On decompositions of complete multipartite graphs into the union of two even cycles*

A. Su, J. Buchanan, R. C. Bunge, S. I. El-Zanati, E. Pelttari, G. Rasmuson, E. Sparks, S. Tagaris

> Department of Mathematics Illinois State University Normal, IL 61790-4520 U.S.A.

Abstract

For positive integers c and d, let $K_{c\times d}$ denote the complete multipartite graph with c parts, each containing d vertices. Let G with n edges be the union of two vertex-disjoint even cycles. We use graph labelings to show that there exists a cyclic G-decomposition of $K_{(2n+1)\times t}$, $K_{(n/2+1)\times 4t}$, $K_{5\times (n/2)t}$, and of $K_{2\times 2nt}$ for every positive integer t. If $n\equiv 0\pmod 4$, then there also exists a cyclic G-decomposition of $K_{(n+1)\times 2t}$, $K_{(n/4+1)\times 8t}$, $K_{9\times (n/4)t}$, and of $K_{3\times nt}$ for every positive integer t.

1 Introduction

If a and b are integers we denote $\{a, a+1, \ldots, b\}$ by [a, b] (if a > b, $[a, b] = \emptyset$). Let \mathbb{N}_0 denote the set of nonnegative integers and \mathbb{Z}_n the group of integers modulo n. For a graph G, let V(G) and E(G) denote the vertex set of G and the edge set of G, respectively. Let K_k denote the complete graph on k vertices.

Let $V(K_k) = \mathbb{Z}_k$ and let G be a subgraph of K_k . The length of an edge $\{i,j\} \in E(G)$ is defined as $\min\{|i-j|, k-|i-j|\}$. By clicking G, we mean applying the isomorphism $i \to i+1$ to V(G). Let H and G be graphs such that G is a subgraph of H. A G-decomposition of H is a set $\Gamma = \{G_1, G_2, \ldots, G_t\}$ of pairwise edge-disjoint subgraphs of H each of which is isomorphic to G and such that $E(H) = \bigcup_{i=1}^t E(G_i)$. If H is K_k , a G-decomposition Γ of H is cyclic if clicking is an automorphism of Γ . The

^{*}Research supported by National Science Foundation Grant No. A1063038

decomposition is *purely cyclic* if it is cyclic and $|\Gamma| = |V(H)|$. If G is a graph and r is a positive integer, rG denotes the vertex disjoint union of r copies of G.

The study of graph decompositions, also known as the study of graph designs or G-designs, is a popular area of research. In particular, decompositions of complete graphs into cycles have attracted a great deal of attention. For relatively recent surveys on graph decompositions, we direct the reader to [2] and [5]. A popular method for obtaining graph decompositions is via graph labelings.

For any graph G, a one-to-one function $f\colon V(G)\to\mathbb{N}_0$ is called a labeling (or a valuation) of G. In [14], Rosa introduced a hierarchy of labelings. Let G be a graph with n edges and no isolated vertices and let f be a labeling of G. Let $f(V(G))=\{f(u):u\in V(G)\}$. Define a function $\bar{f}:E(G)\to\mathbb{Z}^+$ by $\bar{f}(e)=|f(u)-f(v)|$, where $e=\{u,v\}\in E(G)$. We will refer to $\bar{f}(e)$ as the label of e. Let $\bar{f}(E(G))=\{\bar{f}(e):e\in E(G)\}$. Consider the following conditions:

- ($\ell 1$) $f(V(G)) \subseteq [0, 2n],$
- ($\ell 2$) $f(V(G)) \subseteq [0, n],$
- (13) $\bar{f}(E(G)) = \{x_1, x_2, \dots, x_n\}$, where for each $i \in [1, n]$ either $x_i = i$ or $x_i = 2n + 1 i$,
- ($\ell 4$) $\tilde{f}(E(G)) = [1, n].$

If in addition G is bipartite with vertex bipartition $\{A, B\}$, consider also

- (15) for each $\{a, b\} \in E(G)$ with $a \in A$ and $b \in B$, we have f(a) < f(b),
- (16) there exists an integer λ such that $f(a) \leq \lambda$ for all $a \in A$ and $f(b) > \lambda$ for all $b \in B$.

Then a labeling satisfying the conditions:

- $(\ell 1), (\ell 3)$ is called a ρ -labeling;
- $(\ell 1), (\ell 4)$ is called a σ -labeling;
- $(\ell 2), (\ell 4)$ is called a β -labeling.

A β -labeling is necessarily a σ -labeling which in turn is a ρ -labeling. Suppose G is bipartite. If a ρ -, σ -, or β -labeling of G satisfies condition (ℓ 5), then the labeling is *ordered* and is denoted by ρ^+ , σ^+ , or β^+ , respectively. If in addition (ℓ 6) is satisfied, the labeling is *uniformly ordered* and is denoted by ρ^{++} , σ^{++} , or β^{++} , respectively.

A β -labeling is better known as a graceful labeling and a uniformly ordered β -labeling is an α -labeling as introduced in [14]. Labelings of the

types above are called *Rosa-type labelings* because of Rosa's original article [14] on the topic (see [10] for a comprehensive survey of Rosa-type labelings). A dynamic survey on general graph labelings is maintained by Gallian [11].

Labelings are critical to the study of cyclic graph decompositions as seen in the following two results from [14] and [9], respectively.

Theorem 1. Let G be a graph with n edges. There exists a purely cyclic G-decomposition of K_{2n+1} if and only if G has a ρ -labeling.

Theorem 2. Let G be a graph with n edges that admits a ρ^+ -labeling. Then there exists a cyclic G-decomposition of K_{2nx+1} for all positive integers x.

2 d-modular labelings and decompositions of $K_{c\times dt}$

For positive integers c and d, let $K_{c\times d}$ denote the complete multipartite graph with c parts, each containing d vertices. Note that $K_{c\times d}$ has cd vertices and $\binom{c}{2}d^2$ edges. We can consider $K_{c\times d}$ as a subgraph of the complete graph K_{cd} , with $V(K_{c\times d}) = \mathbb{Z}_{cd}$ and $E(K_{c\times d}) = \{\{u,v\}: u,v\in \mathbb{Z}_{cd}, u\not\equiv v \pmod{c}\}$, that is, the c parts of $K_{c\times d}$ are the congruence classes of \mathbb{Z}_{cd} modulo c. Note that $K_{c\times d}$ has precisely the edges of K_{cd} whose lengths are not multiples of c.

Let G be a graph and let $\{G_1, G_2, \ldots, G_t\}$ be a G-decomposition of $K_{c \times d}$ (with $V(K_{c \times d}) = \mathbb{Z}_{cd}$ as defined above). If clicking permutes the graphs in the decomposition, then we say that it is a cyclic G-decomposition of $K_{c \times d}$, and if clicking G_1 cd-1 times produces each graph in the decomposition exactly once, then we say the decomposition is purely cyclic. In the latter case if G has n edges, we must have $\binom{c}{2}d^2 = ncd$, and so c = 2n/d + 1.

Suppose that G is a graph with n edges and d is a positive integer such that d divides 2n. Set c = 2n/d + 1, so that cd = 2n + d. By a d-modular ρ -labeling of G we mean a one-to-one function $f: V(G) \to [0, cd - 1]$ such that

$$\left\{\min\left\{|f(u)-f(v)|,cd-|f(u)-f(v)|\right\}\colon\{u,v\}\in E(G)\right\}=\left[1,\lfloor\frac{cd}{2}\rfloor\right]\backslash c\mathbb{Z}.$$

In other words, a d-modular ρ -labeling of a graph with n edges has every edge length in K_{2n+d} exactly once except for any multiples of 2n/d+1.

Figure 1 shows an example of a 3-modular ρ -labeling of a 6-cycle. As a subgraph of K_{15} , the edge length 5 is missing. Thus this C_6 has one edge of each length in $K_{5\times3}$ and clicking it 14 times would produce a purely cyclic C_6 -decomposition of $K_{5\times3}$. Thus from the definition of d-modular ρ -labelings, it is straightforward to see that the following holds.

Theorem 3. If the graph G with n edges admits a d-modular ρ -labeling and c = 2n/d + 1, then $K_{c \times d}$ has a purely cyclic G-decomposition.

We observe that a ρ -labeling of G is necessarily a 1-modular ρ -labeling. Moreover, a σ -labeling of G is necessarily a 2-modular ρ -labeling. We also note the following.

Theorem 4. Let G be a bipartite graph with n edges. If G admits a ρ^+ -labeling, then G admits a 2n-modular ρ -labeling.

Proof. Let $\{A, B\}$ be a bipartition of V(G) and let f be a ρ^+ -labeling of G such that f(a) < f(b) for every $\{a, b\} \in E(G)$ with $a \in A$ and $b \in B$. Define a labeling $g \colon V(G) \to [0, 4n-1]$ by g(a) = 2f(a) for $a \in A$ and g(b) = 2f(b) - 1 for $b \in B$. It is easy to verify that g is a 2n-modular ρ -labeling of G.

Next we note that if every vertex of a graph G has even degree, then in a d-modular labeling of G, the number of edges with an odd label must be even. This is known as the parity condition.

Lemma 5. Let G be a graph with all even degrees and let f be a d-modular labeling of G. Let $O = \{e \in E(G) : \overline{f}(e) \text{ is odd}\}$. Then |O| is even.

Proof. For $e = \{u, v\} \in E(G)$, either $\bar{f}(e) = f(u) - f(v)$ or $\bar{f}(e) = f(v) - f(u)$. Let $S = \sum_{e \in E(G)} \bar{f}(e)$. Let $v \in V(G)$. Since $\deg(v)$ is even, the sum of the number of occurrences of f(v) and of -f(v) in S is even. Therefore S is even and hence |O| must be even.

The concept of a d-modular ρ -labeling relates very closely to the concepts of difference families and difference matrices developed by Buratti and several co-authors over the last several years. See for example, Buratti [6], Buratti and Gionfriddo [7], and Buratti and Pasotti [8]. Another related concept is that of a d-graceful labeling as introduced by Pasotti in [13]. Rather than define these additional concepts here, we state a powerful result on d-modular ρ -labelings that can be obtained from the main result on graph decompositions with the use of difference matrices in [8].

Theorem 6. If a z-partite graph G with n edges has a d-modular ρ -labeling and c = 2n/d+1, then $K_{c \times td}$ has a cyclic G-decomposition for every positive integer t such that $\gcd(t, (z-1)!) = 1$.

Thus if G is bipartite, then we have the following corollary to Theorem 6.

Corollary 7. If a bipartite graph G with n edges has a d-modular ρ -labeling and c = 2n/d+1, then $K_{c \times td}$ has a cyclic G-decomposition for every positive integer t.

We illustrate how the result in Corollary 7 works. Let $\{A,B\}$ be a bipartition of V(G) and let f be a d-modular ρ -labeling of G. Let $A=\{u_1,u_2,\ldots,u_r\}$ and $B=\{v_1,v_2,\ldots,v_s\}$. Let x be a positive integer. For $1\leq i\leq x$, let G_i be a copy of G with bipartition (A,B_i) where $B_i=\{v_{i,1},v_{i,2},\ldots,v_{i,s}\}$ and $v_{i,j}$ corresponds to v_j in B. Let $G(x)=G_1\cup G_2\cup\ldots\cup G_x$. Thus G(x) is bipartite with bipartition $\{A,B_1\cup B_2\cup\ldots\cup B_x\}$. Define a labeling f' of G(x) as follows: f'(a)=f(a) for each $a\in A$ and $f'(v_{i,j})=f(v_j)+(i-1)(2n+d)$ for $1\leq i\leq x$ and $1\leq j\leq s$. It is easy to see that f' is a d-modular ρ -labeling of G(x) and thus Theorem 3 applies.

Figure 1 shows a 3-modular ρ -labeling of C_6 and the three starters for a cyclic C_6 -decomposition of $K_{5\times 9}$ that can be obtained from that 3-modular ρ -labeling of C_6 .

Figure 1: A 3-modular ρ -labeling of C_6 and three starters for a cyclic C_6 -decomposition of $K_{5\times 9}$.

In this article, we investigate the existence of d-modular ρ -labelings for the graph G consisting of the vertex-disjoint union of two even cycles. In light of Corollary 7, these labelings lead to cyclic G-decompositions of various infinite classes of complete multipartite graphs. In [13], Pasotti produces labelings of C_{4k} that lead to cyclic C_{4k} -decompositions of $K_{(2k+1)\times 4n}$ and of $K_{(k+1)\times 8n}$ for all positive integers k and n. She also produces labelings that lead to cyclic C_{2k} -decompositions of $K_{(k+1)\times 4n}$ for all odd integers $k \geq 1$ and all positive integers n. In [3], Benini and Pasotti refine the results from [13] to produce labelings of C_{4k} that yield cyclic C_{4k} -decompositions of $K_{(\frac{4k}{L}+1)\times 2dn}$ for any positive integers k,n and any positive divisor d of 4k. Numerous other authors have studied decompositions (not necessarily cyclic ones) of complete multipartite graphs into cycles. Particular focus has been placed on C_3 -decompositions of complete multipartite graphs. Such decompositions fall under the umbrella of the study of group divisible designs (see [12] for a summary). The problem of C_{2k} -decompositions of the complete bipartite graph $K_{m,n}$ was settled completely by Sotteau in |15|.

3 Additional Notation

We denote the directed path with vertices x_0, x_1, \ldots, x_k , where x_i is adjacent to $x_{i+1}, 0 \le i \le k-1$, by (x_0, x_1, \ldots, x_k) . The first vertex of this path is x_0 , the second vertex is x_1 , and the last vertex is x_k . If x_0, x_1, \ldots, x_k , are distinct vertices, then the path $(x_0, x_1, \ldots, x_k, x_0)$ is necessarily a cycle on k+1 vertices. If $G_1 = (x_0, x_1, \ldots, x_j)$ and $G_2 = (y_0, y_1, \ldots, y_k)$ are directed paths with $x_j = y_0$, then by $G_1 + G_2$ we mean the path $(x_0, x_1, \ldots, x_j, y_1, y_2, \ldots, y_k)$.

Let P(k) be the path with k edges and k+1 vertices $0,1,\ldots,k$ given by $(0,k,1,k-1,2,k-2,\ldots,\lceil k/2\rceil)$. Note that the set of vertices of this graph is $A\cup B$, where $A=[0,\lfloor k/2\rfloor]$, $B=[\lfloor k/2\rfloor+1,k]$, and every edge joins a vertex of A to one of B. Furthermore, the set of labels of the edges of P(k) is [1,k].

Now let a and b be nonnegative integers with $a \leq b$ and let us add a to all the vertices of A and b to all the vertices of B. We will denote the resulting graph by P(a,b,k). Note that this graph has the following properties.

- (P1) P(a, b, k) is a path with first vertex a and second vertex b + k. Its last vertex is a + k/2 if k is even and b + (k+1)/2 if k is odd.
- (P2) Each edge of P(a, b, k) joins a vertex of $A' = [a, \lfloor k/2 \rfloor + a]$ to a larger vertex of $B' = \lfloor \lfloor k/2 \rfloor + 1 + b, k + b \rfloor$.
- (P3) The set of edge labels of P(a,b,k) is [b-a+1,b-a+k].

Now consider the directed path Q(k) obtained from P(k) replacing each vertex i with k-i. The new graph is the path $(k,0,k-1,1,\ldots,k-\lfloor k/2\rfloor)$. The set of vertices of Q(k) is $A'' \cup B''$, where $A'' = k-B = [0,k-\lfloor k/2\rfloor-1]$ and $B'' = k-A = \lfloor k-\lfloor k/2\rfloor,k \rfloor$, and every edge joins a vertex of A'' to one of B''. The set of edge labels is still [1,k]. The last vertex of Q(k) is $k/2 \in B''$ if k is even and $(k-1)/2 \in A''$ if k is odd.

We add a to the vertices of A'' and b to vertices of B'', where a and b are integers, $0 \le a \le b$. This graph is $(k+b, a, k+b-1, a+1, \ldots)$ which we will denote by Q(a, b, k). Note that this graph has the following properties.

- (Q1) Q(a, b, k) is a path with first vertex k + b. Its last vertex is b + k/2 if k is even and a + (k 1)/2 if k is odd.
- (Q2) Each edge of Q(a, b, k) joins a vertex of $A' = [a, a + k \lfloor k/2 \rfloor 1]$ to a larger vertex of $B' = [b + k \lfloor k/2 \rfloor, b + k]$.
- (Q3) The set of edge labels of Q(a, b, k) is [b-a+1, b-a+k].

Figure 2: Examples of the path notations with an even number of edges.

4 Main Results

Lemma 8. A d-modular ρ -labeling of $C_{4r} \cup C_{4s}$ exists for $1 \le r \le s$ and $d \in \{1, 2, 4, 8, r + s, 2(r + s), 4(r + s), 8(r + s)\}.$

Proof. Let $G = C_{4r} \cup C_{4s}$ where $r, s \ge 1$. The cases d = 1, d = 2, and d = 8(r+s) can be obtained from the fact that such a G necessarily admits an α -labeling (see [1]).

Case 1: d = 4.

Let c = 2(4r+4s)/4+1, so the complete multipartite graph we are working in is $K_{c\times d} = K_{(2r+2s+1)\times 4}$. Let $C_{4r} = G_1 + G_2 + (2r-1, 4r+4s+1)$ and $C_{4s} = G_3 + G_4 + (4r+6s+1, 6r+8s+3)$ where

$$\begin{split} G_1 &= Q(0,2r+4s+2,2r-1),\\ G_2 &= P(r-1,r-1,2r),\\ G_3 &= Q(4r+4s+2,6r+6s+4,2s-1),\\ G_4 &= P(4r+5s+1,6r+5s+1,2s). \end{split}$$

First, we show that $G_1+G_2+(2r-1,4r+4s+1)$ is a cycle of length 4r and $G_3+G_4+(4r+6s+1,6r+8s+3)$ is a cycle of length 4s. Note that by (Q1) and (P1), the first vertex of G_1 is 4r+4s+1, and the last is r-1; the first vertex of G_2 is r-1, and the last is 2r-1; the first vertex of G_3 is 6r+8s+3, and the last is 4r+5s+1; and the first vertex of G_4 is 4r+5s+1, and the last is 4r+6s+1. For $1 \le i \le 4$, let A_i and B_i denote the sets labeled A' and B' in (Q2) and (P2) corresponding to the path G_i . Then using (Q2) and (P2), we compute

$$A_1 = [0, r-1],$$
 $B_1 = [3r+4s+2, 4r+4s+1],$ $A_2 = [r-1, 2r-1],$ $B_2 = [2r, 3r-1],$ $B_3 = [6r+7s+4, 6r+8s+3],$ $A_4 = [4r+5s+1, 4r+6s+1],$ $B_4 = [6r+6s+2, 6r+7s+1].$

Thus, $A_1 \leq A_2 < B_2 < B_1 < A_3 \leq A_4 < B_4 < B_3$. Note that $V(G_1) \cap V(G_2) = \{r-1\}$ and $V(G_3) \cap V(G_4) = \{4r+5s+1\}$; otherwise, G_i and

 G_j are vertex-disjoint for $i \neq j$. Therefore, $G_1 + G_2 + (2r - 1, 4r + 4s + 1)$ is a cycle of length 4r and $G_3 + G_4 + (4r + 6s + 1, 6r + 8s + 3)$ is a cycle of length 4s.

Next, let E_i denote the set of edge labels in G_i for $1 \le i \le 4$. By (Q3) and (P3), we have edge labels

$$E_1 = [2r + 4s + 3, 4r + 4s + 1],$$
 $E_2 = [1, 2r],$ $E_3 = [2r + 2s + 3, 2r + 4s + 1],$ $E_4 = [2r + 1, 2r + 2s].$

Moreover, the path (2r-1,4r+4s+1) consists of an edge with label 2r+4s+2, and the path (4r+6s+1,6r+8s+3) consists of an edge with label 2r+2s+2. Thus, the edge set of G has one edge of each label i where $1 \le i \le 4r+4s+1$ except 2r+2s+1. That is, the set of edge labels is $[1, \lfloor cd/2 \rfloor] \setminus c\mathbb{Z}$. Therefore, we have a 4-modular ρ -labeling of G.

Case 2: d = 8.

Let c = 2(4r+4s)/8+1, so the complete multipartite graph we are working in is $K_{c\times d} = K_{(r+s+1)\times 8}$. Without loss of generality, we can assume that $r \leq s$.

Case 2.1: r + s is even.

Let
$$C_{4r} = G_1 + G_2 + (2r - 1, 4r + 4s + 3)$$
 and $C_{4s} = G_3 + G_4 + G_5 + G_6 + (4r + 6s + 4, 6r + 8s + 7)$ where

$$G_{1} = Q(0, 2r + 4s + 4, 2r - 1),$$

$$G_{2} = P(r - 1, r - 1, 2r),$$

$$G_{3} = Q(4r + 4s + 4, 7r + 7s + 7, s - r),$$

$$G_{4} = Q(\frac{r+s}{2} + 3r + 4s + 5, \frac{r+s}{2} + 5r + 6s + 8, r + s - 1),$$

$$G_{5} = P(4r + 5s + 4, 5r + 6s + 5, r + s),$$

$$G_{6} = P(\frac{r+s}{2} + 4r + 5s + 4, \frac{r+s}{2} + 6r + 5s + 4, s - r).$$

If we continue as in the proof for Case 1, we can see that we have an 8-modular ρ -labeling of G.

Case 2.2: r + s is odd.

Let
$$C_{4r} = G_1 + G_2 + (2r - 1, 4r + 4s + 3)$$
 and $C_{4s} = G_3 + G_4 + G_5 + G_6 + (4r + 6s + 4, 6r + 8s + 7)$ where

$$\begin{split} G_1 &= Q(0,2r+4s+4,2r-1),\\ G_2 &= P(r-1,r-1,2r),\\ G_3 &= Q(4r+4s+4,7r+7s+7,s-r),\\ G_4 &= P(\frac{r+s-1}{2}+3r+4s+4,\frac{r+s-1}{2}+5r+6s+7,r+s-1),\\ G_5 &= P(4r+5s+3,5r+6s+4,r+s),\\ G_6 &= Q(\frac{r+s-1}{2}+4r+5s+5,\frac{r+s-1}{2}+6r+5s+5,s-r). \end{split}$$

Case 3: d = r + s.

Let c = 2(4r + 4s)/(r + s) + 1, so the complete multipartite graph we are working in is $K_{c\times d} = K_{9\times (r+s)}$.

Case 3.1: $r \equiv s \equiv 0 \pmod{4}$.

Let $C_{4r} = G_1 + G_2 + (9 \cdot \frac{r}{4} - 2, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 1)$ and $C_{4s} = G_3 + G_4 + (9 \cdot \frac{r}{2} + 27 \cdot \frac{s}{4} - 2, 27 \cdot \frac{r}{4} + 9s - 1)$ where

$$\begin{split} G_1 &= \sum_{i=1}^{\frac{r}{4}-1} \left(Q(5i-5,9 \cdot \frac{r}{2}+9 \cdot \frac{s}{2}-4i-5,8) \right) \\ &+ Q(5 \cdot \frac{r}{4}-5,7 \cdot \frac{r}{2}+9 \cdot \frac{s}{2}-4,7), \\ G_2 &= \sum_{i=1}^{\frac{r}{4}} \left(P(5 \cdot \frac{r}{4}+4i-6,7 \cdot \frac{r}{2}-5i-6,8) \right), \\ G_3 &= \sum_{i=1}^{\frac{r}{4}-1} \left(Q(9 \cdot \frac{r}{2}+9 \cdot \frac{s}{2}+5i-5,27 \cdot \frac{r}{4}+9s-4i-5,8) \right) \\ &+ Q(9 \cdot \frac{r}{2}+23 \cdot \frac{s}{4}-5,27 \cdot \frac{r}{4}+8s-4,7), \\ G_4 &= \sum_{i=1}^{\frac{r}{4}} \left(P(9 \cdot \frac{r}{2}+23 \cdot \frac{s}{4}+4i-6,27 \cdot \frac{r}{4}+8s-5i-6,8) \right). \end{split}$$

First, we show that $G_1+G_2+(9\cdot\frac{r}{4}-2,9\cdot\frac{r}{2}+9\cdot\frac{s}{2}-1)$ is a cycle of length 4r and $G_3+G_4+(9\cdot\frac{r}{2}+27\cdot\frac{s}{4}-2,27\cdot\frac{r}{4}+9s-1)$ is a cycle of length 4s. Note that by (Q1) and (P1), the first vertex of G_1 is $9\cdot\frac{r}{2}+9\cdot\frac{s}{2}-1$, and the last is $5\cdot\frac{r}{4}-2$; the first vertex of G_2 is $5\cdot\frac{r}{4}-2$, and the last is $9\cdot\frac{r}{4}-2$; the first vertex of G_3 is $27\cdot\frac{r}{4}+9s-1$, and the last is $9\cdot\frac{r}{2}+23\cdot\frac{s}{4}-2$; and the first vertex of G_4 is $9\cdot\frac{r}{2}+23\cdot\frac{s}{4}-2$, and the last is $9\cdot\frac{r}{2}+27\cdot\frac{s}{4}-2$. For $1\leq i\leq 4$, let A_i and B_i denote the sets labeled A' and B' in (Q2) and

(P2) corresponding to the path G_i . Then using (Q2) and (P2), we compute

$$\begin{split} A_1 &= \bigcup_{i=1}^{\frac{r}{4}-1} \left([5i-5,5i-2] \right) \cup [5 \cdot \frac{r}{4} - 5,5 \cdot \frac{r}{4} - 2] \subseteq [0,5 \cdot \frac{r}{4} - 2], \\ B_1 &= \bigcup_{i=1}^{\frac{r}{4}-1} \left([9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 4i - 1,9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 4i + 3] \right) \\ & \cup [7 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2},7 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} + 3] \\ &= [7 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2},9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 1], \\ A_2 &= \bigcup_{i=1}^{\frac{r}{4}} \left([5 \cdot \frac{r}{4} + 4i - 6,5 \cdot \frac{r}{4} + 4i - 2] \right) = [5 \cdot \frac{r}{4} - 2,9 \cdot \frac{r}{4} - 2], \\ B_2 &= \bigcup_{i=1}^{\frac{r}{4}} \left([7 \cdot \frac{r}{2} - 5i - 1,7 \cdot \frac{r}{2} - 5i + 2] \right) \subseteq [9 \cdot \frac{r}{4} - 1,7 \cdot \frac{r}{2} - 3], \\ A_3 &= \bigcup_{i=1}^{\frac{s}{4}-1} \left([9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} + 5i - 5,9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} + 5i - 2] \right) \\ & \cup [9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} - 5,9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} - 2] \\ &\subseteq [9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2},9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} - 2], \\ B_3 &= \bigcup_{i=1}^{\frac{s}{4}-1} \left([27 \cdot \frac{r}{4} + 9s - 4i - 1,27 \cdot \frac{r}{4} + 9s - 4i + 3] \right) \\ & \cup [27 \cdot \frac{r}{4} + 8s,27 \cdot \frac{r}{4} + 8s + 3] \\ &= [27 \cdot \frac{r}{4} + 8s,27 \cdot \frac{r}{4} + 9s - 1], \\ A_4 &= \bigcup_{i=1}^{\frac{s}{4}} \left([9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} + 4i - 6,9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} + 4i - 2] \right) \\ &= [9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} - 2,9 \cdot \frac{r}{2} + 27 \cdot \frac{s}{4} - 2], \\ B_4 &= \bigcup_{i=1}^{\frac{s}{4}} \left([27 \cdot \frac{r}{4} + 8s - 5i - 1,27 \cdot \frac{r}{4} + 8s - 5i + 2] \right) \\ &\subseteq [27 \cdot \frac{r}{4} + 27 \cdot \frac{s}{4} - 1,27 \cdot \frac{r}{4} + 8s - 3]. \end{split}$$

Thus, $A_1 \leq A_2 < B_2 < B_1 < A_3 \leq A_4 < B_4 < B_3$. Note that $V(G_1) \cap V(G_2) = \{5 \cdot \frac{r}{4} - 2\}$ and $V(G_3) \cap V(G_4) = \{9 \cdot \frac{r}{2} + 23 \cdot \frac{s}{4} - 2\}$; otherwise, G_i and G_j are vertex-disjoint for $i \neq j$. Therefore, $G_1 + G_2 + (9 \cdot \frac{r}{4} - 2, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 1)$ is a cycle of length 4r and $G_3 + G_4 + (9 \cdot \frac{r}{2} + 27 \cdot \frac{s}{4} - 2, 27 \cdot \frac{r}{4} + 9s - 1)$ is a cycle of length 4s.

Next, let E_i denote the set of edge labels in G_i for $1 \le i \le 4$. By (Q3)

and (P3), we have edge labels

$$\begin{split} E_1 &= \bigcup_{i=1}^{\frac{r}{4}-1} \left([9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 9i + 1, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 9i + 8] \right) \\ & \cup [9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} + 2, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} + 8] \\ &= [9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} + 2, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 1] \\ & \quad \setminus \{9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} + 9, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} + 18, \dots, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 9\}, \\ E_2 &= \bigcup_{i=1}^{\frac{r}{4}} \left([9 \cdot \frac{r}{4} - 9i + 1, 9 \cdot \frac{r}{4} - 9i + 8] \right) \\ &= [1, 9 \cdot \frac{r}{4} - 1] \setminus \{9, 18, \dots, 9 \cdot \frac{r}{4} - 9\}, \\ E_3 &= \bigcup_{i=1}^{\frac{s}{4}-1} \left([9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} - 9i + 1, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} - 9i + 8] \right) \\ & \quad \cup [9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} + 2, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} + 8] \\ &= [9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} + 2, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} - 1] \\ & \quad \setminus \{9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} + 9, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} + 18, \dots, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} - 9\}, \\ E_4 &= \bigcup_{i=1}^{\frac{s}{4}} \left([9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} - 9i + 1, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} - 9i + 8] \right) \\ &= [9 \cdot \frac{r}{4} + 1, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} - 1] \\ & \quad \setminus \{9 \cdot \frac{r}{4} + 9, 9 \cdot \frac{r}{4} + 18, \dots, 9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} - 9\}. \end{split}$$

Moreover, the path $(9 \cdot \frac{r}{4} - 2, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 1)$ consists of an edge with label $9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{2} + 1$, and the path $(9 \cdot \frac{r}{2} + 27 \cdot \frac{s}{4} - 2, 27 \cdot \frac{r}{4} + 9s - 1)$ consists of the edge with label $9 \cdot \frac{r}{4} + 9 \cdot \frac{s}{4} + 1$. Thus, the edge set of G has one edge of each label i, where $1 \le i \le 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 1$ except $9, 18, \ldots, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s}{2} - 9$. That is, the set of edge labels is $[1, \lfloor cd/2 \rfloor] \setminus c\mathbb{Z}$. Therefore, we have an (r+s)-modular ρ -labeling of G.

Case 3.2: $r \equiv 0$ and $s \equiv 1 \pmod{4}$.

If s=1, let $C_{4s}=(27\cdot\frac{r}{4}+9,9\cdot\frac{r}{2}+5,27\cdot\frac{r}{4}+7,9\cdot\frac{r}{2}+6,27\cdot\frac{r}{4}+9)$. Otherwise, let $C_{4r}=G_1+G_2+(9\cdot\frac{r}{4}-1,9\cdot\frac{r}{2}+9\cdot\frac{s-1}{2}+4)$ and $C_{4s}=G_3+(9\cdot\frac{r}{2}+23\cdot\frac{s-1}{4}+5,27\cdot\frac{r}{4}+8s-1,9\cdot\frac{r}{2}+23\cdot\frac{s-1}{4}+6)+G_4+(9\cdot\frac{r}{2}+27\cdot\frac{s-1}{4}+6,27\cdot\frac{r}{4}+9s)$ where

$$G_{1} = Q(0, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s-1}{2}, 4) + \sum_{i=1}^{\frac{r}{4}-1} (Q(5i-2, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s-1}{2} - 4i - 2, 8)) + Q(5 \cdot \frac{r}{4} - 2, 7 \cdot \frac{r}{2} + 9 \cdot \frac{s-1}{2} + 3, 3),$$

$$G_{2} = \sum_{i=1}^{\frac{r}{4}} (P(5 \cdot \frac{r}{4} + 4i - 5, 7 \cdot \frac{r}{2} - 5i - 5, 8)),$$

$$G_{3} = Q(9 \cdot \frac{r}{2} + 9 \cdot \frac{s-1}{2} + 5, 27 \cdot \frac{r}{4} + 9s - 4, 4) + \sum_{i=1}^{\frac{s-1}{4}-1} (Q(9 \cdot \frac{r}{2} + 9 \cdot \frac{s-1}{2} + 5i + 3, 27 \cdot \frac{r}{4} + 9s - 4i - 6, 8)) + Q(9 \cdot \frac{r}{2} + 23 \cdot \frac{s-1}{4} + 3, 27 \cdot \frac{r}{4} + 8s - 2, 5),$$

$$G_{4} = \sum_{i=1}^{\frac{s-1}{4}} (P(9 \cdot \frac{r}{2} + 23 \cdot \frac{s-1}{4} + 4i + 2, 27 \cdot \frac{r}{4} + 8s - 5i - 6, 8)).$$

If we continue as in the proof for Case 3.1, we can see that we have an (r+s)-modular ρ -labeling of G.

Case 3.3:
$$r \equiv 0$$
 and $s \equiv 2 \pmod{4}$.
Let $C_{4r} = G_1 + G_2 + (9 \cdot \frac{r}{4} - 2, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s-2}{2} + 8)$ and $C_{4s} = G_3 + G_4 + (9 \cdot \frac{r}{2} + 27 \cdot \frac{s-2}{4} + 12, 27 \cdot \frac{r}{4} + 9s - 1)$ where

$$\begin{split} G_1 &= \sum_{i=1}^{\frac{r}{4}-1} \left(Q(5i-5,9 \cdot \frac{r}{2}+9 \cdot \frac{s-2}{2}-4i+4,8) \right) \\ &\quad + Q(5 \cdot \frac{r}{4}-5,7 \cdot \frac{r}{2}+9 \cdot \frac{s-2}{2}+5,7), \\ G_2 &= \sum_{i=1}^{\frac{r}{4}} \left(P(5 \cdot \frac{r}{4}+4i-6,7 \cdot \frac{r}{2}-5i-6,8) \right), \\ G_3 &= \sum_{i=1}^{\frac{s-2}{4}} \left(Q(9 \cdot \frac{r}{2}+9 \cdot \frac{s-2}{2}+5i+4,27\frac{r}{4}+9s-4i-5,8) \right) \\ &\quad + Q(9 \cdot \frac{r}{2}+23 \cdot \frac{s-2}{4}+9,27 \cdot \frac{r}{4}+8s-2,3), \\ G_4 &= P(9 \cdot \frac{r}{2}+23 \cdot \frac{s-2}{4}+10,27 \cdot \frac{r}{4}+8s-6,4) \\ &\quad + \sum_{i=1}^{\frac{s-2}{4}} \left(P(9 \cdot \frac{r}{2}+23 \cdot \frac{s-2}{4}+4i+8,27 \cdot \frac{r}{4}+8s-5i-8,8) \right). \end{split}$$

Case 3.4: $r \equiv 0$ and $s \equiv 3 \pmod{4}$.

Let $C_{4r} = G_1 + G_2 + (9 \cdot \frac{r}{4} - 1, 9 \cdot \frac{r}{2} + 9 \cdot \frac{s-3}{2} + 13)$ and $C_{4s} = G_3 + (27 \cdot \frac{r}{4} + 8s + 1, 9 \cdot \frac{r}{2} + 23 \cdot \frac{s-3}{4} + 17) + G_4 + (9 \cdot \frac{r}{2} + 27 \cdot \frac{s-3}{4} + 20, 27 \cdot \frac{r}{4} + 9s)$ where

$$\begin{split} G_1 &= Q(0,9 \cdot \frac{r}{2} + 9 \cdot \frac{s-3}{2} + 9,4) \\ &\quad + \sum_{i=1}^{\frac{r}{4}-1} \left(Q(5i-2,9 \cdot \frac{r}{2} + 9 \cdot \frac{s-3}{2} - 4i + 7,8) \right) \\ &\quad + Q(5 \cdot \frac{r}{4} - 2,7 \cdot \frac{r}{2} + 9 \cdot \frac{s-3}{2} + 12,3), \\ G_2 &= \sum_{i=1}^{\frac{r}{4}} \left(P(5 \cdot \frac{r}{4} + 4i - 5,7 \cdot \frac{r}{2} - 5i - 5,8) \right), \\ G_3 &= Q(9 \cdot \frac{r}{2} + 9 \cdot \frac{s-3}{2} + 14,27 \cdot \frac{r}{4} + 9s - 4,4) \\ &\quad + \sum_{i=1}^{\frac{s-3}{4}} \left(Q(9 \cdot \frac{r}{2} + 9 \cdot \frac{s-3}{2} + 5i + 12,27 \cdot \frac{r}{4} + 9s - 4i - 6,8) \right), \\ G_4 &= P(9 \cdot \frac{r}{2} + 23 \cdot \frac{s-3}{4} + 17,27 \cdot \frac{r}{4} + 8s - 7,6) \\ &\quad + \sum_{i=1}^{\frac{s-3}{4}} \left(P(9 \cdot \frac{r}{2} + 23 \cdot \frac{s-3}{4} + 4i + 16,27 \cdot \frac{r}{4} + 8s - 5i - 8,8) \right). \end{split}$$

If we continue as in the proof for Case 3.1, we can see that we have an (r+s)-modular ρ -labeling of G.

Case 3.5:
$$r \equiv s \equiv 1 \pmod{4}$$
.

If s=1, let $C_{4s}=(27\cdot\frac{r-1}{4}+15,9\cdot\frac{r-1}{2}+9,27\cdot\frac{r-1}{4}+13,9\cdot\frac{r-1}{2}+10,27\cdot\frac{r-1}{4}+15)$. Otherwise, let $C_{4r}=G_1+(7\cdot\frac{r-1}{2}+9\cdot\frac{s-1}{2}+8,5\cdot\frac{r-1}{4},14\cdot\frac{r-1}{4}+2,5\cdot\frac{r-1}{4}+1)+G_2+(9\cdot\frac{r-1}{4}+1,9\cdot\frac{r-1}{2}+9\cdot\frac{s-1}{2}+8)$ and

$$\begin{split} C_{4s} &= G_3 + G_4 + \left(9 \cdot \frac{r-1}{2} + 27 \cdot \frac{s-1}{4} + 10, 27 \cdot \frac{r-1}{4} + 9s + 6\right) \text{ where} \\ G_1 &= \sum_{i=1}^{\frac{r-1}{4}} \left(Q(5i-5, 9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-1}{2} - 4i + 4, 8)\right), \\ G_2 &= \sum_{i=1}^{\frac{r-1}{4}} \left(P(5 \cdot \frac{r-1}{4} + 4i - 3, 7 \cdot \frac{r-1}{2} - 5i - 3, 8)\right), \\ G_3 &= Q(9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-1}{2} + 9, 27 \cdot \frac{r-1}{4} + 9s, 6) \\ &+ \sum_{i=1}^{\frac{s-1}{4}-1} \left(Q(9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-1}{2} + 5i + 8, 27 \cdot \frac{r-1}{4} + 9s - 4i - 1, 8)\right) \\ &+ Q(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-1}{4} + 8, 27 \cdot \frac{r-1}{4} + 8s + 5, 3), \\ G_4 &= P(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-1}{4} + 9, 27 \cdot \frac{r-1}{4} + 8s + 1, 4) \\ &+ \sum_{i=1}^{\frac{s-1}{4}-1} \left(P(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-1}{4} + 4i + 7, 27 \cdot \frac{r-1}{4} + 8s - 5i - 1, 8)\right) \\ &+ P(9 \cdot \frac{r-1}{2} + 27 \cdot \frac{s-1}{4} + 7, 27 \cdot \frac{r-1}{4} + 27 \cdot \frac{s-1}{4} + 9, 6). \end{split}$$

Case 3.6: $r \equiv 1$ and $s \equiv 2 \pmod{4}$.

If
$$r=1$$
, let $C_{4r}=(9\cdot\frac{s-2}{2}+13,0,2,1,9\cdot\frac{s-2}{2}+13).$ If $s=2$, let $C_{4s}=(27\cdot\frac{r-1}{4}+25,9\cdot\frac{r-1}{2}+14,27\cdot\frac{r-1}{4}+24,9\cdot\frac{r-1}{2}+16,27\cdot\frac{r-1}{4}+22,9\cdot\frac{r-1}{2}+17,27\cdot\frac{r-1}{4}+21,9\cdot\frac{r-1}{2}+18,27\cdot\frac{r-1}{4}+25).$ Otherwise, let $C_{4r}=G_1+(5\cdot\frac{r-1}{4},7\cdot\frac{r-1}{2}+2,5\cdot\frac{r-1}{4}+1)+G_2+(9\cdot\frac{r-1}{4}+1,9\cdot\frac{r-1}{2}+9\cdot\frac{s-2}{2}+13)$ and $C_{4s}=G_3+(27\cdot\frac{r-1}{4}+8s+8,9\cdot\frac{r-1}{2}+23\cdot\frac{s-2}{4}+16)+G_4+(9\cdot\frac{r-1}{2}+27\cdot\frac{s-2}{4}+18,27\cdot\frac{r-1}{4}+9s+7,9\cdot\frac{r-1}{2}+9\cdot\frac{s-2}{2}+14,27\cdot\frac{r-1}{4}+9s+6)$ where

$$\begin{split} G_1 &= Q(0,9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-2}{2} + 9,4) \\ &+ \sum_{i=1}^{\frac{r-1}{4}-1} \left(Q(5i-2,9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-2}{2} - 4i + 7,8) \right) \\ &+ Q(5 \cdot \frac{r-1}{4} - 2,7 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-2}{2} + 10,5), \\ G_2 &= \sum_{i=1}^{\frac{r-1}{4}} \left(P(5 \cdot \frac{r-1}{4} + 4i - 3,7 \cdot \frac{r-1}{2} - 5i - 3,8) \right), \\ G_3 &= \sum_{i=1}^{\frac{s-2}{4}} \left(Q(9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-2}{2} + 5i + 11,27 \cdot \frac{r-1}{4} + 9s - 4i + 2,8) \right), \\ G_4 &= P(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-2}{4} + 16,27 \cdot \frac{r-1}{4} + 8s,6) \\ &+ \sum_{i=1}^{\frac{s-2}{4}-1} \left(P(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-2}{4} + 4i + 15,27 \cdot \frac{r-1}{4} + 8s - 5i - 1,8) \right) \\ &+ P(9 \cdot \frac{r-1}{2} + 27 \cdot \frac{s-2}{4} + 15,27 \cdot \frac{r-1}{4} + 27 \cdot \frac{s-2}{4} + 17,6). \end{split}$$

If we continue as in the proof for Case 3.1, we can see that we have an (r+s)-modular ρ -labeling of G.

Case 3.7:
$$r \equiv 1$$
 and $s \equiv 3 \pmod 4$.
If $s = 3$, let $C_{4s} = (27 \cdot \frac{r-1}{4} + 33, 9 \cdot \frac{r-1}{2} + 18, 27 \cdot \frac{r-1}{4} + 32, 9 \cdot \frac{r-1}{2} + 19, 27 \cdot \frac{r-1}{4} + 31, 9 \cdot \frac{r-1}{2} + 20, 27 \cdot \frac{r-1}{4} + 28, 9 \cdot \frac{r-1}{2} + 21, 27 \cdot \frac{r-1}{4} + 27, 9 \cdot \frac{r-1}{2} + 22, 27 \cdot \frac{r-1}{4} + 26, 9 \cdot \frac{r-1}{2} + 23, 27 \cdot \frac{r-1}{4} + 33$. Otherwise, let $C_{4r} = C_1 + (7 \cdot \frac{r-1}{2} + 9 \cdot \frac{r-1}{2} + 9 \cdot \frac{r-1}{2} + 27 \cdot \frac{r-1}{2} + 27$

$$\begin{array}{l} \frac{s-3}{2}+17, 5 \cdot \frac{r-1}{4}, 7 \cdot \frac{r-1}{2}+2, 5 \cdot \frac{r-1}{4}+1) + G_2 + \left(9 \cdot \frac{r-1}{4}+1, 9 \cdot \frac{r-1}{2}+9 \cdot \frac{s-3}{2}+17\right) \\ \text{and } C_{4s} = G_3 + G_4 + \left(9 \cdot \frac{r-1}{2}+27 \cdot \frac{s-3}{4}+23, 27 \cdot \frac{r-1}{4}+9s+6\right) \text{ where} \end{array}$$

$$G_{1} = \sum_{i=1}^{\frac{r-1}{4}} \left(Q(5i - 5, 9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-3}{2} - 4i + 13, 8) \right),$$

$$G_{2} = \sum_{i=1}^{\frac{r-1}{4}} \left(P(5 \cdot \frac{r-1}{4} + 4i - 3, 7 \cdot \frac{r-1}{2} - 5i - 3, 8) \right),$$

$$G_{3} = Q(9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-3}{2} + 18, 27 \cdot \frac{r-1}{4} + 9s, 6)$$

$$+ \sum_{i=1}^{\frac{s-3}{4} - 1} \left(Q(9 \cdot \frac{r-1}{2} + 9 \cdot \frac{s-3}{2} + 5i + 17, 27 \cdot \frac{r-1}{4} + 9s - 4i - 1, 8) \right)$$

$$+ Q(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-3}{4} + 17, 27 \cdot \frac{r-1}{4} + 8s + 3, 7),$$

$$G_4 = \sum_{i=1}^{\frac{s-3}{4}} \left(P(9 \cdot \frac{r-1}{2} + 23 \cdot \frac{s-3}{4} + 4i + 16, 27 \cdot \frac{r-1}{4} + 8s - 5i + 1, 8) \right) + P(9 \cdot \frac{r-1}{2} + 27 \cdot \frac{s-3}{4} + 20, 27 \cdot \frac{r-1}{2} + 27 \cdot \frac{s-3}{4} + 22, 6).$$

Case 3.8: $r \equiv s \equiv 2 \pmod{4}$.

If
$$s=2$$
, let $C_{4s}=(27\cdot\frac{r-2}{4}+31,9\cdot\frac{r-2}{2}+18,27\cdot\frac{r-2}{4}+30,9\cdot\frac{r-2}{2}+19,27\cdot\frac{r-2}{4}+27,9\cdot\frac{r-2}{2}+20,27\cdot\frac{r-2}{4}+26,9\cdot\frac{r-2}{2}+21,27\cdot\frac{r-2}{4}+31)$. Otherwise, let $C_{4r}=G_1+G_2+(9\cdot\frac{r-2}{4}+3,9\cdot\frac{r-2}{2}+9\cdot\frac{s-2}{2}+17)$ and $C_{4s}=G_3+G_4+(9\cdot\frac{r-2}{2}+27\cdot\frac{s-2}{4}+21,27\cdot\frac{r-2}{4}+9s+13)$ where

$$G_{1} = \sum_{i=1}^{\frac{r-2}{4}} \left(Q(5i - 5, 9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-2}{2} - 4i + 13, 8) \right)$$

$$+ Q(5 \cdot \frac{r-2}{4}, 7 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-2}{2} + 14, 3),$$

$$G_{2} = P(5 \cdot \frac{r-2}{4} + 1, 7 \cdot \frac{r-2}{2} + 1, 4)$$

$$+ \sum_{i=1}^{\frac{r-2}{4}} \left(P(5 \cdot \frac{r-2}{4} + 4i - 1, 7 \cdot \frac{r-2}{2} - 5i - 1, 8) \right),$$

$$G_{3} = Q(9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-2}{2} + 18, 27 \cdot \frac{r-2}{4} + 9s + 9, 4)$$

$$+ \sum_{i=1}^{\frac{s-2}{4} - 1} \left(Q(9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-2}{2} + 5i + 16, 27 \cdot \frac{r-2}{4} + 9s - 4i + 7, 8) \right)$$

$$+ Q(9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-2}{4} + 16, 27 \cdot \frac{r-2}{4} + 8s + 10, 7),$$

$$G_4 = \sum_{i=1}^{\frac{s-2}{4}} \left(P(9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-2}{4} + 4i + 15, 27 \cdot \frac{r-2}{4} + 8s - 5i + 8, 8) \right) + P(9\frac{r-2}{2} + 27 \cdot \frac{s-2}{4} + 15, 27 \cdot \frac{r-2}{4} + 27 \cdot \frac{r-2}{4} + 27, 4).$$

If we continue as in the proof for Case 3.1, we can see that we have an (r+s)-modular ρ -labeling of G.

Case 3.9:
$$r \equiv 2$$
 and $s \equiv 3 \pmod 4$.
If $r = 2$, let $C_{4r} = (9 \cdot \frac{s-3}{2} + 22, 0, 9 \cdot \frac{s-3}{2} + 21, 1, 5, 2, 4, 3, 9 \cdot \frac{s-3}{2} + 22)$.
Otherwise, let $C_{4r} = G_1 + G_2 + (9 \cdot \frac{r-2}{4} + 3, 9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-3}{2} + 22)$ and $C_{4s} = G_3 + (9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-3}{4} + 25, 27 \cdot \frac{r-2}{4} + 8s + 12, 9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-3}{4} + 25, 27 \cdot \frac{r-2}{4} + 8s + 12, 9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-3}{4} + 25, 27 \cdot \frac{r-2}{4} + 8s + 12, 9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-3}{4} + 25, 27 \cdot \frac{r-2}{4} + 8s + 12, 9 \cdot \frac{r-2}{4} + 25, 27 \cdot \frac{r-2}{4} + 8s + 12, 9 \cdot \frac{r-2}{4} + 25, 27 \cdot \frac{r-2}{4} + 8s + 12, 9 \cdot \frac{r-2}{4} + 25, 27 \cdot \frac{r-2}{4}$

$$\begin{aligned} 26) + G_4 + & \left(9 \cdot \frac{r-2}{2} + 27 \cdot \frac{s-3}{4} + 28, 27 \cdot \frac{r-2}{4} + 9s + 13\right) \text{ where} \\ G_1 &= Q(0, 9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-3}{2} + 18, 4) \\ &+ \sum_{i=1}^{\frac{r-2}{4} - 1} \left(Q(5i - 2, 9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-3}{2} - 4i + 16, 8)\right) \\ &+ Q(5 \cdot \frac{r-2}{4} - 2, 7 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-3}{2} + 17, 7), \\ G_2 &= P(5 \cdot \frac{r-2}{4} + 1, 7 \cdot \frac{r-2}{2} + 1, 4) \\ &+ \sum_{i=1}^{\frac{r-2}{4}} \left(P(5 \cdot \frac{r-2}{4} + 4i - 1, 7 \cdot \frac{r-2}{2} - 5i - 1, 8)\right), \\ G_3 &= \sum_{i=1}^{\frac{s-3}{4}} \left(Q(9 \cdot \frac{r-2}{2} + 9 \cdot \frac{s-3}{2} + 5i + 18, 27 \cdot \frac{r-2}{4} + 9s - 4i + 9, 8)\right) \\ &+ Q(9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-3}{4} + 23, 27 \cdot \frac{r-2}{4} + 8s + 11, 5), \\ G_4 &= \sum_{i=1}^{\frac{s-3}{4}} \left(P(9 \cdot \frac{r-2}{2} + 23 \cdot \frac{s-3}{4} + 4i + 22, 27 \cdot \frac{r-2}{4} + 8s - 5i + 7, 8)\right) \\ &+ P(9 \cdot \frac{r-2}{2} + 27 \cdot \frac{s-3}{4} + 26, 27 \cdot \frac{r-2}{4} + 27 \cdot \frac{s-3}{4} + 30, 4). \end{aligned}$$

Case 3.10: $r \equiv s \equiv 3 \pmod{4}$.

Let $C_{4r}=G_1+G_2+(9\cdot\frac{r-3}{4}+5,9\cdot\frac{r-3}{2}+9\cdot\frac{s-3}{2}+26)$ and $C_{4s}=G_3+G_4+(9\cdot\frac{r-3}{2}+27\cdot\frac{s-3}{4}+32,27\cdot\frac{r-3}{4}+27\cdot\frac{s-3}{4}+40,9\cdot\frac{r-3}{2}+27\cdot\frac{s-3}{4}+33,27\cdot\frac{r-3}{4}-9s+20,9\cdot\frac{r-3}{2}+9\cdot\frac{s-3}{2}+27,27\cdot\frac{r-3}{4}+9s+19)$ where

$$G_{1} = \sum_{i=1}^{\frac{r-3}{4}} \left(Q(5i-5,9 \cdot \frac{r-3}{2} + 9 \cdot \frac{s-3}{2} - 4i + 22,8) \right) \\ + Q(5 \cdot \frac{r-3}{4}, 7 \cdot \frac{r-3}{2} + 9 \cdot \frac{s-3}{2} + 21,5),$$

$$G_{2} = P(5 \cdot \frac{r-3}{4} + 2, 7 \cdot \frac{r-3}{2} + 2,6) \\ + \sum_{i=1}^{\frac{r-3}{4}} \left(P(5 \cdot \frac{r-3}{4} + 4i + 1, 7 \cdot \frac{r-3}{2} - 5i + 1,8) \right),$$

$$G_{3} = \sum_{i=1}^{\frac{s-3}{4}} \left(Q(9 \cdot \frac{r-3}{2} + 9 \cdot \frac{s-3}{2} + 5i + 24, 27 \cdot \frac{r-3}{4} + 9s - 4i + 15,8) \right) \\ + Q(9 \cdot \frac{r-3}{2} + 23 \cdot \frac{s-3}{4} + 29, 27 \cdot \frac{r-3}{4} + 8s + 19,3),$$

$$G_{4} = P(9 \cdot \frac{r-3}{2} + 23 \cdot \frac{s-3}{4} + 30, 27 \cdot \frac{r-3}{4} + 8s + 15,4) \\ + \sum_{i=1}^{\frac{s-3}{4}} \left(P(9 \cdot \frac{r-3}{2} + 23 \cdot \frac{s-3}{4} + 4i + 28, 27 \cdot \frac{r-3}{4} + 8s - 5i + 13,8) \right).$$

If we continue as in the proof for Case 3.1, we can see that we have an (r+s)-modular ρ -labeling of G.

Case 4: d = 2(r + s).

Let c = 2(4r+4s)/(2r+2s)+1, so the complete multipartite graph we are working in is $K_{c\times d} = K_{5\times (2r+2s)}$.

Case 4.1: r is odd, s is odd.

If
$$s = 1$$
, let $C_{4s} = (15 \cdot \frac{r-1}{2} + 17, 5r + 5, 15 \cdot \frac{r-1}{2} + 14, 5r + 6, 15 \cdot \frac{r-1}{2} + 17)$.

Otherwise, let $C_{4r}=G_1+(4r+5s,3\cdot\frac{r-1}{2},4r-2,3\cdot\frac{r-1}{2}+1)+G_2+(5\cdot\frac{r-1}{2}+1,5r+5s-1)$ and $C_{4s}=G_3+(15\cdot\frac{r-1}{2}+9s+9,5r+13\cdot\frac{s-1}{2}+4,15\cdot\frac{r-1}{2}+9s+8,5r+13\cdot\frac{s-1}{2}+5)+G_4+(5r+15\cdot\frac{s-1}{2}+5,15\cdot\frac{r-1}{2}+15\cdot\frac{s-1}{2}+14,5r+15\cdot\frac{s-1}{2}+6,15\cdot\frac{r-1}{2}+10s+7,5r+5s,15\cdot\frac{r-1}{2}+10s+6)$ where

$$\begin{split} G_1 &= \sum_{i=1}^{\frac{r-1}{2}} Q(3i-3,5r+5s-2i-3,4), \\ G_2 &= \sum_{i=1}^{\frac{r-1}{2}} P(3 \cdot \frac{r-1}{2} + 2i-1,4r-3i-5,4), \\ G_3 &= \sum_{i=1}^{\frac{s-1}{2}-1} Q(5r+5s+3i-1,15 \cdot \frac{r-1}{2} + 10s-2i+4,4), \\ G_4 &= \sum_{i=1}^{\frac{s-1}{2}} P(5r+13 \cdot \frac{s-1}{2} + 2i+3,15 \cdot \frac{r-1}{2} + 9s-3i+4,4). \end{split}$$

If we continue as in the proof for Case 3.1, we can see that we have a (2r+2s)-modular ρ -labeling of G.

Case 4.2: r is odd, s is even.

Let
$$C_{4r} = G_1 + (4r + 5s, 3 \cdot \frac{r-1}{2}, 4r - 2, 3 \cdot \frac{r-1}{2} + 1) + G_2 + (5 \cdot \frac{r-1}{2} + 1, 5r + 5s - 1)$$
 and $C_{4s} = G_3 + (15 \cdot \frac{r-1}{2} + 9s + 8, 5r + 13 \cdot \frac{s}{2} - 1, 15 \cdot \frac{r-1}{2} + 9s + 6, 5r + 13 \cdot \frac{s}{2}) + G_4 + (5r + 15 \cdot \frac{s}{2} - 2, 15 \cdot \frac{r-1}{2} + 15 \cdot \frac{s}{2} + 7, 5r + 15 \cdot \frac{s}{2} - 1, 15 \cdot \frac{r-1}{2} + 10s + 7, 5r + 5s, 15 \cdot \frac{r-1}{2} + 10s + 6)$ where

$$\begin{split} G_1 &= \sum_{i=1}^{\frac{r-1}{2}} Q(3i-3,5r+5s-2i-3,4), \\ G_2 &= \sum_{i=1}^{\frac{r-1}{2}} P(3 \cdot \frac{r-1}{2} + 2i-1,4r-3i-5,4), \\ G_3 &= \sum_{i=1}^{\frac{s}{2}-1} Q(5r+5s+3i-1,15 \cdot \frac{r-1}{2} + 10s-2i+4,4), \\ G_4 &= \sum_{i=1}^{\frac{s}{2}-1} P(5r+13 \cdot \frac{s}{2} + 2i-2,15 \cdot \frac{r-1}{2} + 9s-3i+3,4). \end{split}$$

If we continue as in the proof for Case 3.1, we can see that we have a (2r+2s)-modular ρ -labeling of G.

Case 4.3: r is even, s is odd.

Let
$$C_{4r} = G_1 + (4r + 5s + 1, 3 \cdot \frac{r}{2} - 3, 4r + 5s, 3 \cdot \frac{r}{2} - 2) + G_2 + (5 \cdot \frac{r}{2} - 2, 5r + 5s - 1)$$
 and $C_{4s} = G_3 + (15 \cdot \frac{r}{2} + 9s, 5r + 13 \cdot \frac{s - 1}{2} + 5, 15 \cdot \frac{r}{2} + 9s - 2, 5r + 13 \cdot \frac{s - 1}{2} + 6) + G_4 + (5r + 15 \cdot \frac{s - 1}{2} + 6, 15 \cdot \frac{r}{2} + 10s - 1)$ where

$$G_{1} = \sum_{i=1}^{\frac{r}{2}-1} Q(3i-3,5r+5s-2i-3,4),$$

$$G_{2} = \sum_{i=1}^{\frac{r}{2}} P(3 \cdot \frac{r}{2} + 2i-4,4r-3i-4,4),$$

$$G_{3} = \sum_{i=1}^{\frac{s-1}{2}} Q(5r+5s+3i-3,15 \cdot \frac{r}{2} + 10s-2i-3,4),$$

$$G_{4} = \sum_{i=1}^{\frac{s-1}{2}} P(5r+13 \cdot \frac{s-1}{2} + 2i+4,15 \cdot \frac{r}{2} + 9s-3i-5,4).$$

If we continue as in the proof for Case 3.1, we can see that we have a (2r+2s)-modular ρ -labeling of G.

Case 4.4: r is even, s is even.

Let $C_{4r} = G_1 + (4r + 5s + 1, 3 \cdot \frac{r}{2} - 3, 4r + 5s, 3 \cdot \frac{r}{2} - 2) + G_2 + (5 \cdot \frac{r}{2} - 2, 5r + 5s - 1)$ and $C_{4s} = G_3 + (15 \cdot \frac{r}{2} + 9s + 1, 5r + 13 \cdot \frac{s}{2} - 3, 15 \cdot \frac{r}{2} + 9s, 5r + 13 \cdot \frac{r}{2} - 2) + G_4 + (5r + 15 \cdot \frac{s}{2} - 2, 15 \cdot \frac{r}{2} + 10s - 1)$ where

$$\begin{split} G_1 &= \sum_{i=1}^{\frac{r}{2}-1} Q(3i-3,5r+5s-2i-3,4), \\ G_2 &= \sum_{i=1}^{\frac{r}{2}} P(3 \cdot \frac{r}{2} + 2i-4,4r-3i-4,4), \\ G_3 &= \sum_{i=1}^{\frac{s}{2}-1} Q(5r+5s+3i-3,15 \cdot \frac{r}{2} + 10s-2i-3,4), \\ G_4 &= \sum_{i=1}^{\frac{s}{2}} P(5r+13 \cdot \frac{s}{2} + 2i-4,15 \cdot \frac{r}{2} + 9s-3i-4,4). \end{split}$$

If we continue as in the proof for Case 3.1, we can see that we have a (2r+2s)-modular ρ -labeling of G.

Case 5: d = 4(r + s).

Let c = 2(4r+4s)/(4r+4s)+1, so the complete multipartite graph we are working in is $K_{c\times d} = K_{3\times (4r+4s)}$. Let $C_{4r} = G_1 + (5r+6s,2r-2)+G_2 + (3r-2,6r+6s-1)$ and $C_{4s} = G_3 + (9r+11s-1,6r+8s+1)+G_4 + (6r+9s,9r+12s-1)$ where

$$G_{1} = \sum_{i=1}^{r-1} Q(2i-2, 6r+6s-i-2, 2),$$

$$G_{2} = \sum_{i=1}^{r} P(2r-3+i, 5r-3-2i, 2),$$

$$G_{3} = \sum_{i=1}^{s} Q(6r+6s+2i-2, 9r+12s-i-2, 2),$$

$$G_{4} = \sum_{i=1}^{s-1} P(6r+8s+i, 9r+11s-2i-3, 2).$$

(In the case when r=1, the path G_1 is empty, and when s=1, the path G_4 is empty. However, this does not change the proof in any way.) If we continue as in the proof for Case 3.1, we can see that we have a (4r+4s)-modular ρ -labeling of G.

Theorem 9. Let $G = C_{4r} \cup C_{4s}$ and let n = 4r + 4s. Then there exists a cyclic G-decomposition of $K_{(2n+1)\times t}$, $K_{(n+1)\times 2t}$, $K_{(n/2+1)\times 4t}$, $K_{(n/4+1)\times 8t}$, $K_{9\times (n/4)t}$, $K_{5\times (n/2)t}$, $K_{3\times nt}$, and of $K_{2\times 2nt}$ for every positive integer t.

Lemma 10. A d-modular ρ -labeling of $C_{4r} \cup C_{4s+2}$ exists for $r, s \ge 1$ and $d \in \{1, 4, 2r + 2s + 1, 4(2r + 2s + 1)\}.$

Proof. Let $G = C_{4r} \cup C_{4s+2}$ where $r, s \ge 1$. The cases d = 1 and d = 4(2r + 2s + 1) can be obtained from the fact that such a G necessarily admits a ρ^+ -labeling (see [4]).

Case 1: d = 4.

Let c = 2(4r + 4s + 2)/4 + 1, so that the complete multipartite graph we are working in is $K_{c\times d} = K_{(2r+2s+2)\times 4}$.

Case 1.1: $r \leq s$.

Let $C_{4r} = G_1 + G_2 + (2r - 1, 4r)$ and $C_{4s+2} = G_3 + G_4 + G_5 + (4r + 2s + 2, 8r + 4s + 4)$ where

$$G_1 = Q(0, 2r + 1, 2r - 1),$$

$$G_2 = P(r - 1, r - 1, 2r),$$

$$G_3 = Q(4r + 1, 8r + 2s + 3, 2s + 1),$$

$$G_4 = P(4r + s + 1, 6r + 3s + 3, 2r - 1),$$

$$G_5 = Q(5r + s + 2, 9r + s + 2, 2s - 2r + 1).$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have a 4-modular ρ -labeling of G.

Case 1.2: r > s.

Let $C_{4r} = G_1 + G_2 + G_3 + (2r - 1, 4r + 2, 0)$ and $C_{4s+2} = G_4 + G_5 + (8r + 2s + 5, 4r + 2s + 4, 8r + 4s + 6)$ where

$$G_1 = P(0, 2r + 2s + 2, 2r - 2s - 2),$$

$$G_2 = P(r - s - 1, 3r - s + 2, 2s - 2),$$

$$G_3 = P(r - 2, r - 2, 2r + 2),$$

$$G_4 = Q(4r + 3, 8r + 2s + 5, 2s + 1),$$

$$G_5 = P(4r + s + 3, 8r + s + 5, 2s - 1).$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have a 4-modular ρ -labeling of G.

Case 2: d = 2r + 2s + 1.

Let c = 2(4r+4s+2)/(2r+2s+1)+1, so the complete multipartite graph we are working in is $K_{c\times d} = K_{5\times (2r+2s+1)}$. In order to show that G admits a d-modular ρ -labeling, we examine when r is odd or even and when s is odd or even and show that any of the four possible combinations will satisfy the necessary conditions for the desired labeling.

Case 2.1: r is odd.

Let
$$C_{4r} = G_1 + (9r + 5s + 4, 13 \cdot \frac{r-1}{2} + 5s + 9, 9r + 5s + 2, 13 \cdot \frac{r-1}{2} + 5s + 10) + G_2 + (15 \cdot \frac{r-1}{2} + 5s + 10, 10r + 5s + 3)$$
 where

$$G_1 = \sum_{i=1}^{\frac{r-1}{2}} Q(5r + 5s + 3i + 1, 10r + 5s - 2i + 1, 4),$$

$$G_2 = \sum_{i=1}^{\frac{r-1}{2}} P(13 \cdot \frac{r-1}{2} + 5s + 2i + 8, 9r + 5s - 3i - 1, 4).$$

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge labels is $[1, 5r-1] \setminus c\mathbb{Z}$ with $5r+5s+4 \leq V(C_{4r}) \leq 10r+5s+3$.

Case 2.2: r is even.

Let $C_{4r} = G_1 + (9r + 5s + 5, 13 \cdot \frac{r}{2} + 5s + 1, 9r + 5s + 4, 13 \cdot \frac{r}{2} + 5s + 2) + G_2 + (15 \cdot \frac{r}{2} + 5s + 2, 10r + 5s + 3)$ where

$$G_1 = \sum_{i=1}^{\frac{r}{2}-1} Q(5r+5s+3i+1,10r+5s-2i+1,4),$$

$$G_2 = \sum_{i=1}^{\frac{r}{2}} P(13 \cdot \frac{r}{2} + 5s + 2i, 9r + 5s - 3i, 4).$$

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge labels is $[1, 5r-1] \setminus c\mathbb{Z}$ with $5r+5s+4 \leq V(C_{4r}) \leq 10r+5s+3$.

Case 2.3: s is odd.

Let $C_{4s+2} = G_3 + (5r + 4s + 2, 3 \cdot \frac{s-1}{2} + 3, 5r + 4s + 1, 3 \cdot \frac{s-1}{2} + 4) + G_4 + (5 \cdot \frac{s-1}{2} + 4, 5r + 5s + 3, 0, 5r + 5s + 1)$ where

$$G_3 = \sum_{i=1}^{\frac{s-1}{2}} Q(3i-1, 5r+5s-2i-1, 4),$$

$$G_4 = \sum_{i=1}^{\frac{s-1}{2}} P(3 \cdot \frac{s-1}{2} + 2i + 2, 5r + 4s - 3i - 2, 4).$$

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge labels is $[5r+1, \lfloor (cd-1)/2 \rfloor] \setminus c\mathbb{Z}$ with $0 \leq V(C_{4s}) \leq 5r+5s+3$.

Case 2.4: s is even.

Let $C_{4s+2} = G_3 + (5r + 4s + 3, 3 \cdot \frac{s}{2} - 1, 5r + 4s + 1, 3 \cdot \frac{s}{2}) + G_4 + (5 \cdot \frac{s}{2}, 5r + 5s + 3, 0, 5r + 5s + 1)$ where

$$G_3 = \sum_{i=1}^{\frac{s}{2}-1} Q(3i-1,5r+5s-2i-1,4),$$

$$G_4 = \sum_{i=1}^{\frac{s}{2}} P(3 \cdot \frac{s}{2} + 2i - 2,5r + 4s - 3i - 2,4).$$

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge labels is $[5r+1, \lfloor (cd-1)/2 \rfloor] \setminus c\mathbb{Z}$ with $0 \leq V(C_{4s}) \leq 5r+5s+3$.

Since a labeling of C_{4r} from either of the first two subcases will be vertex disjoint from a labeling of C_{4s+2} from either of the last two subcases, we have a labeling of $G = C_{4r} \cup C_{4s+2}$ where the set of edge labels is $[1, \lfloor cd/2 \rfloor] \setminus c\mathbb{Z}$. Therefore, we have a (2r+2s+1)-modular ρ -labeling of G.

Theorem 11. Let $G = C_{4r} \cup C_{4s+2}$ where r and s are positive integers and and let n = 4r + 4s + 2. Then there exists a cyclic G-decomposition of $K_{(2n+1)\times t}$, $K_{(n/2+1)\times 4t}$, $K_{5\times (n/2)t}$, and of $K_{2\times 2nt}$ for every positive integer t.

Before proceeding to our final case, we note that the parity condition (i.e., Lemma 5) rules out the existence of a d-modular ρ -labelings of G in Lemma 10 for d=2 and for d=4r+4s+2.

Lemma 12. A d-modular ρ -labeling of $C_{4r+2} \cup C_{4s+2}$ exists for $r, s \ge 1$ and $d \in \{1, 2, 4, 8, r+s+1, 2(r+s+1), 4(r+s+1), 8(r+s+1)\}.$

Proof. Let $G = C_{4r+2} \cup C_{4s+2}$ where $1 \le r \le s$. The cases d = 1, d = 2, and d = 8(r + s) can be obtained from the fact that such a G necessarily admits an α -labeling (see [1]).

Case 1: d = 4.

Let c = 2(4r + 4s + 4)/4 + 1, so that the complete multipartite graph we are working in is $K_{c\times d} = K_{(2r+2s+3)\times 4}$.

Case 1.1: r = s.

If r = s = 1, let $C_{4r+2} = (0, 3, 2, 6, 4, 9, 0)$ and $C_{4s+2} = (10, 22, 11, 19, 13, 23, 10)$. We leave it to the reader to check that this yields a 4-modular ρ -labeling of G.

If r = s > 1, let $C_{4r+2} = G_1 + G_2 + (2r+1, 4r+5, 0)$ and $C_{4s+2} = G_3 + G_4 + (6s+5, 10s+9, 6s+7, 12s+11)$ where

$$G_1 = P(0, 2r + 4, 2r - 3),$$
 $G_2 = Q(r, r, 2r + 3),$ $G_3 = Q(4s + 6, 10s + 10, 2s + 1),$ $G_4 = P(5s + 6, 9s + 11, 2s - 2).$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have a 4-modular ρ -labeling of G.

Case 1.2: r < s.

Let $C_{4r+2} = G_1 + G_2 + (2r+1, 4r+3, 0)$ and $C_{4s+2} = G_3 + G_4 + G_5 + (8r+2s+7, 4r+2s+5, 8r+4s+9)$ where

$$G_1 = P(0, 2r + 2, 2r - 1),$$

$$G_2 = Q(r + 1, r + 1, 2r + 1),$$

$$G_3 = Q(4r + 4, 8r + 2s + 8, 2s + 1),$$

$$G_4 = P(4r + s + 4, 6r + 3s + 7, 2r),$$

$$G_5 = P(5r + s + 4, 9r + s + 7, 2s - 2r - 1).$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have a 4-modular ρ -labeling of G.

Case 2: d = 8.

Let c = 2(4r + 4s + 4)/8 + 1, so that the complete multipartite graph we are working in is $K_{c\times d} = K_{(r+s+2)\times 8}$.

Case 2.1: r = s.

Let $C_{4r+2} = G_1 + G_2 + (6r+5, 2r+2, 8r+7)$ and $C_{4s+2} = G_3 + (9r+7, 11r+10) + G_4 + (10r+9, 12r+13, 8r+8)$ where

$$G_1 = Q(0, 6r + 6, 2r + 1),$$
 $G_2 = P(r, 5r + 5, 2r - 1),$ $G_3 = P(8r + 8, 10r + 12, 2r - 2),$ $G_4 = Q(9r + 9, 9r + 9, 2r + 1).$

Case 2.2: r < s < 3r + 1 and r + s is odd.

Let $C_{4r+2} = G_1 + G_2 + G_3 + (2r + 4s + 5, 2r + 1, 4r + 4s + 7)$ and $C_{4s+2} = G_4 + G_5 + G_6 + G_7 + (4r + 6s + 9, 4r + 8s + 13, 4r + 4s + 8)$ where

$$\begin{split} G_1 &= Q(0,2r+4s+6,2r+1), \\ G_2 &= P(r,4r+3s+6,s-r-1), \\ G_3 &= P(\frac{r+s-1}{2},\frac{r+s-1}{2}+4s+5,3r-s), \\ G_4 &= P(4r+4s+8,6r+6s+12,2s-2r-1), \\ G_5 &= Q(3r+5s+9,3r+7s+13,2r-1), \\ G_6 &= P(4r+5s+8,5r+6s+10,s-r+1), \\ G_7 &= P(7 \cdot \frac{r+s-1}{2}+2s+12,7 \cdot \frac{r+s-1}{2}+2s+12,r+s+1). \end{split}$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have an 8-modular ρ -labeling of G.

Case 2.3: r < s < 3r + 1 and r + s is even.

Let $C_{4r+2} = G_1 + G_2 + G_3 + (2r+1, 4r+4s+7)$ and $C_{4s+2} = G_4 + G_5 + G_6 + G_7 + (4r+6s+10, 4r+8s+12)$ where

$$\begin{split} G_1 &= Q(0,2r+4s+6,2r+1), \\ G_2 &= P(r,4r+3s+6,s-r-1), \\ G_3 &= Q(\frac{r+s}{2}+1,\frac{r+s}{2}+4s+5,3r-s+1), \\ G_4 &= Q(4r+4s+8,6r+6s+12,2s-2r), \\ G_5 &= Q(3r+5s+9,3r+7s+11,2r+1), \\ G_6 &= P(4r+5s+9,5r+6s+11,s-r-1), \\ G_7 &= Q(7 \cdot \frac{r+s}{2}+2s+10,7 \cdot \frac{r+s}{2}+2s+10,r+s+1). \end{split}$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have an 8-modular ρ -labeling of G.

Case 2.4: s = 3r + 1.

Let $C_{4r+2} = G_1 + G_2 + (2r - 1, 14r + 9, 2r + 1, 16r + 11)$ and $C_{4s+2} = G_3 + G_4 + G_5 + G_6 + (22r + 16, 28r + 23, 16r + 12)$ where

$$\begin{aligned} G_1 &= Q(0,14r+10,2r+1), & G_2 &= P(r,13r+11,2r-2), \\ G_3 &= P(16r+12,24r+18,4r+1), & G_4 &= Q(18r+14,24r+21,2r-2), \\ G_5 &= Q(19r+14,23r+17,2r+3), & G_6 &= P(20r+15,20r+15,4r+2). \end{aligned}$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have an 8-modular ρ -labeling of G.

Case 2.5:
$$s > 3r + 1$$
 and $r + s$ is odd.

Let
$$C_{4r+2} = G_1 + G_2 + (2r + 4s + 6, 2r + 1, 4r + 4s + 7)$$
 and $C_{4s+2} = G_3 + G_4 + G_5 + G_6 + G_7 + (4r + 6s + 10, 4r + 8s + 14, 4r + 4s + 8)$ where

$$G_1 = Q(0, 2r + 4s + 6, 2r + 1),$$

$$G_2 = P(r, r+4s+6, 2r-1),$$

$$G_3 = P(4r + 4s + 8, 7r + 7s + 14, s - 3r - 2),$$

$$G_4 = Q(5 \cdot \frac{r+s-1}{2} + 2s + 11, p \cdot \frac{r+s-1}{2} + 2s + 17, r+s+1),$$

$$G_5 = Q(3r + 5s + 10, 3r + 7s + 14, 2r - 1),$$

$$G_6 = P(4r + 5s + 9, 5r + 6s + 11, s - r + 1),$$

$$G_7 = P(7 \cdot \frac{r+s-1}{2} + 2s + 13, 7 \cdot \frac{r+s-1}{2} + 2s + 13, r+s+1).$$

Case 2.6: s > 3r + 1 and r + s is even.

Let
$$C_{4r+2} = G_1 + G_2 + (2r + 4s + 6, 2r + 1, 4r + 4s + 7)$$
 and $C_{4s+2} = G_3 + G_4 + G_5 + G_6 + G_7 + (4r + 6s + 10, 4r + 8s + 14, 4r + 4s + 8)$ where

$$G_1 = Q(0, 2r + 4s + 6, 2r + 1),$$

$$G_2 = P(r, r+4s+6, 2r-1),$$

$$G_3 = P(4r + 4s + 8, 7r + 7s + 14, s - 3r - 2),$$

$$G_4 = P(5 \cdot \frac{r+s}{2} + 2s + 7, 9 \cdot \frac{r+s}{2} + 2s + 11, r+s+1),$$

$$G_5 = Q(3r + 5s + 9, 3r + 7s + 13, 2r - 1),$$

$$G_6 = P(4r + 5s + 8, 5r + 6s + 10, s - r + 1),$$

$$G_7 = Q(7 \cdot \frac{r+s}{2} + 2s + 10, 7 \cdot \frac{r+s}{2} + 2s + 10, r+s+1).$$

If we continue as in the proof for Case 1 in Lemma 1, we can see that we have an 8-modular ρ -labeling of G.

Case 3: d = r + s + 1.

Let c = 2(4r + 4s + 4)/(r + s + 2) + 1, so that the complete multipartite graph we are working in is $K_{c \times d} = K_{9 \times (r+s+1)}$.

Case 3.1: r and s are both odd.

In order to show that G admits a d-modular ρ -labeling, we examine when $r \equiv 1, 3 \pmod{4}$ and when $s \equiv 1, 3 \pmod{4}$ and show that any of the four possible combinations will satisfy the necessary conditions for the desired labeling.

Case 3.1.1: $r \equiv 1 \pmod{4}$.

If r=1, let $C_{4r+2}=(0,9\cdot\frac{s-1}{2}+12,1,9\cdot\frac{s-1}{2}+9,3,9\cdot\frac{s-1}{2}+13,0)$. We leave it to the reader to check that this yields an (r+s+1)-modular ρ -labeling of G.

If r > 1, let $C_{4r+2} = G_1 + G_2 + (9 \cdot \frac{r-1}{4} + 1, 9 \cdot \frac{r+s}{2} - 9 \cdot \frac{r-1}{4}, 9 \cdot \frac{r-1}{4} + 3, 9 \cdot \frac{r+s}{2} + 4)$ where

$$G_{1} = Q(0, 9 \cdot \frac{r+s}{2}, 4) + \sum_{i=1}^{\frac{r-1}{4}-1} \left(Q(5i-2, 9 \cdot \frac{r+s}{2} - 4i - 2, 8) \right) + Q(5 \cdot \frac{r-1}{4} - 2, 7 \cdot \frac{r+s}{2} + s, 7),$$

$$G_{2} = \sum_{i=1}^{\frac{r-1}{4}} \left(P(5 \cdot \frac{r-1}{4} + 4i - 3, 7 \cdot \frac{r+s}{2} + s - 5i - 2, 8) \right).$$

Case 3.1.2: $r \equiv 3 \pmod{4}$.

Let $C_{4r+2} = G_1 + G_2 + (9 \cdot \frac{r-3}{4} + 6, 9 \cdot \frac{r+s}{2} - 9 \cdot \frac{r-3}{4} - 4, 9 \cdot \frac{r-3}{4} + 8, 9 \cdot \frac{r+s}{2} + 4)$ where

$$G_{1} = Q(0, 9 \cdot \frac{r+s}{2}, 4) + \sum_{i=1}^{\frac{r-3}{4}} \left(Q(5i-2, 9 \cdot \frac{r+s}{2} - 4i - 2, 8) \right)$$

$$+ Q(5 \cdot \frac{r-3}{4} + 3, 7 \cdot \frac{r+s}{2} + s + 2, 3),$$

$$G_{2} = P(5 \cdot \frac{r-3}{4} + 4, 7 \cdot \frac{r+s}{2} + s - 2, 4)$$

$$+ \sum_{i=1}^{\frac{r-3}{4}} \left(P(5 \cdot \frac{r-3}{4} + 4i + 2, 7 \cdot \frac{r+s}{2} + s - 5i - 4, 8) \right).$$

Case 3.1.3: $s \equiv 1 \pmod{4}$.

If s=1, let $C_{4s+2}=(9\cdot\frac{r-1}{2}+14,9\cdot\frac{r-1}{2}+19,9\cdot\frac{r-1}{2}+16,9\cdot\frac{r-1}{2}+18,9\cdot\frac{r-1}{2}+17,9\cdot\frac{r-1}{2}+21,9\cdot\frac{r-1}{2}+14)$. We leave it to the reader to check that this yields an (r+s+1)-modular ρ -labeling of G.

If s > 1, let $C_{4s+2} = G_3 + G_4 + (9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-1}{4} + 8, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-1}{2} + 12, 9 \cdot \frac{r+s}{2} + 5)$ where

$$\begin{split} G_3 &= P(9 \cdot \frac{r+s}{2} + 5, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-1}{2} + 5, 5) \\ &+ \sum_{i=1}^{\frac{s-1}{4}-1} \left(Q(9 \cdot \frac{r+s}{2} + 5i + 4, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-1}{2} - 4i + 4, 8) \right) \\ &+ Q(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-1}{4} + 4, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-1}{2} + 8, 4), \\ G_4 &= Q(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-1}{4} + 7, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-1}{2} + 7, 3) \\ &+ \sum_{i=1}^{\frac{s-1}{4}} \left(P(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-1}{4} + 4i + 4, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-1}{2} - 5i + 4, 8) \right). \end{split}$$

Case 3.1.4: $s \equiv 3 \pmod{4}$. Let $C_{4s+2} = G_3 + G_4 + (9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-3}{4} + 13, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-3}{2} + 21, 9 \cdot \frac{r+s}{2} + 5)$ where

$$\begin{split} G_3 &= P\big(9 \cdot \frac{r+s}{2} + 5, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-3}{2} + 14, 5\big) \\ &\quad + \sum_{i=1}^{\frac{s-3}{4}} \big(Q\big(9 \cdot \frac{r+s}{2} + 5i + 4, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-3}{2} - 4i + 13, 8\big)\big), \\ G_4 &= Q\big(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-3}{4} + 10, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-3}{2} + 10, 7\big) \\ &\quad + \sum_{i=1}^{\frac{s-3}{4}} \big(P\big(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-3}{4} + 4i + 9, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-3}{2} - 5i + 9, 8\big)\big). \end{split}$$

Case 3.2: r and s are both even.

In order to show that G admits a d-modular ρ -labeling, we examine when $r \equiv 0, 2 \pmod{4}$ and when $s \equiv 0, 2 \pmod{4}$ and show that any of the four possible combinations will satisfy the necessary conditions for the desired labeling.

Case 3.2.1: $r \equiv 0 \pmod{4}$.

Let
$$C_{4r+2} = G_1 + G_2 + (9 \cdot \frac{r+s}{2} - 9 \cdot \frac{r}{4} + 3, 9 \cdot \frac{r}{4} + 1, 9 \cdot \frac{r+s}{2} + 4)$$
 where

$$G_{1} = Q(0, 9 \cdot \frac{r+s}{2}, 4) + \sum_{i=1}^{\frac{r}{4}-1} \left(Q(5i-2, 9 \cdot \frac{r+s}{2} - 4i - 2, 8) \right) + Q(5 \cdot \frac{r}{4} - 2, 7 \cdot \frac{r+s}{2} + s + 1, 5),$$

$$G_{2} = P(5 \cdot \frac{r}{4}, 7 \cdot \frac{r+s}{2} + s, 2) + \sum_{i=1}^{\frac{r}{4}-1} \left(P(5 \cdot \frac{r}{4} + 4i - 3, 7 \cdot \frac{r+s}{2} + s - 5i - 3, 8) \right) + P(9 \cdot \frac{r}{4} - 3, 9 \cdot \frac{r+s}{2} - 9 \cdot \frac{r}{4}, 5).$$

Case 3.2.2: $r \equiv 2 \pmod{4}$.

If r = 2, let $C_{4r+2} = (0, 9 \cdot \frac{s}{2} + 12, 1, 9 \cdot \frac{s}{2} + 11, 3, 9 \cdot \frac{s}{2} + 9, 4, 9 \cdot \frac{s}{2} + 8, 6, 9 \cdot \frac{s}{2} + 13, 0)$. We leave it to the reader to check that this yields an (r + s + 1)-modular ρ -labeling of G.

If r > 2, let $C_{4r+2} = G_1 + (7 \cdot \frac{r+s}{2} + s + 4, 5 \cdot \frac{r-2}{4} + 3) + G_2 + (9 \cdot \frac{r+s}{2} - 9 \cdot \frac{r-2}{4} - 1, 9 \cdot \frac{r-2}{4} + 6, 9 \cdot \frac{r+s}{2} + 4)$ where

$$\begin{split} G_1 &= Q(0,9 \cdot \frac{r+s}{2},4) + \sum_{i=1}^{\frac{r-2}{4}} \left(Q(5i-2,9 \cdot \frac{r+s}{2} - 4i - 2,8) \right), \\ G_2 &= P(5 \cdot \frac{r-2}{4} + 3,7 \cdot \frac{r+s}{2} + s - 4,6) \\ &+ \sum_{i=1}^{\frac{r-2}{4}-1} \left(P(5 \cdot \frac{r-2}{4} + 4i + 2,7 \cdot \frac{r+s}{2} + s - 5i - 5,8) \right) \\ &+ P(9 \cdot \frac{r-2}{4} + 2,9 \cdot \frac{r+s}{2} - 9 \cdot \frac{r-2}{4} - 4,5). \end{split}$$

Case 3.2.3: $s \equiv 0 \pmod{4}$.

Let $C_{4s+2} = G_3 + (9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s}{2} + 7, 9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s}{4} + 6) + G_4 + (9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s}{4} + 6, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s}{2} + 8, 9 \cdot \frac{r+s}{2} + 5, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s}{2} + 6)$ where

$$G_{3} = \sum_{i=1}^{\frac{s}{4}-1} \left(Q(9 \cdot \frac{r+s}{2} + 5i + 2, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s}{2} - 4i + 2, 8) \right) + Q(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s}{4} + 2, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s}{2} + 4, 6),$$

$$G_{4} = \sum_{i=1}^{\frac{s}{4}} \left(P(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s}{4} + 4i + 2, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s}{2} - 5i + 2, 8) \right).$$

Case 3.2.4: $s \equiv 2 \pmod{4}$.

Let
$$C_{4s+2} = G_3 + (9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-2}{2} + 15, 9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-2}{4} + 7, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-2}{2} + 14) +$$

 $G_4 + (9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-2}{4} + 11, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-2}{2} + 17, 9 \cdot \frac{r+s}{2} + 5, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-2}{2} + 15)$ where

$$G_{3} = \sum_{i=1}^{\frac{s-2}{4}} \left(Q(9 \cdot \frac{r+s}{2} + 5i + 2, 9 \cdot \frac{r+s}{2} + 9 \cdot \frac{s-2}{2} - 4i + 11, 8) \right),$$

$$G_{4} = Q(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-2}{4} + 9, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-2}{2} + 9, 5)$$

$$+ \sum_{i=1}^{\frac{s-2}{4}} \left(P(9 \cdot \frac{r+s}{2} + 5 \cdot \frac{s-2}{4} + 4i + 7, 9 \cdot \frac{r+s}{2} + 7 \cdot \frac{s-2}{2} - 5i + 7, 8) \right).$$

If we continue as in the proof for Case 2 in Lemma 2, we can see that we have an (r+s+1)-modular ρ -labeling of G.

Case 3.3: r + s is odd.

For this case, we relax the condition that $r \leq s$. Then without loss of generality, we need only consider when r is odd and s is even. In order to show that G admits a d-modular ρ -labeling, we examine when $r \equiv 1,3 \pmod 4$ and when $s \equiv 0,2 \pmod 4$ and show that any of the four possible combinations will satisfy the necessary conditions for the desired labeling.

Case 3.3.1: $r \equiv 1 \pmod{4}$.

If r=1, let $C_{4r+2}=(0,9\cdot\frac{s}{2}+7,1,9\cdot\frac{s}{2}+5,3,9\cdot\frac{s}{2}+8,0)$. We leave it to the reader to check that this yields an (r+s+1)-modular ρ -labeling of G.

If r > 1, let $C_{4r+2} = G_1 + G_2 + (9 \cdot \frac{r+s-1}{2} - 9 \cdot \frac{r-1}{4} + 5, 9 \cdot \frac{r-1}{4} + 3, 9 \cdot \frac{r+s-1}{2} + 8)$ where

$$\begin{split} G_1 &= \sum_{i=1}^{\frac{r-1}{4}} \left(Q(5i-5,9 \cdot \frac{r+s-1}{2} - 4i + 4,8) \right) \\ &\quad + Q(5 \cdot \frac{r-1}{4},7 \cdot \frac{r+s-1}{2} + s + 5,3), \\ G_2 &= P(5 \cdot \frac{r-1}{4} + 1,7 \cdot \frac{r+s-1}{2} + s,4) \\ &\quad + \sum_{i=1}^{\frac{r-1}{4}-1} \left(P(5 \cdot \frac{r-1}{4} + 4i - 1,7 \cdot \frac{r+s-1}{2} + s - 5i - 1,8) \right) \\ &\quad + P(9 \cdot \frac{r-1}{4} - 1,9 \cdot \frac{r+s-1}{2} - 9 \cdot \frac{r-1}{4} + 2,5). \end{split}$$

Case 3.3.2: $r \equiv 3 \pmod{4}$.

Let $C_{4r+2} = G_1 + G_2 + (9 \cdot \frac{r+s-1}{2} - 9 \cdot \frac{r-3}{4}, 9 \cdot \frac{r-3}{4} + 7, 9 \cdot \frac{r+s-1}{2} + 8)$ where

$$G_{1} = \sum_{i=1}^{\frac{r-3}{4}} \left(Q(5i-5, 9 \cdot \frac{r+s-1}{2} - 4i + 4, 8) \right)$$

$$+ Q(5 \cdot \frac{r-3}{4}, 7 \cdot \frac{r+s-1}{2} + s + 3, 7),$$

$$G_{2} = \sum_{i=1}^{\frac{r-3}{4}} \left(P(5 \cdot \frac{r-3}{4} + 4i - 1, 7 \cdot \frac{r+s-1}{2} + s - 5i + 1, 8) \right)$$

$$+ P(9 \cdot \frac{r-3}{4} + 3, 9 \cdot \frac{r+s-1}{2} - 9 \cdot \frac{r-3}{4} - 3, 5).$$

Case 3.3.3: $s \equiv 0 \pmod{4}$. Let $C_{4s+2} = G_3 + (9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s}{2} + 11, 9 \cdot \frac{r+s-1}{2} + 5 \cdot \frac{s}{4} + 10) + G_4 + (9 \cdot \frac{r+s-1}{2} + \frac{s}{4} + \frac{s}{4}$ $\frac{r+s-1}{2} + 9 \cdot \frac{s}{4} + 10, 9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s}{2} + 12, 9 \cdot \frac{r+s-1}{2} + 9, 9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s}{2} + 10)$ where

$$\begin{split} G_3 &= \sum_{i=1}^{\frac{s}{4}-1} \left(Q(9 \cdot \frac{r+s-1}{2} + 5i + 6, 9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s}{2} - 4i + 6, 8) \right) \\ &+ Q(9 \cdot \frac{r+s-1}{2} + 5 \cdot \frac{s}{4} + 6, 9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s}{2} + 8, 6), \\ G_4 &= \sum_{i=1}^{\frac{s}{4}} \left(P(9 \cdot \frac{r+s-1}{2} + 5 \cdot \frac{s}{4} + 4i + 6, 9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s}{2} - 5i + 6, 8) \right). \end{split}$$

Case 3.3.4: $s \equiv 2 \pmod{4}$.

Let $C_{4s+2} = G_3 + (9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s-2}{2} + 19, 9 \cdot \frac{r+s-1}{2} + 5 \cdot \frac{s-2}{4} + 11, 9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s-2}{2} + 18) + G_4 + (9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s-2}{4} + 15, 9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s-2}{2} + 21, 9 \cdot \frac{r+s-1}{2} + 9, 9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s-2}{2} + 19)$ where

$$\begin{split} G_3 &= \sum_{i=1}^{\frac{s-2}{4}} \left(Q(9 \cdot \frac{r+s-1}{2} + 5i + 6, 9 \cdot \frac{r+s-1}{2} + 9 \cdot \frac{s-2}{2} - 4i + 15, 8) \right), \\ G_4 &= Q(9 \cdot \frac{r+s-1}{2} + 5 \cdot \frac{s-2}{4} + 13, 9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s-2}{2} + 13, 5) \\ &+ \sum_{i=1}^{\frac{s-2}{4}} \left(P(9 \cdot \frac{r+s-1}{2} + 5 \cdot \frac{s-2}{4} + 4i + 11, 9 \cdot \frac{r+s-1}{2} + 7 \cdot \frac{s-2}{2} - 5i + 11, 8) \right). \end{split}$$

If we continue as in the proof for Case 2 in Lemma 2, we can see that we have an (r+s+1)-modular ρ -labeling of G.

Case 4: d = 2(r + s + 1).

Let c = 2(4r + 4s + 4)/(2r + 2s + 2) + 1, so that the complete multipartite graph we are working in is $K_{c\times d} = K_{5\times 2(r+s+1)}$. In order to show that G admits a d-modular ρ -labeling, we examine when r is even or odd and when s is even or odd and show that any of the four possible combinations will satisfy the necessary conditions for the desired labeling.

Case 4.1: r is odd.

Let $C_{4r+2} = G_1 + G_2 + (5 \cdot \frac{r-1}{2} + 1, 5 \cdot \frac{r-1}{2} + 5s + 5, 5 \cdot \frac{r-1}{2} + 3, 5r + 5s + 4)$ where

$$G_1 = \sum_{i=1}^{\frac{r-1}{2}} \left(Q(3i-3, 5r+5s-2i+2, 4) \right) + Q(3 \cdot \frac{r-1}{2}, 4r+5s+2, 3),$$

$$G_2 = \sum_{i=1}^{\frac{r-1}{2}} \left(P(3 \cdot \frac{r-1}{2} + 2i - 1, 4r + 5s - 3i, 4) \right).$$

Case 4.2: r is even.

Let $C_{4r+2} = G_1 + (4r + 5s + 4, 3 \cdot \frac{r}{2}, 4r + 5s + 2, 3 \cdot \frac{r}{2} + 1) + G_2 + (5 \cdot \frac{r}{2} - 1, 5 \cdot \frac{r}{2} + 5s + 3, 5 \cdot \frac{r}{2} + 1, 5r + 5s + 4)$ where

$$G_1 = \sum_{i=1}^{\frac{r}{2}} (Q(3i-3,5r+5s-2i+2,4)),$$

$$G_2 = \sum_{i=1}^{\frac{r}{2}-1} (P(3 \cdot \frac{r}{2} + 2i-1,4r+5s-3i-1,4)).$$

Case 4.3: *s* is odd.

Let
$$C_{4s+2} = G_3 + G_4 + (15 \cdot \frac{s+1}{2} + 5r - 1, 5r + 10s + 8, 5r + 5s + 5, 5r + 10s + 6)$$

where

$$G_{3} = \sum_{i=1}^{\frac{s-1}{2}} (Q(5r+5s+3i+4,5r+10s-2i+4,4)),$$

$$G_{4} = Q(13 \cdot \frac{s+1}{2} + 5r, 5r + 9s + 4,3) + \sum_{i=1}^{\frac{s-1}{2}} (P(13 \cdot \frac{s+1}{2} + 5r + 2i - 1, 5r + 9s - 3i + 3,4)).$$

Case 4.4: s is even.

Let $C_{4s+2} = G_3 + (5r + 9s + 8, 13 \cdot \frac{s}{2} + 5r + 4, 5r + 9s + 7, 13 \cdot \frac{s}{2} + 5r + 6) + G_4 + (15 \cdot \frac{s}{2} + 5r + 6, 5r + 10s + 8, 5r + 5s + 5, 5r + 10s + 6)$ where

$$G_3 = \sum_{i=1}^{\frac{s}{2}-1} (Q(5r+5s+3i+4,5r+10s-2i+4,4)),$$

$$G_4 = \sum_{i=1}^{\frac{s}{2}} (P(13 \cdot \frac{s}{2} + 5r + 2i + 4, 5r + 9s - 3i + 4, 4)).$$

If we continue as in the proof for Case 2 in Lemma 2, we can see that we have a (2r + 2s + 2)-modular ρ -labeling of G.

Case 5: d = 4(r + s + 1).

Let c = 2(4r+4s+4)/(4r+4s+4)+1, so that the complete multipartite graph we are working in is $K_{c\times d} = K_{3\times (4r+4s+4)}$. If s=1, let $C_{4r+2} = (0,16,2,12,4,17,0)$ and $C_{4s+2} = (18,20,19,26,22,29,18)$. We leave it to the reader to check that this yields a (4r+4s+4)-modular ρ -labeling of G.

If s > 1, let $C_{4r+2} = G_1 + (5r + 6s + 5, 2r) + G_2 + (3r - 1, 3r + 6s + 3, 3r + 1, 6r + 6s + 5)$ and $C_{4s+2} = G_3 + (6r + 11s + 9, 6r + 8s + 5) + G_4 + (6r + 9s + 6, 6r + 12s + 11, 6r + 6s + 6, 6r + 12s + 7)$ where

$$G_{1} = \sum_{i=1}^{r} Q(2i - 2, 6r + 6s - i + 4, 2),$$

$$G_{2} = \sum_{i=1}^{r-1} P(2r + i - 1, 5r + 6s - 2i + 2, 2),$$

$$G_{3} = \sum_{i=1}^{s-2} Q(6r + 6s + 2i + 6, 6r + 12s - i + 6, 2),$$

$$G_{4} = \sum_{i=1}^{s+1} P(6r + 8s + i + 4, 6r + 11s - 2i + 7, 2).$$

If we continue as in the proof for Case 3.1 in Lemma 1, we can see that we have a (4r + 4s + 4)-modular ρ -labeling of G.

Theorem 13. Let $G = C_{4r+2} \cup C_{4s+2}$ where r and s are positive integers and let n = 4r + 4s + 4. Then there exists a cyclic G-decomposition of $K_{(2n+1)\times t}$, $K_{(n+1)\times 2t}$, $K_{(n/2+1)\times 4t}$, $K_{(n/4+1)\times 8t}$, $K_{9\times (n/4)t}$, $K_{5\times (n/2)t}$, $K_{3\times nt}$, and of $K_{2\times 2nt}$ for every positive integer t.

5 Acknowledgement and Final Note

This work was done under the supervision of the third and fourth authors as part of REU Site: Mathematics Research Experience for Pre-service and

for In-service Teachers at Illinois State University. The affiliations of the remaining authors at the time were as follows: A. Su: University High School (Normal, IL); J. Buchanan and E. Sparks: Illinois State University; E. Pelttari: Northen Illinois University; G. Rasmuson: Roanoke-Benson High School (Roanoke, IL); S. Tagaris: Illinois Wesleyan University.

References

- [1] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, *Discrete Math.* **150** (1996), 3-15.
- [2] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
- [3] A. Benini and A. Pasotti, Decompositions of complete multipartite graphs via generalized graceful labelings, preprint.
- [4] A. Blinco and S. I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, *Bull. Inst. Combin. Appl.* 40 (2004), 77–82.
- [5] D. Bryant and S. El-Zanati, "Graph decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007, pp. 477-485.
- [6] M. Buratti, Recursive constructions for difference matrices and relative difference families, J. Combin. Des. 6 (1998), 165–182.
- [7] M. Buratti and L. Gionfriddo, Strong difference families over arbitrary graphs, J. Combin. Des. 16 (2008), 443-461.
- [8] M. Buratti and A. Pasotti, Graph decompositions with the use of difference matrices, *Bull. Inst. Combin. Appl.* 47 (2006), 23-32.
- [9] S. I. El-Zanati, C. Vanden Eynden, and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219.
- [10] S. I. El-Zanati and C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, *Mathematica Slovaca* **59** (2009), 1–18.
- [11] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2012), #DS6.
- [12] G. Ge, "Group divisible designs," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007, pp. 255–260.

- [13] A. Pasotti, On d-graceful labelings, Ars Combin. 111 (2013), 207-223.
- [14] A. Rosa, On certain valuations of the vertices of a graph, in *Theory of Graphs* (Internat. Sympos., Rome, 1966), ed. P. Rosenstiehl, Dunod, Paris; Gordon and Breach, New York, 1967, pp. 349–355.
- [15] D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combin. Theory, Ser. B, 30 (1981), 75-81.