On an Extension of
an Observation of Hamilton

Gary Chartrand

Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008-5248, USA

Futaba Fujie
Graduate School of Mathematics
Nagoya University, Furo-cho, Chikusa-ku
Nagoya 464-8602, JAPAN

Ping Zhang
Department of Mathematics
Western Michigan University

Kalamazoo, MI 49008-5248, USA

Abstract

For a Hamiltonian graph G, the Hamiltonian cycle extension
number of G is the maximum positive integer k for which every
path of order k or less is a subpath of some Hamiltonian cycle
of G. The Hamiltonian cycle extension numbers of all Hamilto-
nian complete multipartite graphs are determined. Sharp lower
bounds for the Hamiltonian cycle extension number of a Hamil-
tonian graph are presented in terms of its minimum degree and
order, its size and the sum of the degrees of every two nonad-
jacent vertices. Hamiltonian cycle extension numbers are also
determined for powers of cycles.
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1 Introduction

The concepts of Hamiltonian cycles, Hamiltonian paths and Hamiltonian
graphs are, of course, named for the famous Irish physicist and mathemati-
cian Sir William Rowan Hamilton. In 1856 Hamilton introduced a game
he called the Icosian Game from a non-commutative algebraic system he
developed. This two-person game could be played on the vertices and edges
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of a dodecahedron (a polyhedron with twenty vertices). Hamilton later sold
the rights of this game to the well-known game company John Jacques &
Son, which is still in existence. The preface to the instruction pamphlet
for the Icosian Game was written by Hamilton himself. Below are excerpts
from this preface:

In this new Game ... a player is to place the whole or part of a
set of twenty numbered pieces or men upon the points or in the
holes of a board ... in such a manner as always to proceed along
the lines of the figure, and also to fulfill certain other conditions,
which may in various ways be assigned by another player. ...
For example, the first of the two players may place the first five
pieces in any five consecutive holes, and then require the second
player to place the remaining fifteen men consecutively in such
a manner that the succession may be cyclical, that is, so that
No. 20 may be adjacent to No. 1; and it is always possible to
answer any question of this kind.

In other words, beginning with any path P of order 5 (or less) on the
graph G of the dodecahedron, P may be extended to a Hamiltonian cycle
of G. That is, for every path P of order 5 in G, there exists a Hamiltonian
cycle C of G such that P is a path on C. What Hamilton observed for
paths of order 5 on the graph of the dodecahedron does not hold for all
paths of order 6 as is illustrated in Figure 1 since this path of order 6
(drawn in bold edges) cannot be extended to a Hamiltonian cycle on the
graph of the dodecahedron. This leads to a concept that is defined for every
Hamiltonian graph. We refer to the book [4] for graph theory notation and
terminology not described in this paper.

Figure 1: The graph G of the dodecahedron
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2 The Hamiltonian Cycle Extension Number
of a Hamiltonian Graph

A Hamiltonian graph G of order n > 3 is said to be a k-path Hamiltonian
graph for some integer k with 1 < k < n if for every path P of order &, there
exists a Hamiltonian cycle C of G such that P is a path on C. Certainly,
every Hamiltonian graph is 1-path Hamiltonian. The largest integer k for
which a Hamiltonian graph G is j-path Hamiltonian for every integer j
with 1 < j < k is the Hamiltonian cycle extension number hce(G) of G.
Therefore, 1 < hce(G) £ n. Furthermore, hce(G) = 1 if and only if G
contains an edge that lies on no Hamiltonian cycle of G. All graphs G of
order n were determined for which hce(G) = n (see [3]). In particular, for
n > 3, hce(G) = n if and only if G is the complete graph K,, the n-cycle C,,
or, when n is even, the regular complete bipartite graph K,, /3 /2. Thus, for
an integer n > 3, there are three graphs G of order n such that hce(G) = n
if n is even and two such graphs if n is odd. There are no Hamiltonian
graphs G of order n, however, for which hce(G) =n—1 or hce(G) =n—2.

Proposition 2.1 If G is a Hamiltonian graph of order n, then either
1 < hce(G) < n— 3 or hee(G) = n.

Proof. It suffices to show that if hce(G) > n — 2, then hce(G) = n. Let
G be an (n — 2)-path Hamiltonian graph and consider a Hamiltonian path
P = (v1,vs,...,v,) in G. Since G is (n — 2)-path Hamiltonian, the subpath
(v2,v3,...,9p_1) of P must lie on a Hamiltonian cycle, which implies that
v1vn € E(G). Thus, P can be extended to a Hamiltonian cycle. =

As Hamilton observed, the graph of the dodecahedron is 5-path Hamil-
tonian but not 6-path Hamiltonian. The dodecahedron is one of the five
Platonic solids, the other four being the tetrahedron, octahedron, cube and
icosahedron. For n € {4,6,8,12,20}, let G, be the graph of the Platonic
solid having order n. Thus, hce(G2) = 5. Note also that hce(Gy) =
hce(Ky) = 4.

The graph Gg of the octahedron is the complete 3-partite graph K» o 5.
Let V(Gs) = {v1,v2,...,v6} with the partite sets V}, V5, V3, where V; =
{vi,viya} for i = 1,2,3. Then the paths (v},v2,v3) and (vy,v2,v4) can both
be extended to a Hamiltonian cycle but the path (v, vs,vs,vs) cannot be
extended to a Hamiltonian path. Thus, hce(Gg) = 3.

In the example above, deleting the vertices in the path (v, v2,v4,vs5)
from Gg results in a disconnected graph. This illustrates the following
observation.

Observation 2.2 If a graph G contains a u — v path P of order k such
that the graph G — (V(P) — {u,v}) does not contain a Hamiltonian u — v
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path, then hce(G) < k. In particular, if G — V(P) is disconnected, then
hece(G) < k.

For the cube Gg, let V(Gs) = {uy, u2, uz, ug, v1, v2,v3, v4} and E(Gs) =
{wivj : 1 < 4,5 < 4andi # j}. Since both paths (u;,vz,u3,v1) and
(uy,v2,us3,vs) can be extended to Hamiltonian cycles, G is 4-path Hamil-
tonian. However, Observation 2.2 with the path (u1,vs,us, vy, u2) shows
that hce(Gg) < 5. Hence, hce(Gs) = 4.

We next determine the value of hce(Gy2). The graph Gz is given in
Figure 2 with bold edges forming a Hamiltonian cycle. With the path
(v1,v2,v11,v7,06), for example, it is immediate that G2 is not 5-path
Hamiltonian by Observation 2.2. Furthermore, for every path P of or-
der 4 in G2, observe that there is an automorphism ¢ of G2 such that the
image of P under ¢ is one of the following five paths:

('01,112,113,1)4), (7.)4, Vs, UG1U7)) (v‘?vaavgv vl()))
(vi0,v11,12,v1), (V2,V3,v4,Vs).

Since these five paths all lie on the Hamiltonian cycle (v1,v2,...,v12,v1)
shown in Figure 2, we conclude that hce(G13) = 4.

Figure 2: The graph G2 with a Hamiltonian cycle

These facts are summarized in Table 1.

3 Hamiltonian Cycle Extension Numbers of

Hamiltonian Complete Multipartite Graphs
We have observed for n > 3 that hce(K,) = n and for n = 2r > 4 that
hece(K, ) = n. We next determine hce(G) for all other Hamiltonian com-

plete multipartite graphs. The following observation concerning complete
multipartite graphs will be useful to us.
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The graph G | The order of G | he

o
| |
Q
e

Octahedron 6 (4-regular) 3
Tetrahedron 4 (3-regular) 4
Cube 8 (3-regular) 4
Icosahedron 12 (5-regular) 4
Dodecahedron | 20 (3-regular) 5

Table 1: The Hamiltonian cycle extension
numbers of the graphs of the Platonic solids

Observation 3.1 Let G = Kp, n,,...,.n, be a complete £-partite graph where
£>2and1<n; <ng <--- < ng.

(a) The graph G is Hamiltonian if and only if ny < E.—q n;.

(b) The gmph G contains a Hamiltonian path if and only if ng < 1+
E =1 n,

() Ifng=1+ 21_1 n;, then each Hamiltonian path of G must begin and
end in the partite set whose cardinality equals n,.

The following lemma is known (see [4, p. 42], for example).

Lemma 3.2 Let G be a connected graph of order n > 3 and let d be an
integer with 2 < d <n-—1. Ifdegu + degv > d for every two nonadjacent
vertices u and v of G, then G contains a path of order d + 1.

We are now in a position to determine the Hamiltonian cycle extension
numbers of all Hamiltonian complete multipartite graphs that are distinct
from complete graphs and regular complete bipartite graphs. That the
expression for the Hamiltonian cycle extension number of such a graph G
given in the following result is a lower bound for hce(G) can be derived from
a theorem of Kronk [8] dealing with linear forests. However, we present a
complete and independent proof of this fact.

Theorem 3.3 If G is a Hamiltonian complete -partite graph of order n
for some integer £ € {3,4,...,n — 1}, then hce(G) =n+ 1 - 2a(G).

Proof. Let G = Ky, n,,...n,, Where then n = n; + no + -+ + ng and
3<¢<n-1 We may assume that 1 < n; < np < .- < ng and
so a(G) = ne Smce G is Hamiltonian and not complete, it follows that
2<n < Z iy ! n;. Suppose that the partite sets of G are Vi, Va,..., Vs
with |V;| = n; for 1 <14 < £. To verify that hce(G) £ n + 1 — 2n¢, we show
G contains a path of order n + 2 — 2n, that lie on no Hamiltonian cycle in
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G. Let H =G -V, = Ku, n,,..,n,_,. First, we claim that H contains a
path of order n+2 — 2n,. If ng_y = 1, then H is a complete graph of order
n — ng and so there is certainly a path of order n —ny > n+ 2 — 2n, (since
ng > 2). Thus, we may now assume that ne_; > 2. Let v and v be two
nonadjacent vertices of H. Since £ > 3 and 1 < ny < ne—y < ne, it follows
that n > ny +ne-; +n¢ > 2np_1 + 1 and so

degu+degv>26(H)=n+(n—2ne1)—2n,=2n+1-2n,.

By Lemma 3.2, H contains a path P of order n + 2 — 2n,, as claimed.
Now if P lies on a Hamiltonian cycle in G, then the graph F = G — V(P)
must contain a Hamiltonian path. However, this is not the case since F’
contains the independent set V; of n, vertices while the order of F' is 2ng—2.
Consequently, hee(G) < n +1 — 2n,.

Since every path of order less than n + 1 — 2n, lies on a path of order
n + 1 — 2ny, to show that hce(G) > n + 1 — 2n,, it suffices to show that
an arbitrary u — v path P of order n + 1 — 2n¢ lie on a Hamiltonian cycle
in G. Let F = G — V(P). Then F is a complete £'-partite graph of order
2np — 1 for some integer ¢ with 2 < & < £. Let the partite sets of ' be
Ul,UQ, ‘e .,Ue: where 1 S IUli Sl U2| S Lo S |Uy| _<_ Ng. If |Ue'| = ng, then
{Ue| =1+ Zf;_ll |U;] and so there exists a Hamiltonian z — y path @ in
H where z,y € Up by Observation 3.1(c). Since uz,vy € E(G), the path
P can be extended to a Hamiltonian cycle in G containing Q as a subpath.
Thus, we may now assume that |Uy| < ng — 1, which implies that ¢ > 3.
Since |Up| < Zf':_ll |Us], it follows that F' has a Hamiltonian cycle C’ by
Observation 3.1(a). We now consider two cases, according to whether «
and v belong to distinct partite sets of G or to the same partite set of G.

Case 1. u and v belong to distinct partite sets of G, say u € V, and
veEV, wherel < a,b < € and a # b. Let Ty be an edge of C’ and let
P’ be the z — y path of C’ not containing zy. Suppose first that one of z
and y belongs to V, or to V;, say = € V,. Hence v,z € V, and v,y & V,,
which implies that uy, vz € E(G). Then the two edges uy, vz together with
P and P’ produce a Hamiltonian cycle in G that is an extension of P. If
neither = nor y belongs to V, or to V4, then uy, vz € E(G) here also and
once again, P can be extended to a Hamiltonian cycle of G.

Case 2. u and v belong to the same partite set of G, say u,v € V,,
where 1 < a < £. Since |V, — {u,v}| < ne—2 and C' is a (2ne — 1)-cycle,
it follows that C’ contains an edge zy such that z ¢ V, and y ¢ V,,. Hence
uz,vy € E(G) and so P can be extended to a Hamiltonian cycle of G.

As a result, we conclude that G is (n + 1 — 2n;)-path Hamiltonian and
so hce(G) =n+1-2n,=n+1-2a(G). u

We now know the value of the Hamiltonian cycle extension number of
each Hamiltonian complete multipartite graph.
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Corollary 3.4 If G is a Hamiltonian complete multipartite graph of order
n, then

_fn if G is complete or bipartite
hee(G) = { n+1-2a(G) otherwise.

4 A Minimum Degree Condition for Hamil-
tonian Cycle Extension Numbers

The first result of a theoretical nature dealing with Hamiltonian graphs
occurred in 1952 and is due to Dirac [5)].

Theorem 4.1 If G is a graph of order n > 3 with the minimum degree
4(G) =2 n/2, then G is Hamiltonian.

A graph G is Hamiltonian-connected if G contains a Hamiltonian u — v
path for every pair u,v of distinct vertices of G. The following theorem,
due to Ore {11] in 1963, provides a sufficient condition for a graph to be
Hamiltonian-connected.

Theorem 4.2 If G is a graph of order n > 3 such that 6(G) > (n+1)/2,
then G is Hamiltonian-connected.

If G is a Hamiltonian graph, then §(G) > 2. Now, suppose that G is a
Hamiltonian graph of order n and 6(G) = 2. If G # C,,, then A(G) > 3 and
so there is an edge uv € E(G) such that degu = 2 and degv > 3. Thus,
there exists a path (z,v,y) where u ¢ {z,y}, which cannot be extended to
a Hamiltonian cycle. Hence hce(G) < 2. Therefore, if G is a Hamiltonian
graph of order n and §(G) = 2, then

n fG=C,
hce(G) = ¢ 1 if G contains an edge not belonging to a Hamiltonian cycle
2 otherwise.

We now present a lower bound for the Hamiltonian cycle extension number
of a graph G in terms of the minimum degree and order of G.

Theorem 4.3 If G is a graph of order n > 3 and 6(G) > n/2, then
hee(G) > 26(G) —n+ 1.

Proof. By Dirac’s Theorem, G is Hamiltonian and so 1 < hce(G) < n.
Since G is Hamiltonian and 1 € 26(G) —n+1 < n — 1, it follows that
G contains a path of order 26(G) — n + 1. Here, every path of order less
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than 26(G) — n + 1 lies on a path of order 26(G) — n + 1. Thus, it suffices
to show that hce(G) > 26(G) — n + 1 by verifying that every path of
order 26(G) — n + 1 can be extended to a Hamiltonian cycle in G. Since
the result is immediate when §(G) € {n/2,n — 1}, we may assume that
n/2 < §(G) <n—2. Thus,n >5and 26(G)—n+12>2. Let Pbeau—v
path of order 26(G) — n + 1 and let H be the subgraph of G induced by
(V(G) = V(P))U {u,v}. Thus, the order of H is n' = 2(n —§(G)) +1 = 5.
Furthermore,

S(H) 2 6(G) - [V(P)| +2=n—6(G) +1= (n' +1)/2.

It then follows that H is Hamiltonian-connected and so there exists a Hamil-
tonian u — v path in H. Thus, P can be extended to a Hamiltonian cycle
in G. ]

The lower bound in Theorem 4.3 is sharp for if G is a Hamiltonian com-
plete multipartite graph of order n that is neither complete nor bipartite,
then hce(G) = 26(G) — n + 1 since §(G) = n — a(G). The following is a
consequence of Theorem 4.3.

Corollary 4.4 If G is a graph of order n > 4 such that 6(G) > rn for
some rational number r with 1/2 < r <1, then hce(G) > (2r — 1)n + 1.

The lower bound presented in Corollary 4.4 for the Hamiltonian cycle
extension number of a graph is sharp for each rational number r € [1/2,1).
To see this, write r = p/q, where p, ¢ are integers satisfying 2 < p < ¢ < 2p,
and consider the graph G = Ky, n,,...,n,,, be the complete (p + 1)-partite
graph of order n = °P*!

ie1 T = pq, where

n.={p fl1<i<p
Pl ple-p) ifi=p+1l

Since p < np41 < p? = Y b_, ny, the graph G is Hamiltonian and 6(G) = p?.
Furthermore,

hee(G) = 26(G) —n+1=2p* —pg+1
= (2p/g—1lpg+1=2r-1)n+1.

If G is a Hamiltonian graph of order n, then certainly C,, C G C K,.
While hee(C,,) = hee(K,,) = n, there are graphs for which 1 < hee(G) < n.

Proposition 4.5 If G is a Hamiltonian graph of order n > 4 and clique
number n — 1, then hce(G) = §(G) — 1.
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Proof. Since G is Hamiltonian but not complete, 2 < §(G) < n — 2. Let
v* be the vertex with degv* = §(G). Since a path whose vertex set equals
N(v*) cannot be extended to a Hamiltonian cycle in G, it is follows that
hee(G) < 6(G) - 1.

To show that hee(G) > §(G) —1, let P be a u—v path of order §(G) —
Let H = G — V(P). We show that H contains a Hamiltonian z — y path
Q such that uz,vy € E(G). If v* belongs to P, then H is complete and
at least two vertices in H are adjacent to v* in G, say z,y € V(H) and
zv*,yv* € E(G). Thus, both z and y are adjacent to each of v and v in
G. Let Q be any Hamiltonian z — y path in H. If v* does not belong to
P, then both u and v are adjacent to every vertex in V(H) — {v*}. If at
least one of v and v is adjacent to v*, say uv* € E(G), then deggv* > 1
and H contains a Hamiltonian z — y path Q with v* as its initial vertex.
Otherwise, degy; v* > 3 and H contains a Hamiltonian z — y path Q with
v* as one of its internal vertices. Thus, P and Q together with the edges
uz and vy form Hamiltonian cycle of G. The desired result now follows. m

Corollary 4.6 For a pair n,a of positive integers, there exists a Hamil-
tonian graph G of order n with hce(G) =a if and onlyif1<a<n—-3 or
a=n.

5 Sufficient Conditions for the Hamiltonian
Cycle Extension Number of a Graph

It is well known that if G is a graph of order n > 3 and size m > ("; 1) +2,
then G is Hamiltonian; while if G is a graph of order n > 4 and size
m> (";1) + 3, then G is Hamiltonian-connected (see [11]). Consequently,
every graph G of order n > k+2 where k = 1,2 and size m > (";1) +k+1
is k-path Hamiltonian. The following result is an extension of these two
statements.

Theorem 5.1 Let k and n be positive integers such that n > k+ 2. If
G is a graph of order n and size m > (*;') + k + 1, then G is k-path
Hamiltonian.

Proof. Since it is known that this theorem holds for k£ = 1,2, we may
assume that k > 3. For a graph G of order n > k 4 2 and size m >
(";1) +k+1, let P be au—v path of order k. Consider the graph
H =G - S, where S = V(P) — {u,v}. If »’ and m' are the order and size
of H, respectively, thenn’'=n—k+2and

w3 () k1 () k- 2) = () +

121



Therefore, H is Hamiltonian-connected and so H contains a Hamiltonian
u — v path Q. Since the paths P and Q produce a Hamiltonian cycle in G,
it follows that G is k-path Hamiltonian. [ ]

The bound for the size m of a graph in Theorem 5.1 cannot be improved.
For example, let G be a connected graph of order n > 3 with clique number
n—1and k = 6(G). Hence, 3 < k+2 < n and the size of G equals (";') +.
The graph G is not Hamiltonian when & = 1. If G is Hamiltonian, then
k > 2 and hce(G) = k — 1 by Proposition 4.5.

Two of the best known sufficient conditions for a graph G of order n to be
Hamiltonian or Hamiltonian-connected are generalizations of Theorems 4.1
and 4.2 and are both due to Ore (see [10, 11]).

Theorem 5.2 (Ore) If G is a graph of order n > 3 such that degu +
degv > n for each pair u,v of nonadjacent vertices of G, then G is Hamil-
tonian.

Theorem 5.3 (Ore) If G is a graph of order n > 4 such that degu +
degv > n + 1 for every pair u,v of nonadjacent vertices of G, then G is
Hamiltonian-connected.

As a consequence of Theorems 5.2 and 5.3, it follows for ¥ = 1,2 that
if G is a graph of order n > k + 2 such that degu +degv > n+ k-1 for
every pair u, v of nonadjacent vertices of G, then G is k-path Hamiltonian.
The following is an extension of this statement.

Theorem 5.4 Let k and n be positive integers such that n > k+2. If G
s a graph of order n such that degu +degv > n+k —1 for every pair u,v
of nonadjacent vertices of G, then hece(G) > k.

Proof. Since this theorem holds for k = 1,2, we may assume that & > 3.
Because every path of order less than k lies on a path of order k here,
we consider a path P = (v = uj,up,...,ux = v) of order k in G. Let
S = {uz,us,...,ux—1}. Furthermore, let H = G — S be the graph of order
n’ = n — k + 2. Then for every two nonadjacent vertices u and v of H, it
follows that

deggyu+deggv>2n+k—-1-2k-2)=n—-k+3=n"+1.

By Theorem 5.3, H is Hamiltonian-connected and so H contains a Hamilto-
nian u — v path Q. Hence the cycle formed from P and Q is a Hamiltonian
cycle in G containing the path P. Consequently, G is k-path Hamiltonian
and so hce(G) > k. (]

Note that now Theorem 5.1 can be seen as a corollary of Theorem 5.4.
The bound on the degree sum of nonadjacent vertices in Theorem 5.4 cannot
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be improved. To see this, let a be an integer satisfying 1 <a<n -k —1.
Consider a graph G of order n consisting of complete subgraphs G; and Go
of order k+a and n— a, respectively, such that E(G) = E(G,)UE(G;) and
V(G) = V(G,) UV(G3) where V(G1) N V(G2) = {u1,us,...,ur}. Then
degu + degv = n + k — 2 whenever u and v are two distinct nonadjacent
vertices in G. When k& = 1, the graph G is not Hamiltonian. For & >
2, Ore’s Theorem guarantees that G is Hamiltonian. However, the path
(u1,u2,...,uk) lies on no Hamiltonian cycle in G. Consequently, G is not
k-path Hamiltonian.

6 Hamiltonian Cycle Extension Numbers of
Powers of Cycles

For a connected graph G and a positive integer k, the kth power G* of G
is that graph whose vertex set is V(G) such that uv is an edge of G¥ if
1 < dg(u,v) < k. The graph G? is called the square of G and G® is the
cube of G.

In 1960, Sekanina [12] proved that the cube of every connected graph
G is Hamiltonian-connected and, consequently, G® is Hamiltonian if its
order is at least 3. In the 1960s, it was conjectured independently by
Nash-Williams [9] and Plummer (see [4, p.139]) that the square of every
2-connected graph is Hamiltonian. In 1974, Fleischner (6] verified this con-
jecture. Also, in 1974 and using Fleischner’s result, Chartrand, Hobbs,
Jung, Kapoor and Nash-Williams [1] proved that the square of every 2-
connected graph is Hamiltonian-connected.

For a connected graph G of order n > 4 and an integer k with 1 < k <
n — 3, the graph G is k-Hamiltonian if G — S is Hamiltonian for every set
S of k vertices of G and k-Hamiltonian-connected if G — S is Hamiltonian-
connected for every set S of k vertices of G. If the order of a graph G is at
least 4, then Chartrand and Kapoor [2] showed that G3 is 1-Hamiltonian.
Since the square of every 2-connected graph is Hamiltonian-connected, the
square of every Hamiltonian graph is Hamiltonian-connected.

In 1973 Hobbs (7] made the following conjecture.

Conjecture 6.1 (Hobbs) If G is a 2-connected graph of order n and k
is an integer with 3 < k < (n + 1)/2, then G* is (2k — 3)-Hamiltonian-
connected.

In this section, we verify Conjecture 6.1 when G = C, for k = 2 as
well as for £ > 3 and use the resulting theorem to obtain a formula for
hce(Ck). We begin by stating the following two lemmas, the first of which
is straightforward to verify.
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Lemma 6.2 If P = (vy,v2,...,V,) i a path of order n > 2, then P?
contains a Hamiltonian v, — vy path.

Lemma 6.3 Let P be a path of order n > 2. For distinct vertices u and
v in P, there exists a Hamiltonian v — v path in P? unless neither u nor v
is an end-vertex of P and uv is an edge of P.

Proof. Since P? is complete when n = 2,3, we may assume that n >
4. Suppose that neither u nor v is an end-vertex of P and uv € E(P).
Since deleting « and v from P? results in a disconnected graph, there is no
Hamiltonian u — v path in P2.

Next, suppose that either at least one of v and v is an end-vertex of
P or uv ¢ E(P). We show that P? contains a Hamiltonian v — v path.
Let P = (v1,v2,...,v,). We may assume that u = v; and v = v; where
1<i<j<n. Let

Q1 = (v1,v2,...,v; =u) and Q2 = (V="0;,Vj41,...,Vn)
be two subpaths of P. With the aid of Lemma 6.2, we define
Q' = 1 ifi=1
1™ 1 a Hamiltonian v; — v;—1 path in Q% ifi>2
QI = Q2 ifj =n
2 a Hamiltonian vj4; — v; pathin Q3 ifj <n-1.
Then
o @) ifj—i=1
(@1 Vit1yVig2,. -, 05-1,Q) fj—12>2
is a Hamiltonian u — v path in P2, .

Corollary 6.4 If P is a w — v path of order at least 4, then P? + uv is
Hamiltonian-connected.

We are now prepared to prove the following result.

Theorem 6.5 For every two integers k and n for which 6 < 2k +2 < n,
the graph C¥ is (2k — 3)- Hamiltonian-connected.

Proof. Let G = C¥ be the graph constructed by taking the kth power of
the n-cycle C = (v1,v2,...,v,,v1). Since 6 < 2k +2 < n, the graph G is
neither C,, nor K,,. For each vertex v; (1 < i < n), the neighborhood of
v; in G is N(v;) = {Viz1,Viz2,. .., Vi+k }, Where each subscript is expressed
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as one of the integers 1,2,...,n modulo n. The right (or “clockwise”)
neighborhood of v; in G is the set

Ng(v) = {Ui+1,vi+2, e ,'Ui+k}-

Similarly, the left (or “counter-clockwise”) neighborhood of v; in G is the
set
Np(vi) = {vim1,vi-2,...,Vi—k}.

Hence
if z,y € {v;} U Ng(v;), then dec(z,y) < k and so zy € E(G). (1)

Let S be a (2k — 3)-element subset of V(G) and let G' = G — S where
the order of G’ is n' = n — (2k — 3) = n — 2k + 3. We show that G’ is
Hamiltonian-connected.

The subgraph C[S] of the cycle C induced by S is a linear forest (and
so each component of C[S] is a path). Let S; be a subset of S such that
C[$:]) is a component of maximum order in C|[S], say |S1| = p. Thus
1 < p < 2k—3. By relabeling the vertices of C, if necessary, we may assume
that C[S1] = (Yn-p+1,VUn—p+2,---:¥n). Consequently, v;,v,_, € V(G').
Express the vertex set of G' by

V(@) ={vj, =ui : 1 i <n'} = {uyg,ug,...,un'},
where 1 = j; < jo < +++ < jpr =n — p. For each u; € V(G'), let
Np(u:) = Nr(u:) NV(G') € Ngr(w:).
Since {u;} U Np(w;) C {u;} U Ng(u;), it follows by (1) that
if r,y € {u;} U Ng(w;), then zy € E(G) and so zy € E(G').  (2)

Since p < 2k — 3, there is a u; — u;4; path on C of length at most k£ — 1
for every i (1 < ¢ < n/ — 1) and so dc(u;, uiv1) < k — 1. Therefore,
uiui+1 € E(G’) for each i for 1 < ¢ < n' — 1. Hence P = (uj,u2,...,upn)
is a spanning path in G’. Next, we show that either G’ contains P2 as
a subgraph or there exists a u — v Hamiltonian path @ in G’ such that
uv € E(G’) and G’ contains Q2 + uv as a subgraph. We consider three
cases, according to the value of p.

Case 1. k < p < 2k — 3. Since |S — S| = 2k — 3 — p, it follows
that 0 < |S — S;| < k — 3. In this case, we show that each vertex u; is
adjacent to each of u;j41,uit2,ui43 in G' for 1 < i < n' —3 and up_z is
adjacent to un/—; and u, in G', which implies that P3 is a subgraph of
G. Since for each u; € V(G'), 1 < i < n' — 2, at most k£ — 3 vertices of
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Npg(u;) belong to S — Sy, it follows that u;y1,uit2,uirs € Ngr(u;) when
1<i<n'—3and uy—1,un € Np(u;) when i = n’ — 2. This implies that
P3 is a spanning subgraph of G’. Since P? is Hamiltonian-connected, G’ is
Hamiltonian-connected.

Case 2. p=k—1. Thus |S— S| = k—2. Since u,s € Np(u;), it follows
that do(ug, un) < k — 1. Therefore, ujun € E(G) and so P + uyu, is
a Hamiltonian cycle in G'. For 1 < i < n/ — 2, at most k — 2 vertices of
NR(u;) belong to S — S) and 50 uit1, ui+2 € Ng(u;). Hence P? as well as
P2? 4 4ju, are spanning subgraphs of G’. Since P2 4 ujuyn is Hamiltonian-
connected by Corollary 6.4, it follows that G’ is Hamiltonian-connected.
This case then establishes the theorem when &k = 2.

Case 3. 1 <p<k~—2. Then k > 3. Since G is (2k)-regular, it follows
that §(G’) > 2k — (2k — 3) = 3. Furthermore, because unr € Np(uy),
we have v u,y € E(G) and so P + uju, is a Hamiltonian cycle in G.
If P? + uju, is a subgraph of G/, then G’ is Hamiltonian-connected by
Corollary 6.4. We claim that if P? +u,u,- is not a subgraph of G’, then G’
contains adjacent vertices « and v for which there is a ¥ — v Hamiltonian
path Q such that Q2 + uv is a subgraph of G’. Suppose that P% + uju,
is not a subgraph of G’. Since P is a subgraph of G’ and u u, € E(G), it
follows that there is i € {1,2,...,n' — 2} such that u;ui42 ¢ E(G). Let A
be the u; — u;42 subpath of C containing u;4; and B the u; — u;42 subpath
of C not containing u;4+;. Since dg(u;,ui+2) 2 k+1, at least k — 1 vertices
of A belong to S. Consequently, at most k£ — 2 vertices of B belong to S.
Let T = (wig2,Uig3,-- -, Uns, U1, U, - .., u;). If We express uj,ug,...,u; as
Unigl, Un’s2s-- -y Unspi IN T, then for each j with i +2 < j <n'+7-2,
it follows that dc(uj,uj+2) < k and so uju;42 € E(G’'). Hence T? is a
subgraph of G’ — u;;;. Since degg uip1 > 3 and u;4; is adjacent to u;
and u;yo in G', either u;y1uirs € E(G') or uiy1ui—y € E(G’'), say the
former. Now Q@ = (wit+1,T) = (Uit1, Ui42) Uit3, ..., Uns, U1, U2, ..., U;) IS &
Hamiltonian u;4; — u; path in G’. Since T2 is a subgraph of G’ — u;;;
and u;4) is adjacent to u; and ui43 in G, it follows that Q2 + u;y u; is a
subgraph of G’. Hence G’ is Hamiltonian-connected by Corollary 6.4. =

Theorem 6.5 cannot be strengthened. That is, for integers k and n with
6 < 2k + 2 < n, the graph CF is not (2k — 2)-Hamiltonian-connected. To
see this, let C, = (v1,v9,...,Vn,v1). For the set § = {v,v3,...,0¢} U
{Vk+2,Vk+3, - - -, v2k } of 2k — 2 vertices of Cy,, there is no Hamiltonian v, —
Vok41 path in Ck — 8.

We are now in a position to establish a formula for the Hamiltonian
cycle extension numbers of the graphs C¥ for positive integers k and n > 3.
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Theorem 6.6 For positive integers k and n > 3,

Ky _ n ifk=1ork>|n/2]
hee(Cy) = { 2k —1  otherwise.

Proof. If k = 1, then C¥ = C, and if k > [n/2], then C¥ = K,,. We
have seen in these cases that the Hamiltonian cycle extension number is n.

It remains to show that hce(C¥) = 2k — 1 when 2 < k < [n/2] — 1
or, equivalently, when 6 < 2k + 2 < n. Let Cp, = (v1,v2,...,Vn-1,Vn,v1).
Then P = (v1,v2,...,Vk, Vk42, Uk+3;- - -y V2k41) iS @ path of of order 2k
in G = Ck. Since ve4 is an isolated vertex in G — V(P), it follows by
Observation 2.2 that hce(C¥) < 2k — 1.

Next, we show that hce(C¥) > 2k—1. Here, every path of order less than
2k — 1 lies on a path of order 2k — 1. Therefore, let P = (uy,ua, ..., u2k—1)
be a path of order 2k —1 in G and let @ = (u2,us,...,usx—2) be a subpath
of P of order 2k — 3. By Theorem 6.5, the graph G — V(Q) contains a
Hamiltonian u; — ugx_1 path @Q’. Then the two paths P and Q' produce
a Hamiltonian cycle in G. Thus, hce(G) > 2k — 1 and we conclude that
hee(G) = 2k — 1. =
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