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Abstract

For positive integers ¢ and d, let K.xa denote the complete multipar-
tite graph with ¢ parts, each containing d vertices. Let G with n edges
be the union of two vertex-disjoint even cycles. We use graph label-
ings to show that there exists a cyclic G-decomposition of K(an41)xt¢,
K(nj2+1)x4ts Ksx(ns2)ye, and of Kaxane for every positive integer . If
n = 0 (mod 4), then there also exists a cyclic G-decomposition of
Kniyxats Knjasr)xse, Kox(njaye, and of Ksxne for every positive
integer t.

1 Introduction

If a and b are integers we denote {a,a+1,...,b} by [a,b] (if a > b, [a,b] =
@). Let Ny denote the set of nonnegative integers and Z, the group of
integers modulo n. For a graph G, let V(G) and E(G) denote the vertex
set of G and the edge set of G, respectively. Let K denote the complete
graph on k vertices.

Let V(Ki) = Zi and let G be a subgraph of K. The length of an
edge {i,j} € E(G) is defined as min{|i — j|,k — |i — j|}. By clicking G,
we mean applying the isomorphism ¢ — ¢+ 1 to V(G). Let H and G
be graphs such that G is a subgraph of H. A G-decomposition of H is a
set I' = {G1,Ga,...,G:} of pairwise edge-disjoint subgraphs of H each of
which is isomorphic to G and such that E(H) = '_, E(G:). If H is Ki, a
G-decomposition T of H is cyclic if clicking is an automorphism of I'. The
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decomposition is purely cyclic if it is cyclic and |I'| = |V(H)|. f G is a
graph and r is a positive integer, rG denotes the vertex disjoint union of r
copies of G.

The study of graph decompositions, also known as the study of graph
designs or G-designs, is a popular area of research. In particular, decompo-
sitions of complete graphs into cycles have attracted a great deal of atten-
tion. For relatively recent surveys on graph decompositions, we direct the
reader to 2] and [5]. A popular method for obtaining graph decompositions
is via graph labelings.

For any graph G, a one-to-one function f: V(G) — Ny is called a
labeling (or a wvaluation) of G. In [14], Rosa introduced a hierarchy of
labelings. Let G be a graph with n edges and no isolated vertices and let
f be alabeling of G. Let f(V(G)) = {f(u) : u € V(G)}. Define a function
f:E(G) = Z* by f(e) = |f(u) — f(v)], where e = {u,v} € E(G). We will
refer to f(e) as the label of e. Let F(E(G)) = {f(e) : e € E(G)}. Consider
the following conditions:

(e1) f(V(G)) < [0,2n],
(€2) f(V(G)) < [0,n],

(£3) F(E(®)) = {z1,%2,-..,Zn}, where for each i € {1,n] either z; =4 or
z;=2n+1- 1,

(¢4) F(E(G)) = [1,n).
If in addition G is bipartite with vertex bipartition {4, B}, consider also
(£5) for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

(¢6) there exists an integer A such that f(a) < A foralla € A and f(b) > A
for all b € B.

Then a labeling satisfying the conditions:
(£1),(€3) is called a p-labeling;
(£1),(¢4) is called a o-labeling;

(£2), (£4) is called a B-labeling.

A f-labeling is necessarily a o-labeling which in turn is a p-labeling. Sup-
pose G is bipartite. If a p-, o-, or S-labeling of G satisfies condition (£5),
then the labeling is ordered and is denoted by p*, o*, or 8%, respectively. If
in addition (£6) is satisfied, the labeling is uniformly ordered and is denoted
by p*t, o*+, or g+, respectively.

A B-labeling is better known as a graceful labeling and a uniformly or-
dered B-labeling is an a-labeling as introduced in [14]. Labelings of the
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types above are called Rose-type labelings because of Rosa’s original ar-
ticle [14] on the topic (see [10] for a comprehensive survey of Rosa-type
labelings). A dynamic survey on general graph labelings is maintained by
Gallian [11].

Labelings are critical to the study of cyclic graph decompositions as
seen in the following two results from [14] and [9], respectively.

Theorem 1. Let G be a graph with n edges. There ezists a purely cyclic
G-decomposition of Ko, 4y if and only if G has a p-labeling.

Theorem 2. Let G be a graph with n edges that admits a p* -labeling. Then
there exists a cyclic G-decomposition of Konz+1 for all positive integers x.

2 d-modular labelings and decompositions
of Kexds

For positive integers ¢ and d, let K.xq denote the complete multipartite
graph with c parts, each containing d vertices. Note that K.x4 has cd
vertices and (5)d? edges. We can consider K x4 as a subgraph of the
complete graph K4, with V(K.xd) = Zca and E(Kcxa) = {{u,v} :u,v €
Zeg,u # v (mod c)}, that is, the ¢ parts of K.xq are the congruence classes
of Z.y modulo c. Note that K.xq has precisely the edges of K.q4 whose
lengths are not multiples of c.

Let G be a graph and let {Gy, Gz, ..., G.} be a G-decomposition of K.xq
(with V(K.xa) = Z.q as defined above). If clicking permutes the graphs in
the decomposition, then we say that it is a cyclic G-decomposition of K x4,
and if clicking G; cd — 1 times produces each graph in the decomposition
exactly once, then we say the decomposition is purely cyclic. In the latter
case if G has n edges, we must have (5)d® = ncd, and so ¢ = 2n/d + 1.

Suppose that G is a graph with n edges and d is a positive integer such
that d divides 2n. Set ¢ = 2n/d + 1, so that ¢cd = 2n + d. By a d-modular
p-labeling of G we mean a one-to-one function f: V(G) — [0,cd — 1] such
that

{min{|f(u) - f(v)|,cd = |f(v) = f()I}: {w,v} € E(G)} = [L, |F]]\cZ.

In other words, a d-modular p-labeling of a graph with n edges has every
edge length in K5, 4 exactly once except for any multiples of 2n/d + 1.
Figure 1 shows an example of a 3-modular p-labeling of a 6-cycle. As a
subgraph of K5, the edge length 5 is missing. Thus this C¢ has one edge
of each length in Kyy3 and clicking it 14 times would produce a purely
cyclic Cg-decomposition of Ksx3. Thus from the definition of d-modular
p-labelings, it is straightforward to see that the following holds.
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Theorem 3. If the graph G with n edges admits a d-moduler p-labeling
and c = 2n/d + 1, then K.xq has a purely cyclic G-decomposition.

We observe that a p-labeling of G is necessarily a 1-modular p-labeling.
Moreover, a o-labeling of G is necessarily a 2-modular p-labeling. We also
note the following.

Theorem 4. Let G be a bipartite graph with n edges. If G admits a p*-
labeling, then G admits a 2n-modular p-labeling.

Proof. Let {A, B} be a bipartition of V(G) and let f be a p*-labeling of
G such that f(a) < f(b) for every {a,b} € E(G) witha € A and b € B.
Define a labeling g: V(G) — [0,4n — 1] by g(a) = 2f(a) for a € A and
g(b) = 2f(b) — 1 for b € B. It is easy to verify that g is a 2n-modular
p-labeling of G. n

Next we note that if every vertex of a graph G has even degree, then in
a d-modular labeling of G, the number of edges with an odd label must be
even. This is known as the parity condition.

Lemma 5. Let G be a graph with all even degrees and let f be a d-modular
labeling of G. Let O = {e € E(G): f(e) is odd}. Then |O| is even.

Proof. For e = {u,v} € E(G), either f(e) = f(u) — f(v) or f(e) = f(v) —
f(u). Let § =3, p(c) Fe)- Let v € V(G). Since deg(v) is even, the sum
of the number of occurrences of f(v) and of —f(v) in S is even. Therefore
S is even and hence |O| must be even. [ ]

The concept of a d-modular p-labeling relates very closely to the con-
cepts of difference families and difference matrices developed by Buratti and
several co-authors over the last several years. See for example, Buratti [6],
Buratti and Gionfriddo (7], and Buratti and Pasotti [8]. Another related
concept is that of a d-graceful labeling as introduced by Pasotti in [13].
Rather than define these additional concepts here, we state a powerful re-
sult on d-modular p-labelings that can be obtained from the main result on
graph decompositions with the use of difference matrices in [8].

Theorem 6. If a z-partite graph G with n edges has a d-modular p-labeling
andc = 2n/d+1, then K.x:a has a cyclic G-decomposition for every positive
integer t such that ged(t, (2 —1)!) = 1.

Thus if G is bipartite, then we have the following corollary to Theorem 6.

Corollary 7. If a bipartite graph G with n edges has a d-modular p-labeling
andc = 2n/d+1, then K xiq has a cyclic G-decomposition for every positive
integer t.
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We illustrate how the result in Corollary 7 works. Let {A, B} be a
bipartition of V(G) and let f be a d-modular p-labeling of G. Let A =
{u1,u2,...,ur} and B = {vy,vs,...,9s}. Let z be a positive integer. For
1 € i < z, let G; be a copy of G with bipartition (A, B;) where B; =
{vi1,vi,2,...,vis} and v; ; corresponds to v; in B. Let G(z) = G1 UG U
---UG;. Thus G(z) is bipartite with bipartition {A,B; UB;U---U B.}.
Define a labeling f’ of G(z) as follows: f'(a) = f(a) for each a € A and
flwij)=f(v;)+(@E-1)2n+d)for1<i<zand1<j<s. Itiseasyto
see that f’ is a d-modular p-labeling of G(z) and thus Theorem 3 applies.

Figure 1 shows a 3-modular p-labeling of Cg and the three starters for a
cyclic Cg-decomposition of Ksxg that can be obtained from that 3-modular

p-labeling of Cs.

0 14 1 0 14 11 0 14 1 0 14 1
7 1 8 7 1 8 22 16 23 37 31 38
Figure 1: A 3-modular p-labeling of Cg and three starters for a cyclic Cg-

decomposition of Ksxg.

In this article, we investigate the existence of d-modular p-labelings
for the graph G consisting of the vertex-disjoint union of two even cycles.
In light of Corollary 7, these labelings lead to cyclic G-decompositions of
various infinite classes of complete multipartite graphs. In [13}, Pasotti pro-
duces labelings of Cy that lead to cyclic Cyx-decompositions of K(2x+1)xan
and of K(x41)xsn for all positive integers k and n. She also produces label-
ings that lead to cyclic Cyx-decompositions of K(x41)x4n for all odd integers
k > 1 and all positive integers n. In [3], Benini and Pasotti refine the results
from [13] to produce labelings of Cy that yield cyclic Csx-decompositions
of K(sk 1)x2an for any positive integers k,n and any positive divisor d of
4k. Numerous other authors have studied decompositions (not necessarily
cyclic ones) of complete multipartite graphs into cycles. Particular focus
has been placed on Cs-decompositions of complete multipartite graphs.
Such decompositions fall under the umbrella of the study of group divisible
designs (see [12] for a summary). The problem of Czx-decompositions of
the complete bipartite graph K., , was settled completely by Sotteau in
[15].
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3 Additional Notation

We denote the directed path with vertices zg, z1,. .., 2k, Where z; is adja-
cent to 41, 0 < i < k—1, by (z¢, Z1,...,2k). The first vertez of this path
is xp, the second verter is x;, and the last verter is xx. If zo,2),...,2Zk,
are distinct vertices, then the path (z¢,21,...,Zk,Zo) is necessarily a cy-
cle on k + 1 vertices. If G; = (z0,21,...,2;) and G2 = (yo,¥1,...,¥k)
are directed paths with z; = yo, then by G; + G2 we mean the path
(.’130,271,.. - ZT5,Y1,Y2y - - 1yk)~

Let P(k) be the path with k edges and k + 1 vertices 0,1,...,k given
by (0,k,1,k — 1,2,k — 2,...,[k/2]). Note that the set of vertices of this
graph is AU B, where A = [0, |k/2]], B = [|k/2] + 1,k], and every edge
joins a vertex of A to one of B. Furthermore, the set of labels of the edges
of P(k) is [1,k].

Now let a and b be nonnegative integers with ¢ < b and let us add
a to all the vertices of A and b to all the vertices of B. We will denote
the resulting graph by P(a,b,k). Note that this graph has the following
properties.

(P1) P(a,b,k) is a path with first vertex a and second vertex b + k. Its
last vertex is a + k/2 if k is even and b+ (k +1)/2 if k is odd.

(P2) Each edge of P(a, b, k) joins a vertex of A’ = {a, |k/2] + @] to a larger
vertex of B’ = [|k/2] + 14 b,k + b).

(P3) The set of edge labels of P(a,b,k) is [b—a+1,b—a + k.

Now consider the directed path Q(k) obtained from P(k) replacing each
vertex ¢ with k — . The new graph is the path (k,0,k—1,1,...,k—|k/2]).
The set of vertices of Q(k) is A”UB", where A” =k—B =[0,k— | k/2] -1]
and B” = k— A = [k — |k/2], k], and every edge joins a vertex of A” to
one of B”. The set of edge labels is still [1,k]. The last vertex of Q(k) is
k/2 € B" if k is even and (k — 1)/2 € A” if k is odd.

We add a to the vertices of A” and b to vertices of B”, where a and b
are integers, 0 < a < b. This graph is (k+b,a,k+b—1,a+1,...) which we
will denote by Q(a, b, k). Note that this graph has the following properties.

(Q1) Q(a,b, k) is a path with first vertex k + b. Its last vertex is b+ k/2 if
k is even and a + (k — 1)/2 if k is odd.

(Q2) Each edge of Q(a, b, k) joins a vertex of A’ = [a,a + k — |k/2] — 1] to
a larger vertex of B’ = [b+k — [k/2],b+ k]

(Q3) The set of edge labels of Q(a,b,k) is [b—a +1,b —a + k.
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B3 12 1 B3 12 u
(a) P(3,8,5) (b) Q(5,7,6)

Figure 2: Examples of the path notations with an even number of edges.

4 Main Results

Lemma 8. A d-modular p-labeling of C4y U Cys ezists for 1 < r < s and
de€{1,2,4,8,7+5,2(r +5),4(r + 5),8(r + 5)}.

Proof. Let G = C4 UCy, where 7,5 > 1. The casesd = 1, d = 2, and
d = 8(r + s) can be obtained from the fact that such a G necessarily admits
an a-labeling (see [1]).

Case 1: d=4.

Let ¢ = 2(4r+4s)/4+1, so the complete multipartite graph we are working
inis Kcxd = K(2r+2s41)x4- Let Cyr = Gi+Ga+(2r—1,4r+4s+1) and
Cis = G3 + G4 + (4r + 65 + 1,67 + 8s + 3) where

G1=Q(0,2r +4s +2,2r - 1),

Ga = P(r-1,7—1,2r),

G3=Q(4r +4s+2,6r +6s+4,2s — 1),
G4 = P(4r +5s+1,6r + 5s + 1,2s).

First, we show that G; + G2 + (2r — 1,47 + 4s + 1) is a cycle of length
4r and G3 + G4 + (47 + 65 + 1,67 + 8s + 3) is a cycle of length 4s. Note
that by (Q1) and (P1), the first vertex of G, is 4r +4s + 1, and the last is
r — 1; the first vertex of G5 is 7 — 1, and the last is 2r — 1; the first vertex
of G3 is 6r +8s + 3, and the last is 47 + 5s + 1; and the first vertex of G4 is
4r +5s+1, and the last is 4r +6s+ 1. For 1 <1 < 4, let A; and B; denote
the sets labeled A’ and B’ in (Q2) and (P2) corresponding to the path G;.
Then using (Q2) and (P2), we compute

A1=[0,1‘—-1], By = [3r +4s+2,4r + 4s + 1],
Ag=[r—-1,2r-1], By = [2r,3r — 1],

Ay =[4r +4s+2,4r +5s+1], Baz=[6r+7s+4,6r+8s+3],
Ay=[4r+5s+1,4r +65+1], By=[6r+6s+2,6r+7s+1].

Thus, A; < As < By < By < A3 € Ay < By < Bj. Note that V(G;) N
V(G2) = {r — 1} and V(G3) N V(G4) = {4r + 5s + 1}; otherwise, G; and
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G; are vertex-disjoint for ¢ # j. Therefore, G; + G2 + (2r — 1,4r +4s+1)
is a cycle of length 4r and G3 + G4 + (4r + 6s + 1,67 + 8s + 3) is a cycle of
length 4s.

Next, let F; denote the set of edge labels in G; for 1 < i < 4. By (Q3)
and (P3), we have edge labels

Ey =[2r +4s+3,4r +4s+ 1), E; =[1,2r],
E3=[2r+2s+3,2r +4s+1], Ey = [2r +1,2r + 2s].
Moreover, the path (27 — 1,4r + 4s + 1) consists of an edge with label
2r +4s+ 2, and the path (4r 4 6s 4+ 1, 6r + 8s + 3) consists of an edge with
label 2r +2s+2. Thus, the edge set of G has one edge of each label i where

1 <i<4r+4s+1 except 2r + 2s + 1. That is, the set of edge labels is
(1, |ed/2]] \ ¢Z. Therefore, we have a 4-modular p-labeling of G.

Case 2: d =8.

Let ¢ = 2(4r +45)/8 41, so the complete multipartite graph we are working
in is Kexd = K(r4s4+1)xs- Without loss of generality, we can assume that
T <s.

Case 2.1: 7 + s is even.
Let C4r =G1+ G2+ (2r—1,4r+4s+3) and Cys = G3+ G4+ Gs + G +
(47 + 6s + 4,67 + 8s + 7) where
G1 = Q(0,2r + 4s+4,2r — 1),
Gy = P(r—1,r—1,2r),
G3=Q4r+4s+4,7r+7s+7,s—r),
Gi=Q(H2+3r+4s+5 +5r+6s+8,r +s—1),
Gs = P(4r + 55 + 4,51 + 6s + 5,7 + 8),
Ge = P(™42 +4r + 55+ 4,52 + 6r +5s + 4,5~ r).
If we continue as in the proof for Case 1, we can see that we have an
8-modular p-labeling of G.
Case 2.2: r + s is odd.
LetC.;,-=G1+GQ+(21‘—1,4T+43+3) and Cys = G3+ G4+ G5+ Gg +
(4r + 65 + 4,67 + 85+ 7) where
G1 =Q(0,2r + 45 +4,2r — 1),
G = P(r—1,r —1,2r),
Gs=Q(4r +4s+4,7r+7s+ 7,8 —1),
Gy=P(T5=l + 3r +45+4, =1 + 57 + 65+ 7,7 + s — 1),
Gs =P(4r +55+3,5r +6s+4,r + s),
Ge=Q(™t5~L +4r +5s+5, 28~ + 6r + 55+ 5,5 — 7).
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If we continue as in the proof for Case 1, we can see that we have an
8-modular p-labeling of G.

Case 3: d=r+s.

Let ¢ = 2(4r + 4s)/(r + s) + 1, so the complete multipartite graph we are
working in is Kexd = Kox (r+s)-

Case 3.1: r = s =0 (mod 4).

Let C4y =G1+G2+(9-§-2,9-5+9-53—-1)and Cys =G3 + G4+ (9-
5+27-4-2,27- 7495 — 1) where

G =Y (Q(5i~59-5+9-4 —4i-5,8)
+Q(B-5-57-5+9-5-4,7),

Go=5%,(P(5-5+4i—6,7-5 —5i—6,8)),
Ga=Y347 (QO-5+9-4+5—527. 5 +9s — 4i —5,8))

i=1

+Q(9-5+23-4-5,27-5+85—4,7),
Gi=Y% (PO -5+23-2+44i~6,27 -5 +85—5i—6,8)).

First, we show that G; + G2+ (9:7 —2,9-5+9- 3 — 1) is a cycle of
length 4r and G3+G4+(9-5+27-§—2,27- 5 4+ 9s 1) is a cycle of length
4s. Note that by (Q1) and (P1), the first vertex of G is 9-5+9-5 -1, and
the last is 5. 7 —2; the first vertex of G2 is 5- 7 —2, and the last is 9. £ —2;
the first vertex of G3 is 27+ +9s — 1, and the last is 9. 5 4+23- § — 2; and
the first vertex of G4 is 9- 5 +23-4 —2, and the last is 9- § +27- § — 2.
For 1 <i < 4, let A; and B; denote the sets labeled A’ and B’ in (Q2) and
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(P2) corresponding to the path G;. Then using (Q2) and (P2), we compute

A =i (5i-55-2)uUl5-5-55-5-2]C[0,5-5-2],
By=Ui'(9-5+9-2-4i—-1,9-5+9-5-4i+3))
U[7-Z49-5,7-5+9-2+3
=[7-5+9-4,9-5+9-5-1],
Ap=UL,(5-5+4—65 T +4-2)=(5-5-29-5-12],
By=UL, (7 5-5i-1,7-5-5i+2) C[9-5-1,7-5-3],
As=U3] (9-5+9-3+5i—59-2+9-%+5i—2)
UQ-+23-5-509-5+23.5-12]
CO-3+9-£9-5+23-5-2,
By=U3 (27 -2 +9s—4i—1,27- § +9s — 4i + 3])
U[27- % +85,27- 5 +8s+3
=[27-% +88,27- 5 +9s5 1],
Ag=UL, (9 5+23-3+4i—6,9-5+23- % +4i—2)
=[9-54+23-$-2,9-5+27-3 -2,
Bi=UL, (27 5 +8s—5i — 1,27 +8s — 5i + 2))
C[27-3427-4-1,27-% +8s -3
Thus, A; € A; < B; < By < A3 £ Ay < By < B;. Note that V(G;) n
V(G2) = {5-7—2} and V(G3)NV(G4) = {9-5+23-5—2}; otherwise, G; and
Gj are vertex-disjoint for i # j. Therefore, G1+G2+(9-5-2,9-5+9-5-1)
isacycle of length 4r and G3 + G4+ (9- 5 +27-§-2,27- 5 4+9s—1)isa

cycle of length 4s.
Next, let E; denote the set of edge labels in G; for 1 <{ < 4. By (Q3)
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and (P3), we have edge labels

Er=Ui] (9-5+9-4-9+1,9-2+9-2—9i+8))
U@-5+9-£+29-5+9-5+8]
=9-24+9-44+29-5+9-5-1]
\{9:5+9-£+99-5+9-5+18,...,9-54+9-5 -9},
Ep=U%L,([9-5-9%+1,9-5—9+8])
=(1,9-5-1\{9,18,...,9- £ -9},
Es_U,_1 (9-5+9-5-9+1,9-7+9-3—9i+8])
U9-3+9-5+2,9-249-%1+8
=[9-5+9-5+2,9-5+9-3-1]
\{9-5+9-5+9,9-5+9-§+18,...,9-5+9-5 -9},
E4_U,_l([9-§+9-§—9i+1,9-§+9-§—9i+8])
=9-7+1,9-74+9.4-1]
\{9-5+9,9-5+18,...,9-7+9-§~9}.
Moreover, the path (9-§ —2,9- 5 +9-§ — 1) consists of an edge with label
9-2+49-%+1, and the path (9- 5 +27- §—2,27- § + 9s — 1) consists of
the edge with label 9- £ +9- § +1. Thus, the edge set of G has one edge of
each label i, where 1 <i<9-5+9-3—1except9,18,...,9-5+9-5-0.

That is, the set of edge labels is [1, |cd/2]] \ ¢Z. Therefore, we have an
(r + s)-modular p-labeling of G.

Case 3.2: r=0and s=1 (mod 4).

Ifs=1,let Cyy = (27-549,9-5+5,27-5+7,9-5+6,27- 1 49). Otherwise,

]etC4r—-G1+Gg+(9 -—1 9 5+9: "1+4) andC4,—G3+(9 Z+23.

22145,27.2+8s—1,9- ’+23 "‘1+6)+G4+(9 £+27-231 +6,27-5+9s)

where

G1=Q(0,9-5+9-51,4)+ 211 (Q(5: —2,9- 5 +9- 552 — 4i - 2,8))
+Q(5-5-27-5+9-251+3,3),

Go=3%, (P(s-§+4z‘—5,7-g—5i—5,8)),

G3=Q9-5+9 %51 +5,27-§ +95—4,4)

+ TN (QO 5 +9- 551 +5i+3,27- L + 95 — 4i — 6,8))
+Q(9-£+23-£-—1+3 27 - % +8s—2,5),
G4—Z (P(9 £+23- 231 +4i+2,27- 7 4+ 85— 5i —6,8)).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.
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Case 3.3: r_Oands—2(mod4)
LetC4,.—G1+G2+(9 £-29. +9 "2+8)andC4a—Gg+G4+
(9-5+27-232 +12,27- "+93—1)where

T (QG5i-59-5+9- 52 —4i+4,8))
+Q(5-5-57-5+9- ’;2+5,7),

=%, (P(5-%+4i—6,7-%—5i—6,8)),
8=-2

=35 (QO-5+9-252 +5i+4,27] + 95— 4i — 5,8))
+Q(9-5+23-232+9,27- 5 +85-2,3),

Ga=P(9-5+23-232+10,27- ] +85—6,4)

YT (P95 +23- 232 + 4i+8,27 - F + 85— 5i —8,8)).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.

Case 3.4: r_Oands_3(mod4)
Let C4r =G1+G2+(9-5-1,9-5+9- "3+13)andc4, Gg+(27 LS
8s+1,9-5+23. 23 3-r-17)+G4+(9 £+27-232420,27- +9s)where
G1=Q(0,9-5+9-252+9,4)
+ i (Q(Bi-2,9-T+9- 53 —4i +7,8)
+Q(B-5-2,7-5+9- ’;3+12,3),
Go=3E%,(P5-5+4i—57 -5 -5 —5,8)),
G3=Q(9-5+9 %52 +14,27- 5 +9s— 4,4)

2=3
+3:.5 (QO-5+9-%52 +5i+12,27- % + 9s — 4i — 6,8)),
Ga=P(9-5+23-2324+17,27- 5 +85—7,6)

-3
+ 3.5 (PO-5+23- 252 +4i 416,27 § + 85 — 5i — 8,8)).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.
Case 3.5: r=s=1 (mod 4).
Ifs=1,1let Cyp = 27 -2 +15,9- 5532 + 9,27 71 +13,9. 51 4
10 27 '-1 + 15). Otherwise, let Cy, 7. 9.1

=1 14. '-‘ +2,5- 2 +1)+ G2+ (9-
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Cis =G3+ G4+ (9- 5% +27- 232 +10,27 . =2 + 95 + 6) where

G =% (Q5i—5,9 551 +9- 551 —4i +4,8)),
Cr=Xi% (P(5- 52 +4i - 3,7- I52 —5i - 3,8)),
G3=Q(9 -5 +9-251 +9,27. ';1+93,6)
+ 30N Q- f—-1+9-£-—‘+5i+8 27. 721 4 95 — 4i — 1,8))
+Q(9 52 +23. 271 +8,27- 2 + 85+ 5,3),
Gs=P9- -5t +23. 231 +9,27. "4'1+83+1,4)
+ PO 5 423 55 40 4+7,27- 552 + 85— 5i— 1,8))
+P9-t5t 427 25t 47,27 55 427 221 4 9,6).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.

Case 3.6: r =1 and s =2 (mod 4).

Ifr=1,let Cy = (9252 +13,0,2,1,9- 252 +13). If s = 2, let Cy, =
(27- '-1 +25,9- 51 +14,27 - 2 +24,9- 31 +16,27- ’;1 +22,9 -
=+ 17,27. = +21,9. 51 4 18,27 - 4 25) Otherwise, let Cy, =
G,+(5 '-1 V7- 132 +2,5- r21+1)+G2+(9 1 +1,9- 751 +9. 252 4 13)
and Cy, = c:3+(27 '-1 +85+8,9- 51 +23. 3_2 +16)+G4+(9 =iy
27.232 418,27 71 +93+7 9. ,_, +0. ’-2+14 27-231 4+ 954 6) where

=Q(0,9- 5L +9- 552 +9,4)

+z"?“(Q(5i-2 9.5l +9. 552 _4i 1 7,8))

+QG5- -2 -2,7. ’-1+9 az 2+105)
G, = E(P(S-”;—‘+4z 3,7- 551 - 5i - 3,8)),
G3=z{jf(Q(9-’—-2—1+9-=—-2—2+5z+11,27.f;—1+gs-4i+2,8)),
Gy =P(9 31 +23. 232 + 16,27 231 + 85,6)

+ X T (PO T 423 252 + 40+ 15,27 51 + 85 — 5i — 1,8))

i=1

+P(9- 32 +27- 232 + 15,27 T2 + 27 . 232 4 17,6).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.

Case 3.7: r =1 and s = 3 (mod 4).

Ifs=3,let Cyy = (27- 2532 +33,9- 552 + 18,27 1 +32,9. =51 419,27
=2t +31,9- 551 +20,27- "‘1+28 9. '-1+21 27- '-1+27 9 ’-1+22 27-
*-1 +26,9- *-1 +23,27. f-l +33). Otherw1se, let 04, = G’1+(7 49,
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22 4+17,5- 274, 7- 51 42,5 12k + 1)+ G o+ (9- 55 +1,9- 551 49 233 417)
and Cys = G3 +G4 + (9 52 +27. 252 4 23, 97 =1 +93+6) where

=S (QGBi—5,9 51 +9. 3 — 4 +13,8)),

Cr=Yi% (PG 52 +4i—3,7- I52 —5i - 3,8)),
G3=Q(9 -5 +9. 252 +18,27- =1 + 95,6)

+ T QO S 9. 552 + 5 417,27 5L 4+ 05 — 4i — 1,8))
+QO-F +23- 22 +17,27- 71 + 85+ 3,7),

8-3
Ga=Y.5 (PO 232 +23- 232 +4i +16,27- =2 + 85— 5i + 1,8))
+P(9- 25 +27. 258 420,27 I3 + 27 258 4 22,6).

If we continue as in the proof for Case 3.1, we can see that we have an
(r 4 s)-modular p-labeling of G.

Case 3.8: r =s =2 (mod 4).

If s =2, let Cyg = (27 ”—2 + 31,9 "‘2+18 27 - "2 + 30,9 - "2 +
19,27 - f;2 +27,9- 52 + 20,27 . '-2 +26,9 ,_2 +21,27. ,_2 +31).
Otherwise, let Cy, = G1 +G2+(9- ”‘2 +3,9. "2 +9. "2 + 17) and
Cia=G3+Gs+(9- 52 +27 - 22 + 21 27. "2 + 93 +13) where

G =55 (Q(5i —5,9- 552 9. 252 — 4i +13,8)
+Q(5-2,7- 52 +9. ;2+14,3),
Gz=P(5-£’;—2+1,7 22 1 1,4)
+ 5 (PG 52 4+ 4i-1,7- 552 — 51— 1,8)),
=Q(9-52+9- 252 +18,27- 72 + 95+ 9,4)
Q- 52 +9- 552 45 416,27 32 + 9s — 4i +7,8))
+Q9- 52 +23- 232 +16,27- 732 + 85+ 10,7),
Ga= 3.5 (PO T52 +23- 252 4 4i + 15,27 552 + 85 — 5i + 8,8))
+ P(9752 +27- 232 415,27 132 + 27 132 4 27, 4),

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.

Case 3.9: r =2 and s =3 (mod 4).

Ifr =2 let C4r = (9- 252 +22,0,9 232 +21,1,5,2,4,3,9- 253 4 22).
Otherwise, let Cyr = G, H Gz +(9- ';2 +3,9. ';2 +9. 3;3 + 22) and
Cao=G3+(9-752+23-233 +25,27- 52 + 85 +12,9- 552 + 23 . 232 4
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26) + G4+ (9- 552 + 27 - 233 + 28,27 - 132 + 95 + 13) where
G1=0Q(0,9- 552 +9- 552 1+ 18,4)
QGBI - 2,9 52 +9- 52 — 4i +16,8))
+Q(G-2-2,7-552 +9. 252 417,7),
Ga=P(5-32 +1,7- 532 + 1,4)

r—2
+ 35 (P52 +4i—1,7- 32 — 5i — 1,8)),

3—-3
G =315 (Q(9- 752 +9- 253 +5i + 18,27 252 4+ 05 — 4i + 9,8))
+Q(9- 552 +23. 232 + 23,27 732 + 85+ 11, 5),

=3
Gi=Y.5 (PO 52 +23- 552 + 4 +22,27- 252 4 85 — 5i + 7,8))
+P(9- 752 +27- 258 426,27 532 4 27 232 4 30, 4).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.

Case 3.10: r = s = 3 (mod 4).

Let Cyr = Gl+Gg+(9--';—3+5,9-';;+9- 253 4+ 26) and Cy, =
03+G4+(9-r—;3+27-£;—3+32,27-%+27- 228 440,952 + 27
223 1 33,27- 238 05 +20,9- 753 +9- 253 4+ 27,27 . 232 4 95 + 19) where

r=3
Gr=Y.5 (Q(5i —5,9- 553 +9- 252 — 4i +22,8))
+Q(5-2,7- 552 +9. 2552 4+ 21,5),
Ga=P(5- 232 +2,7. 233 4+ 2,6)
r—3
+3 5 (PGP +4+1,7- 552 -5+ 1,8)),

23

Gs=Y.5(QO 53 +9- 252 +5i + 24,27 =52 + 95 — 4i + 15, 8))
+Q(9- 752 +23- 252 120,27 32 4+ 85+ 19,3),
Ga=P(9 5% +23- 232 4+ 30,27 .32 4 85 + 15,4)

a=3
+ 3.5 (PO-532 +23. 252 + 40 + 28,27 233 + 85 — 5i +13,8)).

If we continue as in the proof for Case 3.1, we can see that we have an
(r + s)-modular p-labeling of G.

Case 4: d=2(r + s).

Let ¢ = 2(4r + 48)/(2r + 2s) + 1, so the complete multipartite graph we are
working in is Kcxa = Ksx (2r+2s)-

Case 4.1: r is odd, s is odd.

If s=1,let Cyy = (15- 252 +17,5r +5,15- 52 +14,5r + 6,15 - I52 +17).

143



Otherwise, let Cy = Gy + (47 + 55,3 731,4r — 2,3 41+ G+ (5
51 +1,5r +5s—1) and C4 = G3 +(15- '-‘+93+9 5r+13-251+4,15.
'"1+93+8 5r+13- "1+5)+G4+(5r+15 145,15 r‘1+15 =1y
14 5r+15- 251 + 6,15 - 252 + 10s + 7,57 + 55,15 - "“+103+6) where
=2§"Q(3i—3 5r 4+ 5s — 2i — 3,4),
Go=Y12 " P(3- r=l +2i—1,4r — 3i — 5,4),
G3=§:._ 'Q(Br+5s+3i—1,15- 5L + 105 — 2i + 4,4),
=7 P(5r+13 =1 4+ 204+ 3,15 251 + 95 — 3i + 4,4).

If we continue as in the proof for Case 3.1, we can see that we have a
(2r + 2s)-modular p-labeling of G.

Case 4.2: r is odd, s is even.

Let Cyr = G1+(4r+5s,3-51,4r—2,3- 551 +1)+ G +(5- 751 +1, 5r+55—1)

and Cys = G3 + (15- 252 +Qs+8 5r+13-2—1,15. 51 +93+6 5r+13-
3)+ G4+ (5r +15- -—2 15- 51 +15.- +7 5r + 15 - $-1,15- 51 +

103+7 5r + 55,15 - ’-1 +10s+6) where -

Z Q(31—35r+53—2z 3,4),
Gg—z P(3 I+ 20— 1,4r — 3i - 5,4),
Gy =Y 5, Q(5r+5s+3i — 1,15 751 4+ 10s — 2i + 4,4),
Gy = ?=_11P(57‘+13-§+2i-—2,15-%1+93—3i+3,4).

If we continue as in the proof for Case 3.1, we can see that we have a
(2r + 2s)-modular p-labeling of G.

Case 4.3: r is even, s is odd.

Let Cyr = G1+(4r+55+41,3-§—3,4r+5s,3-5-2)+G2+(5-§ -2, 5r+55—1)
and Cy, = G3+(15- "+9.s,5r+13 =1 +5 15- '+9s—2 5r+13-251 +
6)+ Gy + (57 +15- "‘1 +6,15- % +103—1) where

Z,=1 Q(3i — 3,5r + 55 — 2i — 3,4),
Go= Y2, P(3-§+2i—4,4r - 3i—4,4),
=Zi=1 Q(5r + 55+ 3i — 3,15 - § + 10s — 2 — 3, 4),
= S P(5r+13- %51 +2i+ 4,15 + 95— 3i — 5,4).

If we continue as in the proof for Case 3.1, we can see that we have a
(27 + 2s)-modular p-labeling of G.

144



Case 4.4: r is even, s is even.

Let Cy4r = Gy +(4r+55+1,3-5—3,4r+5s,3-5 —-2)+Go+(5-5—2,5r+55—1)
and Cys = G3 +(15- 5 +9s+1,5r +13-3-3,15- 5 +9s,57 +13- 5 - 2) +
Gy+(5r+15-5—2,15- § +10s — 1) where

Gy =5 Q(3i — 3,5r + 55 — 2 — 3,4),
G2 =Y 5, P35 +2i—4,4r — 3i — 4,4),
Gs =3 Q(5r +5s+3i — 3,15 § + 10s — 2i — 3,4),
Gi=Y% P(5r+13-5+2i—4,15-5 +9s—3i —4,4).

If we continue as in the proof for Case 3.1, we can see that we have a
(2r + 2s)-modular p-labeling of G.

Case 5: d = 4(r + s).

Let ¢ = 2(4r + 4s) /(47 + 4s) + 1, so the complete multipartite graph we are
working in is Kcxa = K3y (art4s)- Let Car = G1 + (57 + 65,2r —2) + G2 +
(3r—2,6r+6s—1) and Cys = G3+{(9r+11s—1,6r +8s+ 1)+ G4+ (67 +
9s,9r + 12s — 1) where

Gi1 =317} Q(2i — 2,60 + 65 —i —2,2),

Gy =Y i, P(2r —3+1,5r —3—2i,2),

Gs=3 i ,Q(6r+6s+2i—2,0r+12s —i—2,2),
Gy =Y iZ) P(6r +8s+14,9r + 11s — 2i — 3,2).

(In the case when r = 1, the path G, is empty, and when s = 1, the
path G4 is empty. However, this does not change the proof in any way.)
If we continue as in the proof for Case 3.1, we can see that we have a
(4r + 4s)-modular p-labeling of G. n

Theorem 9. Let G = Cy, U Cy, and let n = 4r + 4s. Then there exists a
cyclic G-decomposition of K(an41yxt) K(n+1yx2ty K(nj2+1)xats K(nsa+1)xsts
Koy (nsayty Kox(ns2yer Kaxnt, and of Kaxane for every positive integer &.
Lemma 10. A d-modular p-labeling of Cyr U Cys42 exists for r,s > 1 and
de {1,4,2r +2s+1,4(2r + 2s + 1)}.

Proof. Let G = Cy U Cysqo where 1,5 > 1. The cases d = 1 and
d = 4(2r + 2s + 1) can be obtained from the fact that such a G neces-
sarily admits a p*-labeling (see [4]).

Case 1: d = 4.

Let ¢ = 2(4r + 4s + 2)/4 + 1, so that the complete multipartite graph we
are working in is Kcxa = K(2r42s42)x4-
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Case 1.1: r < s.
Let C4r = G1 4+ G2+ (2r —1,4r) and Cy542 =G3 + G4 +Gs + (4r + 25 +
2,8r + 4s + 4) where

Gy =Q(0,2r +1,2r — 1),

Gy = P(r—1,r—1,2r),

Gz =Q(4r + 1,87 + 25+ 3,25 + 1),
Gy=P(4r+s+1,6r+3s+3,2r—1),
Gs=Q(5r+s+2,97+s+2,2s —2r+1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have a 4-modular p-labeling of G.

Case 1.2: 7 > s.
Let C4r = G1+ G2+ G3+(2r —1,4r +2,0) and Cys42 = G4+ G5 + (87 +
2s + 5,47 + 2s + 4,87 + 45 + 6) where

Gy = P(0,2r +25+2,2r —2s — 2),
Ga=P(r-s-1,3r—s+2,2s - 2),
G3 =P(r—2,7r—2,2r +2),

Gy=Q(4r + 3,8+ 25+ 5,25 + 1),
Gg = P(4r+s+3,8r+s+5,2s—-1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have a 4-modular p-labeling of G.

Case 2: d=2r+2s+1.

Let ¢ = 2(4r +45+2)/(2r +2s+1) + 1, so the complete multipartite graph
we are working in is Kcxa = Ksx (2r4+2s+1)- In order to show that G admits
a d-modular p-labeling, we examine when r is odd or even and when s is
odd or even and show that any of the four possible combinations will satisfy
the necessary conditions for the desired labeling.

Case 2.1: 7 is odd.
Let Cyr = G1+ (97 + 55 +4,13- I52 + 554+ 9,9r + 55 + 2,13 - 51 + 55+
10) + G2 + (15 - 25! + 55 + 10,107 + 55 + 3) where

Gi =E,~L§ Q(57 + 55 + 3i + 1,107 + 55 — 2i + 1, 4),
Gz=E,~L§P(13~15—‘+5s+2i+8,9r+5s—3i—1,4).

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge
labels is [1,5r — 1]\ ¢Z with 57 + 5s + 4 < V(Cyr) < 107 + 55 + 3.
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Case 2.2: r is even.
Let C4y =Gy + (97 +58+5,13- 5 +55+1,9r +55+4,13- 5+ 55 +2) +
G2+ (15 5 + 55+ 2,107 + 55 + 3) where

Gy = Y5 Q(5r + 55+ 3i +1,10r + 55 — 2i + 1,4),
Gy =Y E, P(13-§ +5s+2i,9r + 55 — 3i,4).

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge
labels is [1,5r — 1] \ ¢Z with 57 + 55 +4 < V(Cy,) < 10r + 55 + 3.

Case 2.3: s is odd.

Let Ciop2 =Ga+ (5r +45+2,3- 252 +3,5r +4s+1,3- 351 +4) + Gy +
(5- 251 + 4,57 + 55+ 3,0,57 + 55 + 1) where

Gs = Yi%, Q(3i—1,5r + 55— 2% — 1,4),
Ga= Y07 P(3- 251 +2i+2,5r +4s — 3i — 2,4).

i=1
If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge
labels is [57 + 1, [(ed — 1)/2]] \ ¢Z with 0 < V(Cy,) < 5r + 55+ 3.
Case 2.4: s is even.
Let Cyo42 = Gz + (57 +4s+3,3-5—1,57+4s+1,3- $)+G4+(5- 5,57+
5s + 3,0, 57 + 5s + 1) where

Gs =57 Q@i —1,5r +5s -2~ 1,4),
Gy=Y1 P(3 §+2—2,50 +4s—3i—2,4).

If we continue as in Case 3.1 in Lemma 1, we can see that the set of edge
labels is [5r + 1, | (ed — 1)/2]] \ ¢Z with 0 < V(Cy,) < 57 + 55 + 3.

Since a labeling of Cyr from either of the first two subcases will be
vertex disjoint from a labeling of Cy,42 from either of the last two subcases,
we have a labeling of G = Cy, U Cys42 where the set of edge labels is

[1,led/2]] \ ¢Z. Therefore, we have a (2r + 2s + 1)-modular p-labeling of
G. |

Theorem 11. Let G = Cyr U Cyspo where r and s are positive integers
and and let n = 4r + 45 + 2. Then there ezists a cyclic G-decomposition of
K@ni1yxt: Km/2+1)xaty Ksx(ny2yt, and of Kaxan: for every positive integer
t.

Before proceeding to our final case, we note that the parity condition
(i.e., Lemma 5) rules out the existence of a d-modular p-labelings of G in
Lemma 10 for d = 2 and for d = 4r 4- 45 + 2.
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Lemma 12. A d-modular p-labeling of Carypo2 U Chspa exists for r,s > 1
andd € {1,2,4,8,r +s+1,2(r +s+1),4(r+s+1),8(r+s+1)}.
Proof. Let G = Cypyg UCygyp where 1 <r < s. Thecasesd=1,d =2,
and d = 8(r + s) can be obtained from the fact that such a G necessarily
admits an a-labeling (see (1]).
Case 1: d =4.
Let ¢ = 2(4r + 4s + 4)/4 + 1, so that the complete multipartite graph we
are working in is Kcxa = K(ar42s+3)x4-
Case 1.1: r = s.
Ifr=s=1,1let C4yry2=1(0,3,2,6,4,9, 0) and Cys42 = (10, 22, 11, 19,
13, 23, 10). We leave it to the reader to check that this yields a 4-modular
p-labeling of G.

Ifr=s5>1let Coy2o=G1+ G2+ (2r+ 1,4r + 5,0) and Cys42 =
G3+ G4 + (65 + 5,10s + 9,65 + 7,125 + 11) where

G = P(0,2r + 4,2r - 3), Gy = Q(r,7,2r + 3),

Gz =Q(4s+6,10s +10,2s +1), G4= P(5s+6,9s+ 11,25 — 2).
If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have a 4-modular p-labeling of G.

Case 1.2: r < s.
Let Cqry2 = Gy + Go + (2r + 1,47 + 3,0) and Cy540 = G3 + G4 + G5 +
(8r + 25 + 7,4r + 25 + 5,87 + 45 + 9) where

G, = P(0,2r +2,2r — 1),
Ge=Q(r+1,7r+1,2r +1),

G3=Q(4r +4,87 +25+ 8,25+ 1),

Gy =P(4r +s+4,6r +3s+7,2r),
Gs=P(r+s+4+4,9r+s+7,2s—2r —1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have a 4-modular p-labeling of G.

Case 2: d=8.
Let ¢ = 2(4r + 4s + 4)/8 + 1, so that the complete multipartite graph we
are working in is Kcxd = K(r4s+2)xs-

Case 2.1: 7 = s.
Let Cir42 =G + G2+ (67‘ +5,2r+2,8+7) and Cys42 = Gz + (97 +
7,117 4+ 10) + G4 + (10r + 9,127 + 13, 87 + 8) where

G; = Q(0,6r +6,2r 4+ 1), Gy = P(r,5r +5,2r — 1),
Gs = P(8r +8,10r +12,2r —2), Gy = Q(9r +9,9r +9,2r +1).
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If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have an 8-modular p-labeling of G.

Case 2.2: 1 <s<3r+1andr+sis odd.
Let Cyr42 =G1 + G2+ G3+ (2r+4s+5,2r+1,4r + 45+ 7) and Cyg42 =
G4+ Gs + Gg + G + (4r + 65+ 9,4r + 85 + 13,4r + 4s + 8) where

G, =Q(0,2r +4s+6,2r + 1),

Gy = P(r,4r +3s+6,s —r — 1),

G3 = P(ttg=1, m2=1 4 45+ 5,3r — 5),

Gy =P(4r + 45+ 8,6r + 65 + 12,25 — 2r — 1),

Gs =Q(3r+5s+9,3r + 7s + 13,2r — 1),

G¢ = P(4r 4 55 + 8,57 + 6s + 10,s — 7 + 1),

Gy =P(7 - SH=2 425 +12,7 - 2571 4 25+ 12,7 + 5+ 1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have an 8-modular p-labeling of G.

Case 2.3: 1 <3< 3r+1andr+sis even.
Let Cyry2 =G1 + G2+ G3+(2r +1,4r +4s+7) and Cye42 = G4 + G5 +
Ge + G7 + (4r + 65 + 10, 4r + 8s + 12) where

G1=Q(0,2r +4s +6,2r + 1),

Gy =P(r,4r+3s+6,s —r —1),
Gs=Q(=* +1,42 +45+5,3r—s+1),

Gy =Q(4r + 45+ 8,6r + 65 + 12,25 — 2r),

Gs =Q(3r +5s+9,3r + 7s + 11,2r + 1),

Gg = P(4r +55+9,5r +6s +11,s —r — 1),
Gr=Q(7- 552 +25+ 10,7 242 + 25+ 10,7 + s + 1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have an 8-modular p-labeling of G.

Case 2.4: s =3r + 1.
Let Cyrpz = Gy + G + (2r — 1,147 4+ 9,2r 4+ 1,167 + 11) and Cye4p =
G3 + G4 + G5 + Gg + (227 + 16,287 + 23,167 + 12) where

G1=Q(0,14r +10,2r +1), Gz = P(r,13r + 11,2r — 2),
G3 = P(16r + 12,24r + 18,4r + 1), G4 = Q(18r + 14,24r + 21,2r - 2),
Gs = Q197 + 14,23r + 17,2r + 3), Gg = P(20r + 15,20r + 15,4r +2).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have an 8-modular p-labeling of G.
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Case 2.5: s > 3r +1 and r + s is odd.
Let Cyrpo = G1 + Go+ (2r + 45+ 6,2r + 1,4r + 45 + 7) and Cye42 =
G3 + G4+ Gs + Gg + G7 + (4r + 65 + 10,4r + 85 + 14,47 + 45 + 8) where

Gy = Q(0,2r + 45 +6,2r + 1),

Gy = P(r,7 +4s+6,2r — 1),

G3 = P(4r +45+8,7r + 7s + 14,8 — 3r — 2),
G4=Q(5-Ii;;l-+23+11,p-123;1-+2s+17,r+s+1),
Gs = Q(3r + 55+ 10,3r + 7s + 14,2r — 1),

Gs = P(4r + 55+ 9,57 +6s + 11,5 — r + 1),
Gr=P(7-2t5=L + 25+ 13,7 8= + 25 + 13,7 + s + 1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have an 8-modular p-labeling of G.

Case 2.6: s >3r+1 and r + s is even.

Let Cyrqpo = G1 +Go + (2r + 45+ 6,2r + 1,47 + 45 + 7) and Cysyp =
G3 + G4+ Gs + Gg + Gy + (4r + 65 + 10,47 + 8s + 14, 4r + 45 + 8) where

Gy = Q(0,2r + 45 +6,2r + 1),

Gy = P(r,r +4s+6,2r — 1),

Gy =P(4r +4s+8,7r + 7s + 14,5 — 3r — 2),
Gy=P(5 -2 +2s+7,9-F2 + 25+ 11,7 +s5+1),
Gs=Q(3r+55+9,3r +7s+13,2r — 1),

Ge = P(4r + 55 + 8,5r + 6s + 10,5 — r + 1),
Gr=Q(7-T2 +2s+10,7- 52 + 25+ 10,7 + s+ 1).

If we continue as in the proof for Case 1 in Lemma 1, we can see that we
have an 8-modular p-labeling of G.

Case 3: d=r+s+1.

Let ¢ = 2(4r + 4s + 4)/(r + s+ 2) + 1, so that the complete multipartite
graph we are working in is Kcxa = Kox(rts+1)-

Case 3.1: r and s are both odd.

In order to show that G admits a d-modular p-labeling, we examine when
r=1,3 (mod 4) and when s = 1,3 (mod 4) and show that any of the four
possible combinations will satisfy the necessary conditions for the desired
labeling.

Case 3.1.1: r =1 (mod 4).

Ifr=1,let Coryo = (0,9- 51 +12,1,9- 251 +9,3,9. 251 4 13,0). We leave
it to the reader to check that this yields an (r + s + 1)-modular p-labeling
of G.
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Ifr>1,let Corpa=GCG1+G2+(9- 72 +1,9. 42 —9. 771 g. 12l 4
3,9- L";“’-+4)where

Gr=Q(0,9-T52,4) + Yi, 1 (Q(5i — 2,9 T — 4i — 2,8))
+Q(5-F2 2,752 45,7),
Gr=30% (P(5- 152 +4i—3,7- 552 + 5 — 50 — 2,8)).
Case 3.1.2: r =3 (mod 4).
Let Caryz = G1+G2+(9- 233 +6,9- 742 —9.758 4,9.758 1 8,9. T2 4 4)
where
= Q0,9 T, 4) + T, (Q(5¢ ~ 2,9 - =E2 — 4i — 2,8))
+Q(5- f;3+3,7 -12-+s+2,3),
Gg=P(5-'-3+47 e+ 5-2,4)
+ (PG B +4i+2,7 352 + 55— 4,8)).
Case 3.1.3: s=1 (mod 4).

Ifs=1,let Cys42=(9- r;1+149 "‘1+1gg "'—1_|_169 r—1+189

22 +17,9- 5532 +21,9- 252 4+ 14). We leave it to the reader to check that

this yields an (r +s+ 1)-modula,r p-labeling of G.
Ifs>1,let Cigpo=G3+Gs+(9- 22 +9 231 +8,9.- 22 4+9. 251 4
12,9 - ££2 + 5) where

G3=P(9~ﬁ2+5 g.ﬁ3+g.£—_1+5 5)

F O THQO T +5i+4,9- T5 +9- 251 — 4i 4 4,8))
+Q0- 552 +5- 271 +4,9- 152 + 7. 550 4 8,4),
Ga=Q(9 -2 +5.23L +7,9. 082 4 7. 221 1 7.3)

+Z,_1(P(9 ke 4 5.2 1 4i+4,9- 782 4+ 7. 251 —_5i+4,8)).

Case 3.1.4: s =3 (mod 4).
Let Caspo = G3+Ga+(9- 252 +9. 233 +13,9. 142 1 9. 223 1 91 9. 142 4 5)
where

=P(9-ﬁ'—’+5 9.-zf2 +9.253 4 14,5)

+Z,_ (Q(9- == + 51 +4,9- 42 4+ 9. 253 — 4i 4 13,8)),
Q- +5-252+10,9- 52 +7. 552 4+10,7)

=3
FTR (PO o 45 42 1 440,95 47458 5 40,9).
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If we continue as in the proof for Case 2 in Lemma 2, we can see that we
have an (r + s + 1)-modular p-labeling of G.

Case 3.2: r and s are both even.

In order to show that G admits a d-modular p-labeling, we examine when
r =0,2 (mod 4) and when s = 0,2 (mod 4) and show that any of the four
possible combinations will satisfy the necessary conditions for the desired
labeling.

Case 3.2.1: » =0 (mod 4).
Let Caryo=G1+Ga+(9- 2 —9-54+3,9- £ +1,9- 5§ +4) where

Gl =Q(0’9' 22!2!4)-*'2?:—11 (Q(51—2’9. Liz-_s _41_2,8))
+Q(5-7-2,7- 42 +5+1,5),
Ga=P(5-5,7- 24 +5,)
+ 8 (P55 +4i-3,7- 2 +5—5i - 3,8))
+P9-5-3,9- 52 -9-4,5).

Case 3.2.2: r =2 (mod 4).
Ifr = 2,let Carya = (0,9-3+12,1,9-§+11,3,9-349,4,9-§4+8,6,9-5+13,0).
We leave it to the reader to check that this yields an (r + s + 1)-modular
p-labeling of G.
Ifr>2let Corpa=G1+(7- 2 +5+4,5- 532 +3)+ G+ (9- T$2 -
-222-1,9. 22 + 6,9 - T2 + 4) where

r—=2
G1=Q0,9- 552, 4) + 3.7, (Q(5i — 2,9 &2 — 4i - 2,8)),
Go=P(5- 132 +3,7- 52 + 5 — 4,6)
£=2_
+ 35 (P52 4+ 4i +2,7- T 4 5 — 5i — 5,8))
+P(9- 132 +2,9.¢2 9. 22 _ 4 5),
Case 3.2.3: s =0 (mod 4).

LetC4s+z=Gs+(9-’—F+7-j1_+7,9-r$+5-§+6)+c4+(9-ﬂzi+
9-246,9-7424+9.5+8,9-1324+59. 42 + 9.2 +6) where

Cs=TE (QUO- B +5i+2,9 5 + 9§ - 4i+2,8))
+QO- S +5-5+2,9 -2 +7-3+4,6),
Ga=3% (PO-T5+5-2+4i+2,9 72 47§ —5i+2,8)).

Case 3.2.4: s =2 (mod 4).
Let Cysp2 = Ga+(9- T2 +7-252+15,9- 052 45,252 47, 0. 72 4 7. 252 1 14) 4
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Gfl+(9-'—;ﬁ+9-’—;2-4-11,9-ﬁ2ﬁ+9-3;——2+17,9-’—§'—!+5,9-ﬁ;+9-’—;—2-:-15)
wnere

=2
Ga=3 .5 (QO 2 +5i+2,9- 52 +9. 252 —4i +11,8)),
Gi=Q(9 -2 +5-25249,9. 12 + 7. 552 4 9,5)
=2
+. 5 (PO- 2 +5-252 +4i4+7,9- T2 4 7. 252 —5i 4 7,8)).

i=1

If we continue as in the proof for Case 2 in Lemma 2, we can see that we
have an (r + s + 1)-modular p-labeling of G.

Case 3.3: r + s is odd.

For this case, we relax the condition that » < s. Then without loss of
generality, we need only consider when 7 is odd and s is even. In order
to show that G admits a d-modular p-labeling, we examine when r = 1,3
(mod 4) and when s = 0,2 (mod 4) and show that any of the four possible
combinations will satisfy the necessary conditions for the desired labeling.

Case 3.3.1: r =1 (mod 4).

Ifr=1,let C4yry2=(0,9-§+7,1,9-5+5,3,9-5 +8,0). We leave it to

the reader to check that this yields an (r + s + 1)-modular p-labeling of G.
Ifr > 1, let Cyrpp = G1+Ga+(9-TH=1—9. 271 45,9.721 4 3, 9. r45=1 1 g)

where

Gi= Tif (Q(5i —5,9- o=l — 4i 4 4,8))
+Q(5- 2,7 =1 + 5 45,3),
Gy=P(5 3L +1,7- 2£8=1 4 5.4)
+ 5 T (PG 44— 1,7 25l 45— 5i - 1,8))
+PQ-t —1,9. =l _g. 2l 4 9 5),
Case 3.3.2: r =3 (mod 4).
Let Cyrp2 =G1+Go+(9- k=L —9. 733 9. r23 1 7/ 9. re=1 | 8) where
r—3
G1 =35 (Q(5i—59 =1 —4i +4,8))
+Q(5- 12,7 - 5= +54+3,7),
Gz=2§f(P(5-'4;3+4i-1,7-ﬁ'-.2,‘—1+s—5z’+1,8))
+P(9-132 +3,9. 0851 9. 123 _3.5),

Case 3.3.3: s =0 (mod 4).
Let Cagy2=G3+(9- =L +7-5+11,9- T£=1 4 5.2 + 10) + G4 + (9
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rie=l 1 9.2410,9. 2= 4+ 9. +12,9- 28=1 4 9,9. 1=l 1 9. £ 4+ 10)
where

Gy =1, (Q(9 2=l 4 504 6,9- =1 +9. 5 — 40 +6,8))
+Q(9-%+§ £+6,9- =1 47.2+8,6),
Ga=Y%, (PO -7l +5.24+4i+6,9-t=L 1 7.2 -5/ +6,8)).

Case 3.3.4: s—2(mod4)

Let Cysyp = G3+(9- 2551 +7.252 +19,9. 78=1 1 5. 222 1 1], 9. 2=l 4
-"‘2+18)+G4+(9 -’-*—’"—+9 "2+159 -’-"'—’;+9 ’-2+219
L-!'-*a-—+99 =l 4 9. “"2+19)where

Gy =34 (Q(Q =l 4 5i+6,9- =l 4 9. 222 — 44 4 15,8)),
Gi=Q(9- z:t’;+s 222 413,9 k=l 4 7. '-2+13 5)

+2,_ (P(9-733=L +5.222 + 49 + 11,9-783=1 4+ 7.252 _ 5i + 11,8)).

If we continue as in the proof for Case 2 in Lemma 2, we can see that we
have an (r + s + 1)-modular p-labeling of G.

Case 4: d=2(r+s+1).

Let ¢ = 2(4r + 4s +4)/(2r + 25 + 2) + 1, so that the complete multipartite
graph we are working in is Kcxd = Ksxa(r+s+1)- In order to show that
G admits a d-modular p-labeling, we examine when r is even or odd and
when s is even or odd and show that any of the four possible combinations
will satisfy the necessary conditions for the desired labeling.

Case 4.1: r is odd.

Let Car42 =G1+ G2+ (5- 532 +1,5- 732 +55+5,5- 752 + 3,57 + 55+ 4)
where

Gy = 2?1‘ (Q(3i — 3,57 + 55 — 2i +2,4)) + Q(3- Z51,4r + 55+ 2,3),
G =Y.7 (P(3 2L 4 2i - 1,4r + 55 — 34,4)).
Case 4.2: r is even.

Let C4ry2=G1+ (4r +55+4,3- 5,4r +55+2,3- L +1)+ G2+ (5- § —
1,55 455+3,5- 5 +1,5r + 5s + 4) where

= Y E, (Q(3i - 3,5r + 5s — 2i +2,4)),
Gy =X 1 (P(3- 5 +2i— 1,4r + 55 — 3i — 1,4)).

Case 4.3: s is odd.
Let Cysq2 = G3+G4+(15--’—‘§—1+5r— 1,57+ 10s+8, 57 +5s+5, 57+ 105 +-6)
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where

2=1
G3 = 3.2, (Q(57 + 55 + 3i + 4,57 + 10s — 2i + 4, 4)),
Gy =Q(13 %51 4 5r,5r + 95+ 4,3)

+ 30, (P(13- #5L + 57+ 2i — 1,57 + 95 — 3i + 3,4)).

Case 4.4: s is even.
Let Cys42 =G3+ (57 +9s+8,13- £ +5r+4,5r +9s+7,13- £ + 57 +6) +
Ga+(15- % +5r 4+ 6,5r 4 10s + 8,57 + 55 + 5,57 + 10s + 6) where

Gs = Y5 (Q(5r + 55 + 3i + 4,5r + 10s — 2i + 4,4)),
Ge=3FE, (P(13- § + 57 + 2i + 4,57 + 9s — 3i + 4,4)).

If we continue as in the proof for Case 2 in Lemma 2, we can see that we

have a (27 + 2s + 2)-modular p-labeling of G.

Case 5: d=4(r +s+1).

Let ¢ = 2(4r +4s +4)/(4r + 45+ 4) + 1, so that the complete multipartite

graph we are working in is Kcxqa = Kax(dr4as44). 1f 8 =1, let Cyrya =

(0,16,2,12,4,17,0) and Cys42 = (18,20,19,26,22,29,18). We leave it to

the reader to check that this yields a (47 + 4s +4)-modular p-labeling of G.
Ifs>1,let Cyryo =Gy + (57 +65+5,2r) + Go + (3r — 1,3r + 65 +

3,3r+1,6r + 6s+5) and Cye42 = G + (6r + 115+ 9,6r + 85+ 5) + G4 +

(6r +9s+6,6r + 125 + 11,61 + 65 + 6,67 + 125 + 7) where

G1=37_,Q(2 —2,6r +6s—i+4,2),

Gy =12 P(2r +i—1,5r + 65 — 2 + 2,2),

Gs = "2 Q(6r + 65 + 2i + 6,67 + 125 — i +6,2),
Ga= Y P(6r+8s+i+4,6r +11s — 20 +7,2).

If we continue as in the proof for Case 3.1 in Lemma 1, we can see that we
have a (47 + 4s + 4)-modular p-labeling of G. |

Theorem 13. Let G = Cyrya U Cyspa where r and s are positive inte-
gers and let n = 4r + 4s + 4. Then there exists a cyclic G-decomposition

of Kiant1)xtr Kint1)x2tr Knj241)xats Knjar1yxse, Kox(nsayes Kosx(n/2)es
Kiyxnt, and of Koxon: for every positive integer t.
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