B; = 3 and there is a j € J so that B; = 2. Hence,
B is a codeword of type [3!,2!] with respect to the origin O, and therefore

|[31,21]£3)| > 1, while by Lemma 19 we get |[31,21]§3)| = 1. The first part
of the proof is complete.

Let now |[5!],| = 1. Then there is a codeword W in T¢ of type [5'] with
W; = 5. Further, by (15), |[41]i| = 0, which in turn implies, see (6), that
|[31,11]§3) = 1, and by (13), |[22],| = 0. Now we prove that in this case
|[31,21]:3) = 0 as well. Let B be a codeword of type [2!,1] with B; = 2;

wlo.g, let W = (5,0,...,0), and B = (2,1,0,...,0). Assume that there is
a codeword C of type [3!,2!] with C; = 3. Then B - W = (-3,1,0,...,0)
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and C — W = (-2,0,2,0,...,0). That is, with respect to the codeword W,
we have |[31,11](_33' = 1 but also ,[22]_1l = 1, which contradicts (13) as

,[21, 11]§2), =1 for all i € I. Thus |[31,21]§3)' = 0 in this case. The proof
of the second part of the statement is complete.

Now, assume that |[41, 11]54)| = 1. We need to show that in this case

[31,21]53) = 1 as well. However, by (17), |[21,11]§2)| + |[31,11]§3)| +
[41,11]§4) + [31,21]§3)| is an even number, and in this case we have
|24, 11| = (34,17 = |[44,1){°] = 1. Hence |[3%,2']{"] is odd,
and, by Lemma 19, |[31,2‘]§3)| =1.

Finally, |[3,2']] = 3_|(3,207| = 30 |i34,2%]+
i€l Jlat)|=1

> [Ba®s X |E2)l= X |phed
|[4‘,1‘]§‘)|=1 |(51)|=1 [tar);|=1

Z |[31,21]§3) = |[4*]| +|[4%,1%]|. The proof is complete. m
|[41!11]§4)|=1

+

We are ready to determine the remaining values of |[4!]],|[3!,1']|, and

2]

Theorem 21 For each codeword Win Tz, we have |[3%,1']| = 2n, and
I[4!]] = |[22]| = 0. In addition, for alli € I, |[31, 1] 53’| = | 31,11 =1.

Proof. As above, we assume w.l.o.g. that W = O. We recall that, by (12),
(34,11 = |[3, 1) |for all i € 1. Since |[31,21],| = [[3%,21]7] +
[31,21]22) , we get from (20)

( (&) 2)
(24,110, + (22, + | (34,2107 | + | (8,207 | + |22 1117)|
=2(n-1)

(26)

Combining Lemma 20 with (17), (18), and (26) yields:
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If|[41]i =1, then
|[31,12]f3’,=n—2,
|[34,12)7| = 2n -3 - |2, 117 - (37,2105 (27)
and [[22,1)7| =2n - 6 |[31,21] 7|

For |[5'],| =1, it is
|35, =n -2,
|32 = 2n - 4 - |[a, 11" - 3.29%] = 9
and |[22,11]§2”=2n—4-][31,21]§2)|,
and for |[4!,1'],| =1 we get
(34,17,
(34,127 = 2n - 4 - | [, 11]f"| - |32 = (29)

and [[22,11)%| =2n -5~ |[3",2

Summing (27), (28), and (29) yields:

[31 12] |—Z| (3! 12](3)| l[31’ z |[31,12]§3)|+
“41]' 1 |[41_11]§4)I=1
> | Il (n=2)+| 41, 1] (n—3)+|[54]| (n—2). Hence,
|(61); =1

using |[42]] + |[4%,11]| + | [5*]| = 2n, see (14), we get

[[3!,1%]| = 2n(n —2) - |[4},1%][; (30)

and
2|21 =3 |22 10?)= ¥ |21l 3 |22, 1]
iel “4!]‘|=1 |l41,11]£4)|=1
> 2210 = [[#)]@n - 6) +|[#,11]| 2n - 5) + [ [5']] (2n -
|[5'II 1
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Zl[sl 21]®| = 2n(2n — 6) + | [41,11]| + 2| [5']| - | [8",2!]| as, see

Lemma. 20, |[3,2!]]| = |[4*]]| + | [4",1%]|. Thus
1

|[22,1']] = n(2n — 6) + | [5]] -I—[‘;—]l. (31)

Substituting into (21) for |[2!,1]],][13]],|[2",1%]| from Theorem 17 and
for |[3!,12]| and 2|[2%,1!]| from above we get

4n(n —2) + 2n(n — 2) + 2n(n — 2) + 2n(n — 2) — | [4', 1']| +
3|[2%,13]| + 2n(2n - 7) + |[4},11]| + 3| [5']| = 24(;),

o 3|[2%,1%)] +3]|[5']] = 2n(n - 3)(2n — T7) (32)

Substituting for |[21 11](2)| 1[1%],], |[21 12 (2)| from Theorem 17, to (22)
yields |[31,17)%] + 3| (21, 13)| + |22, 17| = 4(5) - dm - 2) =

2(n—2)(n—3). Applying (27), (29), and (28) in turn implies, if | [4'],| =1
or |[41, 11]§4)| =1, then

3'[21, P]P| =2n - 2)(n-3) - 3n+8+ |[31,21]§2’|, (33)
and if |[51]i' =1, then

3|21 =2tn - 2)(n -3 —3n+ 6+ |[31,21)7]. (39

Asn = 2(mod 3), also 2(n—2)(n—3) = 0(mod 3). Thus, for |[4!],| =1 and
|[2l 11](4)l = 1, we have |[3l 21](2)| = 1(mod 3), while for |[5!],| = 1 we
get |[3l 21](2)l = 0(mod 3). By Lemma 19, |[3l 21](2)( <2foralliel
Hence, for |[4!],| = 1 and |[41 1! (4)| =1, we have |[31 21](2)| =1, and
for |[5!],] = 1 we get |[31,21]§2)' = 0. Again, by Lemma 19, we have the

same conclusion for |[31,21]§3)|. Thus,

(34,22 = | (34,27 (35)
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foralli e I.

Substituting into (23) for [[2%, 11]§”| (23], and [[2%,12]"| from The-
orem 17 yields [[31,12)"] +2[2t, 18]{"] + |[22,11) ] + 2 |22, 1] 7| =
4n—1)(n—2)~8(n—2) = 4(n-2)(n—3). 1t | [41] | = 1or | [41,11]¥| = 1,
then in this case |[31,21]§2)| =1, and by (27), (29), we get

2|(2,2%)"] + 2| [22, 11| = 40 - 2)(n - 3) — 4 + 11+ | [, 11]7)].

Thus, |[41, ll]gl)l is odd for |[41]‘.| =1 and for |[41,11]§4)| = 1. However,
Z|[41,11]§1)| = Z|[41,11]§4)| and '[41,11]§4)| < 1. Therefore, for all
i€l 1€l

1€,
|4, 198 = |1t 1], (36)

which in turn implies |[4'],| = 0 for all 4, hence |[4!]| = 0. Combining
|[3*]| = 0 with (5) yields |[3?,1!]| = 2n, which in turn implies |[2%]| =0,
see (13). The proof is complete. =

2.2 Phase B

In this subsection we deal with the number of codewords of individual
types of weight equal to 5. First we will summarize results for all n =
2(mod 3), then we concentrate on the case n = 5. For n = 2(mod 3),
all these values are expressed as a function of the number of codewords
of type [5!]. We point out that for some n = 2(mod3), there are two
tilings of R™ by crosses with different number of codewords of type [51].
Hence, unlike with codewords of weight equal to 3 or 4, the values of
[5], [(4*, 1], (3% 24 , |(3%,2%)] , |12%, 1%]] . |[22,1*]], and |[1°]] do not de-
pend only on the value of n but also on a given tiling of R™ by crosses.

Theorem 22 Let n = 2(mod 3), and W in T¢. Then the number of code-
words of a given type with respect to W is: |[4!,1']| = 2n—|[5Y]|,][3!,2!]| =
2n—|[5], |8, 1%)| = 2n(n—3)+|(5%]| , |(2!,13]| = n(2n—6)+|[5"]] ,][2*,13]|
= 12n(n-3)(2n—7)—|(5']|, and |[1%]] = $(24(}) —n(n—3)(3n—8)+|[5"]).

Proof. We have proved in the previous theorem that | [41] | = 0. Therefore,
by (14), we have |[5!]| + |[4!,1!]| = 2n. In addition, by Lemma 20, it is
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92 = ) 2 22 = [ 1) =) 1
is |[3!,12]| = 2n(n — 2) — [[4%,11]|, see(30), hence |[5']] + |[4},11]| = 2n
implies l[3l 12]| = 2n(n-3 +|[51]| while (31) implies |[22,1!]| = n(2n—
6)+|[5]|. The value of | [2!,13]| is given by (32). Finally, the value of [[1%]|
follows from (24) after substituting for |[13]| and |[1¢]| from Theorem 15.
The proof is complete. m

The next theorem determines the local values of |[31, 2!],..., | [15” with
respect to |[5'],|.

Theorem 23 Let n = 2(mod3). Then for each codeword in T, we have: If
|[51),] =1, then | [41,12] | = 0,|[3",21] | =0, |[3,17] 7| = 2|[3,1){")| =
2(n—2),|[22, 11]52” —2 [[22,11 5"] = 2(n—2),|[21,13]§”| = |[21, 13]52)’ =
(n=2)(2n-9). If|[5],| =0, then |41, 11| = |41, 11| = 1,| 34, 21];")
= |[3,29%] = 1|3, 12| = 2|[34, 1317 = 2tn - 3), |22 1)
2 | [22, 11]51’| = 2(n — 3), |[21, 13]§”| =3 |[21,13] l@l =(n=3)2n-17). In
both cases |[15]il = %(8(”;1) - [[21’13]i| - -lsg(n —2)(n —3)).

Proof. Let |[5!],| = 1. Then by, Lemma 20, |[31,21]§3)| =0, and by (35)
[3‘,21]5.2)| = 0; also ‘[41,11]24)| = 0, and (35) implies l[41,11]§i)| =0
Hence |[3!,2!]| = |[4!,1!]| = 0. Using the same arguments in the case
(51,1 = 0 yields | [41, 11| = | {1, 11| = 1, |31, 21| =|[34,21] 7| =
1. With this in hand, the values of ([3?,1%] | and [[22,1] | follow from (28)
and (29), while the values of I [21,13] | are obtained from (33) and (34).

Finally, to determine |[1°] ] it suffices to substitute into (25). The proof is
complete. m

We showed above, that the number of codewords in 7. of weight 3 and 4
does depends only on n, while the number of codewords of weight 5 depends
also on the tiling £. However, for n = 5 also all these values are constant.

Theorem 24 Ifn =5, then |[3']| = |[4}]| = |[2 ]|—|[51]|_0 |[2*,1']]
= [ o 1) 2 00T = [, = [l 2] = o 0 -
[22,1%]] = [[2!,13]]| = 20, while [[2%,1%]| = 30, and |[15] = 2, and
[1%],| =1 for allie I
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Proof. The values of [[3!]],|[2%1%]],][2%]].[4*]].|[3,1]].([22]],
|[2*,12]|, and |[1%]| are obtained from Theorem 16, 17, and 21 by substi-
tuting n = 5. The other values depend on the value of |[5']|, see Theorem
22. We will prove that there is no codeword of type [5!], i.e., that | [5!]| = 0.
In order to do it we have to consider not only local equalities but also so-
called double-local equalities for the individual type of codewords. To be
able to introduce these we need one more piece of notation. Let K be a set
of codewords. Then, for i,j € I, we denote by |K;;| the number of code-
words K in K so that K; # 0 # K. For an ordered pair (i,j) we denote

by ICg’b) the number of codewords K in X with K; =a and K; = b.

Substituting n = 5 into Theorem 22 and into Theorem 23 yields |[1°]| =

1
2+”-55—]-l, and |[1%],| > 0 for all i € I, respectively. Assume by contradiction

that |[5!]| > 0. Then we have |[1°]| > 3, and at least two codewords of
type [15] have to coincide in at least two coordinates. Thus, there have

to be signed coordinates i, € I such that I[ls]ijl > 2. To reject the

assumption of |[5']| > 0 we prove that |[15]ij| <1 foralli,je I Wewil
start by setting several double-local equalities.

For each 4,5 € I there is a unique word V' in Z°® of type [12] with V; = V; =
1. Therefore, see also the explanation to (2),

=1 (37)

|[21,11]ij| + | 1],

For each i, j € I there are six words V in Z° of type [13] with V; = V; = 1.
Therefore, see also (10),

=6 (38)

|12, + | 124,120 + 2|24,

Clearly, it is not difficult to see that | [21,12)] iil = | [2,1%] g,n |+| [2,1%] 2.'2)

+ 28,1757 < 3. Indeed, |[2,12)57] > 1 (|24,12157] > 1) would
imply that there are in 7z two codewords of type [2!,1?] of distance 2, a

contradiction. Finally, |[21,12]:;.'l)| > 1 would imply, that there are in
Te two codewords of type (2!, 1] coinciding in two coordinates where their
valueis 1, say A = (1,1,2,0,0), and B = (1,1,-2,0,0) or B = (1,1,0,2,0).
However, in the former case B—A = (0,0, 4,0,0), and in the latter B— A =
(0,0,-2,2,0), thus B would be with respect to A a codeword of type {4!],
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and of type [2?], respectively, which contradicts |[4']| = [[22]| = 0, see
Theorem 21. Combining (37) with (38) we get:

Claim B. For all i,j € I, if |[19],| = 1, then |[14],| 2 1, and for
|[13]ij| =0, we get |[14]ii| > 2.
Now we state a double-local equality for codewords of type [14]. For each

i,7 € I, there are twelve words V in Z5 of type [14] with V; = V; = 1, using
arguments similar to proving (24) yields:

|25+ |35 + 4] 9] + | (14],,) + |2 2%,

ij
3|11%] = 12,

+
(39)

where |[13] :;)'l)l is the number of codewords C of type [13] such that C; =

C_i=0,and C; = 1. For each i, j € I, we have | [13] "J'l < 1, otherwise there

would be two codewords of type [13] at distance less than 3. Therefore, for
all 4,5 € I, there is at most one codeword V of type [13] with V; =V, =1,
or V=V, =1 0orV; =V_; =1 As |[13]i| = 3, we get that both

(12157 2 2 and | 19| 2 2 for |[1%],,] =0, and both |[13] 37| 21
and |[19]5] > 13 |[19], | = 1.
In aggregate, if | [13]ij| =1, we get I[la]g'l)l + l[ls]g’o)l + 4|[13]st > 6,

and |[13] 90| + | 125 7] + 4|19, 2 4 for |19, | = 0.

Substituting to (39) for |[14] ij| from Claim B implies

|(2t,1%], | +3|(2%),;| < 5 for |[1°]5] = 1, ame

|(2t,2%],,| +3(2%],,| < 6 for |[22],5] =0.

Thus, |[15]ij| < 1 for I[lalia‘l = 1. To prove that |[15]ij| < 1 also when
|[13] ijl = 0, we will show that in this case '[2’, 13] ijl > 0. If |[13] iJ’l =0,
then |[21, ll]ijl =1, see (3). Let B be the codeword of type [2!,1!] having
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non-zero the i-th and the j-th sign coordinate. Then either B; = 2 and
Bj =1, 0r B; =1, and B; = 2. Assume that the former is the case. In Z5
there are six words V' of type [2!,12%] with V; = 2, and V; = 1. Each of these
is covered either (i) by a codeword W of type [2!,1'] with W; = 2, W; = 0;
or (ii) by a codeword W of type [21,11] with W; = 2, W, = 1; or (iii) by
a codeword W of type [13] with W; = 1,W; = 1; or (xv) by a codeword
W of type [21,12] with W; = 2,W; = 1; or (v) by a codeword W of
type [3!,1%2] with W; = 3,W; = 1; or (vi) by a codeword W of type
[22,1'] with W; = 2, W, = 2; or (vii) by a codeword W of type [22,11]
with W; = 2,W; = 1; or (viii) by a codeword W of type [2!,1%] with
W; = 2, W; = 1. Using our notation we can write

|[21 1](20)|+6l 211 l](2l)|+|[13]u +|[21 12 (21>|+| 31, 12](31)

|22 18] + 2150 + |2t 1980 =

We have chosen i, j so that |[2l 11](2 & |[

to see that in each of the cases (i) and (1v)-(vx) there is at most one codeword
of each type, as otherwise we would have two codewords at distance less

than 3. As to (vii), we have |[22 1Ay @ l)l < 1 as well, because if there were

two codewords W of type [22,1}] w1th W; = 2, and W; = 1, then their
difference would be a codeword either of type [41] or [2%], a contradiction.

So we get |[2l 13] @ I)I > 1 in this case, thus |[21 13] | > 1, and in turn

|[15] | <1 also in the case |[

2.3 Phase C

In the previous subsection we proved that the 5-neighborhood of each code-
word has the same quantitative properties. Now we prove that it has also
the same structure.

Let V be a word in Z5. Then by < V > we denote the collection of words
comprising V, and the words obtained by cyclic shifts of coordinates of V.
Hence, e.g., < (2,1,0,0,0) >= {(2,1,0,0,0),(0,2,1,0,0),

(0,0,2,1,0), (0,0,0,2,1),(1,0,0,0,2)}. We note that < V > contains five
words except for the case when V has all coordinates equal to the same
number. Finally, weset + <V > = <V >U < -V > . By the canonical
5- neighborhood, or simply a canonical neighborhood, we mean the set of
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words

{£<(,1,0,0,0) >,+ < (1,0,1,0,-1) >, + < (3,0,0,-1,0) >,
+<(2,0,1,0,1) >, + < (2,0,0,1,-1) >, + < (2,-1,-1,0,0) >,
+<(1,1,1,-1,0) >,+ < (4,0,-1,0,0) >, + < (3,0,2,0,0) >,
+<(3,0,0,1,1) > + < 3,-1,0,0,-1) >, + < (2,-2,0,0,1) >,
+<(2,0,-2,0,-1) >, + < (2,-1,1,1,0) >, + < (2,0, -1, -1,1) >,

+ < (1,1,1,1,1) >}. A simple inspection shows that the number of words
of individual types in the canonical neighborhood coincides with the values
given by Theorem 24. E.g., + < (2,1,0,0,0) > is the set of ten words of
type [21,1%], (|[2},1!]| = 10), while £+ < (1,0,1,0,~1) > comprises ten
words of type [1%] (|[1%]| = 10).

Theorem 25 Let L be a tiling of RS by crosses. Then, for each codeword
W in Tz, the 5-neighbourhood of W is congruent to the canonical one.
Moreover, the 5-neighborhood of W is uniquely determined by the set of
codewords of type [2!,11].

Proof. As in other proofs in this paper we assume w.l.o.g. that W = O.
Two words U = (uy,...,us),V = (v1,..,u5) will be called sign equivalent
in the j-th coordinate if u;jv; > 0; that is, they are sign equivalent if
u; # 0 # v;, and the two non-zero values have the same sign.

Codewords of type [1°]. It was proved in Theorem 24 that |[1°]| = 2,
and |[1%],| =1 for each i € I; i.e., the two codewords of type (1°] differ in
each coordinate (= are not sign equivalent in any coordinate). That is, if
M is a codeword of type [1%], then —M is the other codeword of type [1°].

Codewords of type [2!,1']. Let B be a set of codewords of type [2!,1!],
and C be the set of codewords of type [13]. We know by Theorem 16 that
[B| = |C| = 10. There are in total 10 words of type [12] that are sign
equivalent in two coordinates with M and another 10 words of type [1?]
that are sign equivalent in two coordinates with —M. Each word of type {12
is covered by a codeword in B U C, thus each of these 20 words is covered by
a codeword in BUC. If a codeword C in C covered two of these 20 words,
then C would be sign equivalent in three coordinates with M or —M, and
the distance of C to one of M or —M would be less than 3. Therefore, each
codeword in C covers at most one of these 20 words of type [12]. Hence, each
codeword in B has to cover one of these 20 words, that is, each codeword of
type (2!, 1] is sign equivalent in both non-zero coordinates either with the
codeword M or with the codeword —M. We know by Theorem 16 that, for
each i€ I, |[21, 11]22)| = I[Zl, ll]gl)l. Thus, five codewords in B are sign
equivalent in two coordinates with M, the other five with —M.
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It turns out that graph theory has a very suitable language to describe the
structure of the set B. Let G be a graph with the vertex set I, the set of
signed coordinates, and the edges of G be all pairs of vertices in I except
for {i,—i}, ¢ = 1,...,,5. Thus G is a complete graph on 10 vertices, Kjgq,
with a 1-factor (=perfect matching) removed. We denote this one factor by
M. So G = K10 — M. In Z? there are forty words of type [12] . In a natural
way each word of type [1%] is associated with an edge of G. If V is a word
of type [12] with V; = V; = 1, (and then V; =0 for all k € I — {4, j}) then
we assign to V the edge {¢,j} of G. So there is a one-to-one correspondence
between words of type [12] and the edges of G. In addition, each codeword
W € B is associated with the edge (word of type [1?]) covered by W. The
set of words of type [12] covered by codewords in B will be denoted by
B*. The condition |[21, 11]:2)| = |[21,11]§1)| = 1 implies that the words
in B* form a 2-factor, say F. It follows from the above discussion that F
consists of two cycles of length 5 such that both cycles contain exactly one
vertex of each edge in the matching M. Let C be the set of five words in B*
constituting one of the two 5-cycles in F. Clearly, by suitably permuting
the order of coordinates of each codeword in T and/or changing a sign of
a coordinate for each codeword in 7 maps C onto < (1,1,0,0,0) >, and
the codewords covering words in C onto < (2,1,0,0,0) >. By Claim 9 the
above transformation is a congruence mapping. Therefore we will assume
that < (2,1,0,0,0) > are codewords in 7.

We will show that by choosing < (2,1,0,0,0) >€ 7. all the other codewords
will be uniquely determined. First of all < (2,1,0,0,0) >€ 7. implies that
the codewords of type [1°] are M = (1,1,1,1,1) and —M.

If one of the two 5-cycles of B* is < (1,1,0,0,0) >, then the other one
is formed by codewords having both non-zero coordinates negative. There
are four non-isomorphic ways how to choose it. It is either the 5-cycle
comprising the edges corresponding to < (-1,-1,0,0,0) >, or to <
(-1,0,0,-1,0) >, or

{(-1,-1,0,0,0), (0,~1,0,0,-1), (0,0, —1,0, —1), (0,0, =1, -1, 0),
(-1,0,0,-1,0)}, or

{(-1,-1,0,0,0), (0,-1,-1,0,0), (0,0,0,—1,-1), (0,0, -1,0, 1),
(-1,0,0,—1,0)}.

The graph consisting of the edges of the 2-factor F' and the matching M is
a cubic graph. The four cubic graph corresponding to the cases described
above are depicted in Figure 1. The first one is the prism on 10 vertices,
the second is the Petersen graph, the labels for the other two are taken
from [2].
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Figure 1: Corresponding cubic graphs

Codewords of type [13]. Each codeword of type [1%] covers three words
of type [1%], so we associate with each codeword of type [13] a triangle
(cycle of length 3) in the graph G. As mentioned many times, all words
of type [12] are covered by codewords in BUC. Therefore, the triangles
corresponding to codewords in C have to form an edge decomposition of
the complement of the cubic graph consisting of the edges of the 2-factor
F and the matching M.

It is known, see (2], that the complement of the two cubic graphs G4 and
Gs is not decomposable into triangles. Therefore, in the case of G4 and Gg
it is impossible to choose the codewords of type [13]. Thus, we are left with
the prism and the Petersen graph.

(i) The prism. Then B* = + < (1,1,0,0,0) > . There are two dif-
ferent ways how to choose codewords of type [13] (how to decompose the
complement of the prism into triangles). Either

(ia) C =+ < (1,0,1,0,-1) >, or

(ib) C=+<(1,0,1,-1,0) > .

These two decomposition are isomorphic but we will we need to consider
both of them, as the automorphism of the graph G, which maps one de-

composition on the other, maps the set + < (2,1,0,0,0) > of codewords of
type [2!,1%] on the set + < (1,2,0,0,0) > .

(ii) The Petersen graph.

Then B* =< (1,1,0,0,0) > U < (-1,0,-1,0,0) > . There are six dif-
ferent ways how to decompose the complement of the Petersen graph into
triangles. One of them corresponds to the following codewords of type [1%] :

(ila) € =< (1,-1,1,0,0) > U < —1,-1,0,1,0) >, while the other five



are isomorphic to:
(iib) ¢ = {(1,-1,1,0,0),(1,0,-1,1,0),(-1,1,0,0,1),
(Ov 1)0) 1: 0’ ""1)’ (0) 0’ 1: _17 1), (11 0: 01 _19 —1)1 (_la _1)0) 11 0):
(-1,0,1,0,-1),(0,1,-1,-1,0),(0,—-1,—-1,0,1)}. Here we do not need to
consider all 5 decompositions, as it is possible to prove that this case is not
a viable one whether < (2,1,0,0,0) >€ 7¢ or < (1,2,0,0,0) >€ T¢.
Codewords of type [1]. Let H be the set of ten codewords in Tz of

type [14]. Clearly, H C H* where H* is constructed as follows: First let
H* be the set of all eighty words in Z° of type [14]. As any codeword in
has to have a distance at least 3 from both codewords of type [1°], and all
ten codewords of type [13], we delete from H* all codewords that coincide
with a codeword in all four non-zero coordinates, or with a codeword in C
in three non-zero coordinates. After these two procedures there are exactly
thirty words left in H*.

There are twenty words of type [12] with both non-zero coordinates of the
same sign. Ten of them are covered by codewords in B, the other ten by
the codewords in C. Further, by Claim B stated in the proof of Theorem

24, it is |[14] | 2 2 for ij such that |[24,1] ;| = 1, and |[14] | > 1 for

|[13] iJ'I = 1. Hence, to each codeword W in B, there are in H at least two
codewords sign equivalent with W in two coordinates. Since no codeword
in ‘H has all non-zero coordinates of the same sign (otherwise its distance to
a codeword of type [15] would be less than 3), and the codewords in B form
two 5-cycles, no codeword in H can be sign equivalent in two coordinates
with three codewords in B. This in turn implies, because |H| = 10, that

Claim C. Each codeword in H has to be sign equivalent in two coordinates
with two codewords of type (2!, 1] and with one word of type [12] with both
non-zero coordinates of the same sign. In particular, each codeword in H
has three coordinates of the same sign.

As in all cases < (1,1,0,0,0) >C B*, H has to contain a codeword W =
(1,1,1, a, b) where exactly one of a,b equals 0 and the other equals —1, and
all cyclic shifts of coordinates of W.

(ia) First we describe the set H*. At the beginning of the process
H={+<(1,1,1,1,0) >+ < (1,1,1,-1,0) >, + < (1,1,-1,1,0) >,
+<(1,-1,1,1,0) >,+ < (-1,1,1,1,0) >, &+ < (1,1,-1,-1,0) >,
+<(1,-1,1,-1,0) >,+ < (-1,1,1,—1,0) >}. We have to remove from
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‘H* words + < (1,1,1,1,0) > that have the distance from the codewords
+(1,1,1,1,1) of type [15] less than 3. Next, in this case, the set C of code-
words of type [13] is £ < (1,0,1,0,—1) > . Therefore we need to remove
from H* forty words at distance less than 3 from any codeword in C. These
words are + < (1,4+1,1,0,—1) > and + < (1,0,1,%1,~1) > . Thus, at
the end of the process H* = {+ < (1,1,1,-1,0) >,+ < (1,-1,1,1,0) >
,+<(1,1,-1,-1,0,) >}. Clearly, the only way how to choose a set of ten
codewords satisfying Claim C is to set ¥ = + < (1,1,1,—-1,0) > .

(ib) We have H* = {+ < (-1,1,1,1,0) >+ < (1,1,-1,1,0) >,
+ < (1,1,-1,-1,0) >}. Then a unique way how to fulfill Claim C is
toset H=+<(-1,1,1,1,0) > .

(iia) Let H, =< (1,1,1,-1,0) >, Hy =< (-1,1,1,1,0) >,
H3 =< (-1,1,-1,-1,0) >, H; =< -1,-1,1,—-1,0) > . Then H* can be
expressed as

4
H=JHU < (-1,1,1,-1,0) >U < (-1,-1,1,1,0) > .

i=1

There are four options how to choose H in this case. Either H=H, U Hj3,
or HHUHy,, or HoU Hj, or Hy U H,.

(iib) In this case all words in H* that belong to < (1,1, 1,a,b) > are:
(lv 17 1’ _11 0)1 (]-s 11 11 01 _1)1 (_1, 1, 1’ 1,0), (_1: 0’ 11 1, l)a (Oa _la 1, 1’ 1))
(1,-1,0,1,1),(1,1,0,—1,1). It is impossible to choose from this set three
words of type (a,1,1,1,b),(a,b,1,1,1), and (1, q, b,1,1) that would be pair-
wise at distance at least 3. Therefore in this case it is impossible to choose
a required set of codewords of type [1%], and we do not need to consider
this case any longer.

Codewords of type [2!,12] and [2!,13]. In Z° there are eighty words of
type [13]. By (10), ten of them are covered by codewords in C of type
[13), forty of them by codewords in H of type [14], and the set G* of the
remaining thirty words covered by the set G of codewords of type [2!,12].
Clearly, if a codeword W of type [2!,12] covers a word V in G*, then we can
see the codeword W as obtained from V by multiplying one of the non-zero
coordinates of V' by two.

Further, in Z°% there are eighty words of type [1%]. By (24), forty of them
are covered by codewords in C, ten of them by codewords in #, ten by
codewords of type [1%], and the remaining twenty, belonging to the set



H* —H, by the set A of codewords of type [2,13]. As above, if a codeword
W in A covers a word V' in H* — H, then we can see W as obtained from
V' by multiplying one of the non-zero coordinates of V' by two.

(ia) Since H =+ < (1,1,1,-1,0) >, and C =+ < (1,0,1,0,-1) >, it is
¢ = {£ < (1,01,1,00 >+ < (1,-1,1,0,0) >,
+ < (0,-1,1,1,0) >}, and H* = H = {£ < (1,-1,1,1,0) >,
+ < (1,1,—1,—1,0) >}. We need to consider two possible choices of code-
words of type [2!,1!] covering the other 5-cycle < (—1,-1,0,0,0) > of the
2-factor F. It is either < (-2,-1,0,0,0) >€ Te, or
< (~1,-2,0,0,0) > T¢.

In the former case consider the set of words/codewords.

By = -2, -1, 0, 0, 0
By = ( 0, 0, 2, 1, 0)
W= ( 1, -1, 1, 1, 0)
Vo=( -1, -1, 1, 1, 0)
Vi = ( 1, 0, 1, 1, 0)
Vy= ( o -1, 1, 1, 0)
‘/5 = ( 1, -1, 1, 01 0)

Clearly, By, B, are codewords of type [2!,1!], while V},V, € H* — H, and
Vs, Vg, V5 € G*. To get a codeword W; covering the word Vj,
Jj = 1,..,5, we need to multiply a non-zero coordinate of V; by 2. As
there are five words V}, and all of them have the fifth coordinate equal to
zero, two of them have to have the same non-zero coordinate multiplied
by 2. It is possible only for V; and V; if their forth coordinate is chosen,
as otherwise the two resulting codewords would be at distance less than 3
(note that multiplying the first coordinate of V; by 2 results in a codeword
at distance less than 3 from B;). Because of the distance to the codeword
Bs, only the word Vi can have its third coordinate multiplied by 2. This
implies that V4 has to have its second coordinate multiplied by 2 while for
Vithe first one is the only choice.

The same type of argument can be applied to a set of words/codewords ob-
tained by the above one by cyclically shifting coordinates of each word /code-
word and/or multiplying all words/codewords by —1. Therefore setting
A={x<(2-1,1,1,0) >+ < (-1,-1,1,2,0) >}, and

g ={£ < (1,0,1,2,0) >, + < (0,-2,1,1,0) >,+ < (1,-1,2,0,0) >},
which is identical to

A={+x<(2,-1,1,1,0) >, £+ < (2,0,~1,~1,1) >},and

G = {+ < (2,0,1,0,1) >, % < (2,0,0,1,-1) >, + < (2,-1,-1,0,0) >}
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is the unique choice so that all codewords in B, G, and A are pair-wise at
distance at least 3.

In the latter case < (-1,-2,0,0,0) >€ B. We will demonstrate that this
is not a viable option. Let

B=( 0, 0, -1, -2, 0
V'l = ( —la 11 ""11 _17 0)
Va=( -1, 0, —1, -1, 0)
‘/3 = ( —1J 1y "’11 07 0)
Va=( 0, 1, -1, -1, 0)

It is easy to check that V; € £ < (1,-1,1,1,0) >e H* —H,and Vo e £ <
(1,0,1,1,0) > G V3 € = < (1,-1,1,0,0) >e G~
Vi € £ < (0,-1,1,1,0) >€ G*, while B is a codeword. Let W; be a
codeword covering the word V;,j = 1,...,4. As mentioned above, W; can
be viewed as obtained from V by multlplylng one non-zero coordinate of V;
by 2. It is easy to see that, for 1<j<k<4,if W; and Wy were obtamed
by multiplying the same coordinate of V; and Vi by 2 than their distance
would be less than 3. On the other hand, if, for some j,1 < j < 4, the
fourth coordinate of W; equaled to —2, then the distance of W; to B would
be less than three. Thus in this case, codewords covering V;,j =1,...,4, do
not exist.

(ib) In this case H = + < (-1,1,1,1,0) >, which in turn implies
’H‘ ={+ < (1,1,-1,1,0) >,+ < (1,1,-1,-1,0) >}, and

{i <(1,1,0,1,0) >, + <(1,1,-1,0,0) >, + <(1,-1,1,0,0) >}. Let
=( 2, 1, 0, 0, 0

1 = ( ]-s 1’ _1) 1, 0)

2 = ( 1: 1’ 01 1: 0)
=( 1, 1, -1, 0, 0)
=( 0, 1, -1, 1, 0

Then V) € H* — H, V5, V3,Vy € G*. By the same type of an argument as
in (ia) it is easy to see that the required codewords W;,j = 1,...,4, do not
exist, as multiplying the first coordinate of V; by 2 leads to a codeword at
distance less than 3 from B. Moreover, our example shows that in this case
(ib) it is impossible to choose the sets of codewords of type [2!,1%], and
[2},13], regardless whether < (—2,-1,0,0,0) >, or < (—1,-2,0,0,0) > is
in B.

(iia) We show that also in this case it is impossible to choose the sets of



codewords of type [2!,12], and [2!,13]. There are two ways how to choose
codewords in B of type [2!,1!] covering words < (~1,0,—1,0,0) >; either
< (-2,0,-1,0,0,) >, or < (-1,0,—-2,0,0,) > . There are four ways how
to choose the set H of codewords of type [14]. We treat here only one of
them as the other three are nearly identical to this one. We deal with the
option H = HyU Hz. Then H* -H ={<(1,1,1,-1,0) >,
<-1,-1,1,-1,0) > ,< (1,1,-1,0,-1) >,< (1,1,0,-1,—-1) >}, while

g ={<(1,0,1,0,1) >,< (1,0,-1,1,0) >,< (1,0,0, -1, —-1) >,

< (1,1,0,0,-1) >,< (-1,-1,0,0,-1) >, < (-1,0,-1,0,1) >}. Of the
two cases when < (-2,0,-1,0,0,) >€ Tz or < (-1,0,-2,0,0,) > Tz we
treat here the first one. Let

B, = 2, 1, 0, O, 0)
B;=( 0, 0, -2, 0, —1)
W= ( 1, 1, -1, 0, _1) )
V2 = ( 0, 1, -1, 0 _1)
V= ( 1, 1, 0, 0 —'1)

where B; and B are codewords and V; € H*-H, V €< (-1,0,-1,0,1) >
€G*, V3 €<(1,1,0,0,~1) >€ G*. Because of B; none of Vs can have the
first coordinate multiplied by 2, while because of B, none of Vs can have
its third coordinate multiplied by 2. Thus, codewords covering V1, V2, V3 do
not exist.

Thus, in what follows, it suffices to consider the case (ia) with B = + <
(2,1,0,0,0) >.

Now it is relatively simple to show the uniqueness of the codewords of the
remaining types.

Codewords of type [3!,1!]. In Z5 there are eighty words of type [2!,11].
By (7), ten of them are covered by the codewords of type [2},1!], and
sixty by the codewords of type [2!,1%|. The remaining ten words + <
(2,0,0,-1,0) > are to be covered by codewords of type [3!,1!]. Thus,
+ < (3,0,0,-1,0) > are in 7.

Codewords of type [3!,12] and [22,1!]. In Z® there are 240 words of type
[21,12%]. By (21) sixty of them are covered by codewords of type [2!,1'],
thirty by codewords of type [13], another thirty by codewords of type
[2!,12], and sixty by codewords of type [2!, 13]. The remaining sixty words of
type [21,1? are + < (2,0,0,1,1) >,
+ < (2,-1,0,0,-1) >, then + < (2,-1,0,0,1) >, + < (1,-2,0,0,1) >,
and + < (2,0,-1,0,-1) >, + < (1,0,-2,0,~1)>. As each codeword of




type [22,1!] covers two words of type [2!,12] there have to be in Tz code-
words + < (2,-2,0,0,1) > and + < (2,0,-2,0,-1) > of type [22,1}],
and the remaining twenty words of type [2!,12] are covered by codewords
+<(3,0,0,1,1) >, & < (3,-1,0,0,—1) > of type [31,12].

Codewords of type {3!,2'] and [4!,1!]. Finally, the ten remaining words
+ < (3,0,—1,0,0) > of type [3!,11] have to be covered by codewords
+ < (4,0,—1,0,0) > of type [41,11], and the ten remaining words
+ < (2,0,2,0,0) > of type [2?] by codewords
+ < (3,0,2,0,0) > of type [3, 21].

So we have proved that the 5-neighborhood of each point is congruent to the
canonical neighborhood, and that the neighborhood is uniquely determined
by the codewords of type [2},1!]. m

At the end of this subsection we describe an important attribute of the
canonical 5-neighborhood.

Theorem 26 Let U,Z € Ty be two words from the 5-neighborhood of
a codeword W. Then 2W — U is in this neighborhood, that is, the 5-
neighborhood is symmetric, and if U+ Z —2W| < 5, then U+ Z - W
belongs to this 5-neighborhood as well. In particular, if U, Z are from the
5-neighborhood of the origin then —U and U + Z, if |U + Z|,; < 5, belong
to this neighborhood as well.

Proof. Again it suffices to prove the statement for W = O. From the
previous theorem we know, that the 5-neighborhood of each codeword in
congruent to the canonical one. Clearly, a congruence mapping retains
the properties described in this theorem. Therefore, it suffices to prove
the statement for the canonical neighborhood. To show that the canonical
neighborhood satisfies these properties we prove that this neighborhood is
a part of (the unique) lattice tiling of R® by crosses. Then the proof will
follow from the fact that if words U,V belong to a lattice £ then also —U
and U4V arein L.

Consider a homomorphism ¢ : Z°® — Z;, the cyclic group of order 11,
given by ¢(e;) = 1,4(e2) =9, d(e3) = 4, d(eq) = 3, and ¢(e5) = 5. Then ¢
satisfies the assumptions of Corollary 11. Thus, ¢ induces a lattice tiling £
of RS by crosses, where the set ker ¢ is the set Tz of the centers of crosses in
this tilling. It is easy, although time consuming, to check, that all codewords
from the canonical neighborhood belong to ker ¢, that is, if U = (u1, ..., us)
belongs to the 5-neighborhood then u) +9ug +4us +3us + 5us = 0(mod 11).
The proof is complete. =
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2.4 Phase D

As the closing part of the proof of Theorem 13 we show that for any two
codewords in 7. their 5-ne1ghborhoods are not only congruent but that
they are identical.

Theorem 27 The 5-neighborhood of each codeword in the tiling L is equal
to the 5-neighborhood of the origin.

Proof. Let £ be a tiling of R® by crosses. We proved that the 5-neighbor-
hood of any codeword W in T is congruent to the 5-neighborhood of the
origin. By Claim 9, we may assume that the 5-neighborhood of the origin
is the canonical one.

We have proved, see Theorem 16, that for each codeword W the 3-neighbor-
hood of W comprises twenty codewords; i.e., there are in 7 twenty code-
words at distance 3 from W. We will call these codewords at distance 3
from W the codewords adjacent to W. Ten of the adjacent codewords are
of type [2!,1}], and ten of them are of type [13]. The proof of the theorem
is based on the following claim, which states that all codewords adjacent
to W have "the same” set of codewords of type [2!,1!] as W has.

Claim D. Let W be a codeword in 7, and let U be a codeword adjacent
to W. Further, let Sy, and Sy be the set of codewords of type [2!,1'] with
respect to W and U, respectively. Then {Z —W; where Z € Sw} = {Z U,
where Z € Sy}.

Theorem 25 states that the 5-neighbourhood of each codeword W is uniquely
determined by the codewords of type [2!,11]. Thus, with Claim D in hands,
we know that any two adjacent codewords have the same 5-neighborhood.
The rest of the proof of the theorem follows easily by induction because to
each codeword W there is a sequence of codewords O = Zy, Z1, ..., Zm—1, Zm
= W such that the codeword Z; is adjacent to the codeword Z;_; for all
i=1,.,m

W.l.o.g. we prove Claim D only for W = O, the origin. Consider a codeword
U that is adjacent to O. To prove Claim D for U we need to show that U+V,
where V € + < (2,1,0,0,0) > is a codeword in Tz. To do so, it suffices
either

(a) to show that U — V is a codeword, or



(b) to choose X, Y, Z so that

(i) X,Y,Z,Y - X,Z—-X,and Y + Z — 2X are in the canonical neigh-
borhood; and

{HY+Z-X=U+V.

Indeed, in the case (a), we know that for each codeword W its 5-neighborhood
is symmetric with respect W, hence if U — Z is a codeword then also U + Z
is a codeword because | Z},, < 5. In the case (b) consider a codeword X. By
Theorem 26, if there are codewords Y, Z, so that pp (Y, X) < 5,pm(Z, X) <
5,and pp (Y+Z—X, X) < 5, then Y+Z—X is a codeword as well. However,
(i) guarantees that all assumptions of Theorem 26 are satisfied, therefore
(ii) guarantees that U + V is in the 5-neighborhood of the codeword U.

First we choose the codeword adjacent to the origin to be of type [21,1!].
Let U = (2,1,0,0,0). If V = (2,1,0,0,0) then U -V = (0,...,0) is a
codeword, and hence by (a) U + V = (4,2,0,0,0) is a codeword as well.
The following table provides a suitable choice for the other four codewords
in < (2,1,0,0,0) > .

14 X Y Z Y+Z-X=U+V

(0,2,1,0,0)

(1,0,1,0,—1)

(01 3: 0)0: -1)

(37 0) 2’ 0) 0)

(2’ 3’ 11 0’0)

(0: 0, 2’ ly 0)

(2,1,0,0,0)

(11 2: 01 1,0)

(3,0,2,0,0)

(2,1,2,1,0)

(0,0,0,2,1)

(2!1!0!0!0)

(1!2? 0! 190)

(3,0,0,1,1)

(2,1,0,2,1)

(1!0) 0) 01 2)

(0» 11 0’ "l’ 1)

(3y Or 01 —1,0)

(6,2,0,0,3)

(3,1,0,0,2)

Theorem 26 guarantees that the 5-th neighborhood of each codeword is
symmetric. Therefore U + V is a codeword also for all

V e< (-2,-1,0,0,0) > . Let U’ €< (2,1,0,0,0) > . Then we apply
the same cyclic shift to X,Y,Z given in the table to obtain the required
codewords. The same applies to —U and its cyclic shifts. Finally, let U be
a codeword of type [13] adjacent to the origin. say U = (1,0,1,0, —1). The
proper choice of X,Y, Z for each V €< (2,1,0,0,0) > is given in the table
below:

v X Y Z Y+Z-X=U+V
(2.1,0,0,0) | (1,0,1,0,-1) | (1,1,0,0,-2) | (3,0,2,0,0) | (3,1,1,0,-1)
(0,2,1,0,0) [ (0,0,2,1,0) | (0,1,1,1,-1) ] (1,1,3,0,0) | (1,2,2,0,=1)
(0,0,2,1,0) [ (0,0,2,1,0) | (1,0,1,2,0) | (0,0,4,0,—1) | (1,0,3,1,—1)
(0,0,0,2,1) | (2,1,0,0,0) | (2.0,1,0,1) | (1,1,0,2,—1) | (1,0,1,2,0)
(1,9,0,0,2) | (2,1,0,0,0) | (3,0,0,—1,0) | (1,1,1,1,1) | (2,0,1,0,1)

while for V €< (-2,-1,0,0,0) >, U +V is a codeword as the 5-neighbour-
hood is symmetric. As in the case of U being an adjacent codeword of type

100



[2!,11), a suitable choice of X,Y, Z for other cases can be obtained by a
cyclic shift. The proof is complete. m
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