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ABSTRACT. We present a design for a seven game tournament of
the 7-player board game Diplomacy, in which each player plays each
country one time and each pair of players shares a border either 4 or
5 times. It is impossible for each pair of players to share a border the
same number of times in such a tournament, and so the tournament
presented is the most “balanced” possible in this sense. A similarly
balanced tournament can be constructed for a generalized version of
the game involving an arbitrary number of countries. We also present
an infinite family of graphs that cannot be balanced.
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In this paper we examine a notion of balance, or fairness, related to
tournaments of multiplayer games. Mathematical features of games have
been studied in many places, notably in [2]. The aspect that we wish to
balance is how often any two players oppose each other in the game. As
such, the games we are concerned with in this paper are ones in which
there is a set of possible positions, each of which is assigned to a unique
player, along with information about which positions are adjacent (or, in
the language of our motivating example, share a border). Thus an n-player
game G of this type can be modeled by a simple graph G on n vertices,
where an edge {,7} in G indicates that positions i and j are adjacent in
g.

Our motivating example is the game Diplomacy, a 7-player board game
in which each player is assigned one of the countries Austria, England,
France, Germany, Italy, Russia, and Turkey [1]. We will number these
countries alphabetically 1 through 7, so that we may describe their borders
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with the (symmetric) 7 x 7 adjacency matrix
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For example, the 1s in the (1,4) and (4,1) positions mean that Austria and
Germany share a border in the game, while the Os in the (1,2) and (2,1)
positions mean that Austria and England do not. The fact that no country
borders itself accounts for the Os along the main diagonal.

The game play in Diplomacy is noteworthy because it involves a negoti-
ation phase. This feature of the game is not relevant to the current work,
but has been studied from various computational perspectives, including in
[5] and [7].

Defining Bp is not completely intuitive geographically. For example,
although Austria and Turkey are separated by several countries geograph-
ically, the separating countries are not controlled by players in Diplomacy,
and so we consider Austria and Turkey to share a border in the game. This
matrix may be represented by the graph in Figure 1. With a nod toward the
work of this paper, we note that there are (}) = 21 pairs of distinct coun-
tries, but only 13 pairs share a border in the game. Thus if two countries
are chosen at random, the probability that they share a border is 13/21,
the number of edges divided by the number of pairs.

5 7

FIGURE 1. A graphical depiction of the countries and bor-
ders in Diplomacy.
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The relevance of shared borders in Diplomacy arises from the fact that
a player can most easily attack his or her direct neighbors. Thus it may
be advantageous (or disadvantageous) to share a border with a particular
player, or to play a position that has many (or few) borders. In a certain
sense, Diplomacy lacks symmetry. For example, suppose that an extraordi-
narily good player has chosen to play Austria. Then it is to one’s advantage
to avoid the good player, and so to play either England or France. Another
instance of the game’s asymmetry is that Austria, which is forced to fight
on multiple fronts, often loses earlier in the game than England, which has
fewer neighbors.

We begin by describing a seven game tournament of Diplomacy which
is as “balanced” (that is, which recovers the symmetry whose absence was
described above) as possible. To support this notion of fairness, each player
ought to play each country exactly once. This can be represented by a
7 x 7 Latin square in which the rows represent the different games of the
tournament, the columns represent the different countries in the game, and
the entry p in row r and column ¢ means that in the rth game of the
tournament, player p is assigned to the country c.

As will be made precise below, the “balance” of a tournament is char-
acterized by choosing a Latin square so that every pair of distinct players
faces each other across a border approximately the same number of times.
More precisely, let n;; be the number of times that player ¢ and player j
play bordering countries. Thus, certainly, for all i and j, 0 < ny; < 7
in Diplomacy. Our goal is to have all of {n;; : ¢ # j} be approximately
equal, and to explore the potential for such “balance” in other games more
generally.

1. TOURNAMENTS

Definition 1.1. A Latin square is an n X n array filled by n symbols so
that each row and column contains exactly one copy of each symbol.

For our purposes, the n symbols in a Latin square will be the integers
1,2,...,n, representing the different players in a game.

Definition 1.2. An n x n Latin square is reduced if its first row and first
column are both written in increasing order.
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Consider the reduced Latin square
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As described above, the entry of row r and column c¢ in a Latin square will
name the player assigned to country ¢ in game r of the tournament. The
first condition that Lp be reduced, that the first row is

1234567,

allows us to abuse notation somewhat and refer to the player occupying
country c in the first game by the name “c.” The second condition that
Lp be reduced, that the first column is the transpose of the first row,
means that we order the last six games of the tournament so that the first
country (Austria, in the case of Diplomacy) is played successively by players
2,3,4,5,6, and 7. For the purpose of finding a balanced tournament, it is
obviously sufficient to look at reduced Latin squares.

We now formalize the notion of a tournament for an arbitrary game in
which special importance is given to when two players share a border (for
example, that might be the only time that these players can interact with
each other), and these borders are defined by the game itself. Throughout
this paper, we will assume that our games consist of a set of positions and
information about which positions border which other positions. Thus our
games are equivalent to finite simple graphs.

Definition 1.3. A tournament for an n-player game G is a pair of n x n
matrices (B, L), where B is a symmetric {0,1}-matrix with Os along the
main diagonal, giving the border relationships in G, and L is a reduced
Latin square. That is, B is the adjacency matrix of the graph associated to
G. The number of 1s above the diagonal in B will be called the number of
borders in G, and will be denoted b(B). Thus b(B) is the number of edges in
the graph. Set N = (3), the total number of supradiagonal entries. Then
P(G) = b(G)/N is the number of edges divided by the number of pairs of
players. When no confusion will arise, we set b = b(G) and p = p(G).

One way to visualize the entire tournament is to draw seven copies of the
graph in Figure 1. The graph as labeled above corresponds to the first row of
Lp and the first game of the tournament; the original graph with the labels
permuted as 1 — 2,2 -+ 1,3 - 6,4 — 5,5 — 4,6 — 7,7 — 3 corresponds
to the second row of Lp and the second game of the tournament, and so
on.
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Throughout our discussions, we will only consider one game G at a time,
and thus we may discuss tournaments without specifically naming G.

We now define the statistics that will determine whether a tournament
is balanced.

Definition 1.4. Fix a tournament (B, L) for an n-player game G, and let
1 <i# j < n. Let niy count the number of times that players ¢ and j
share a border throughout the tournament (B, L). That is, suppose that
in row r of L, the value 7 appears in column ¢, ; and the value j appears in
column ¢y ;. Then

(1)

I z": 1 if ¢ ; is adjacent to c, j, and
v %7 |0 otherwise.

To each tournament (B, L), we may associate two extremal values:

(2) w(B,L):= r{1<a;c nij
and
(3) ¢B,L):= min nyy.

Looking at w(B, L) and (B, L) together will give an indication of how
well the tournament has been balanced; that is, whether each pair of players
face each other approximately the same number of times.

2. A BALANCED TOURNAMENT FOR Diplomacy

We now take a moment to consider the example of Diplomacy, and
whether a tournament (B, L) can be constructed for the game in which
the values of u(B, L) and ¢(B, L) are equal, or nearly equal.

Diplomacy is a 7-player game, and the game has 13 edges. Thus, in any
Diplomacy tournament,

D ni;=13-7=91

i<j

If all 21 values of n;; with i < j were equal to some k € Z, then we would
need 21k to equal 91. However, 21 { 91, so it is impossible for all of the these
values to be equal. It is thus impossible for u(B, L) and ¢(B, L) to coincide
in any Diplomacy tournament (B, L). Instead, because 4 < 91/21 < 5,
we see that the most uniform conceivable tournament (B, L} would have
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u(B,L) =5 and ¢(B, L) = 4. In fact, the tournament
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which was presented already, is balanced in the sense that direct calculation
shows that indeed w(Bp,Lp) =5 and {(Bp, Lp) = 4.

Given that u(B, L) and ¢(B, L) can never coincide in Diplomacy, the
tournament (Bp, Lp) is as “balanced” as possible, in the sense that each
pair of players shares a common border approximately the same number of
times throughout the course of the tournament.

The number of reduced 7 x 7 Latin squares (that is, the number of
options for L in a Diplomacy tournament) is 16942080. To find one in which
u(B, L) —¢(B, L) was minimal, we used the simplest imaginable brute force
technique, using a computer code from Brendan McKay [6]. For each 7 x 7
Latin square L, we have u(B,L) € {5,6,7} and ¢(B,L) € {0,1,2,3,4}.
The frequency distribution of these pairs is

u(B,L) = 5 6 7
4B,L)=0 0 72772 303548
1| 574 1373134 3378652

19068 4187862 5158218
65170 1672472 708488
4| 1408 714 0

The crux of this calculation is that #{L : u(B,L) = 5 and ¢(B,L) =
4} > 0. This shows that there are 1408 reduced Latin squares for which
w(B,L) — {(B, L) is minimal. The Latin square Lp is one of these 1408
possibilities.

W N

3. INFINITE FAMILIES OF GAMES HAVING BALANCED TOURNAMENTS

Throughout this section, suppose we have an n-player game G with an
n x n adjacency matrix B. Each reduced n x n Latin square L produces a
tournament (B, L) for G. Let v = u(B,L) and £ = ¢{(B, L), as defined in
equations (2) and (3). Set b = b(G) and p = p(G), as in Definition 1.3.

Proposition 3.1. Given a tournament (B, L) on an n-player game G, we
have

(4) £<pn<u.
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Proof. Note that
£ =minn;; < avg n;; < maxn;; = u,
and bn
avg Ny = oy = pn.
)

Corollary 3.2. In any n-player game G,
£< |pn) and u > [pn].
Proof. This follows from Proposition 3.1 and the fact that u,{ € Z. il

In the example of a Diplomacy tournament in Section 2, we had b = 13
and N = 21, so that p = 13/21, pn = (13/21)7 = 13/3 and the inequalities
of Corollary 3.2 become

£<4andu>5.

Definition 3.3. A tournament (B, L) is balanced if ¢(B,L) = |pn] and
w(B, L) = [pn].

Note that the Definition 3.3 has the following implications.

o If pn = §n = ;2 € Z, then “balanced” means that £ = u = ny;
for all i < j.

o If pn € Z (that is, if n — 1 { 2b), then “balanced” means that
u—¢ =1 and that some n;; are equal to £ while all others are equal
to u.

An example of this latter case is the balanced Diplomacy tournament,
above, in which there were seven pairs of distinct players i < j for which
ni; = 5 = u, and fourteen pairs of distinct players ¢ < j for which n;; =
4=24

In the following subsections, we show that a balanced tournament is
always possible in several game situations: when its complementary game
is balanced, when the number of edges in the game is very small or very
large, and when the game’s graph is an odd cycle consisting of at least three
elements.

3.1. Complementary games.

Definition 3.4. The complement of a graph is the graph having the same
vertex set and having exactly those edges which were not present in the
original graph. Correspondingly, the complement B¢ of an adjacency ma-
trix B is achieved by replacing every non-diagonal entry =z by 1 — z.

Theorem 3.5. Consider the n-player game G and the complementary game
G¢. If L is an nx n Latin square such that the tournament for G is balanced,
then the tournament for G¢ is balanced as well.
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Proof. Let n;; be defined for the tournament (B, L) as in equation (1), and

let n§; be the corresponding values for the tournament (B¢, L). It follows

from the definition of these values that
nfj =n- n,-,-
for all i < 5. Thus
w(G°) = n - £(G)

and
6G°) =n — u(G).
Because
(5) u(G%) - UG°) = .~ U9) ~n + u(©)
= u(g) - 4G),
the tournament for G¢ is balanced if and only if the tournament for G is
balanced. O

3.2. Games with very few (or many) borders. We now show that
there is a balanced tournament when the number of edges is sufficiently
small compared to the number of vertices. By taking complements, it will
then follow that there is also a balanced tournament when the number of
edges is symmetrically close to (3).

Theorem 3.6. Let G be an n-player game with b(G) < logyn. Then there
exists a balanced tournament for G.

Proof. Take any graph having n vertices and b edges, where b > 1 and n >
4%, Then 0 < pn = n2—_"1 < 5,%'-’_—1- < 1, so (¢,u) = (0,1). Therefore we must
find a Latin square describing a tournament in which no pair of players share
a border more than once. There are at most 2b non-isolated vertices in any
graph with b edges. Say that there are k+1 such vertices, and label these, in
any way, by 20,2122 23 . 2% where k < 2b—1. Assign all unused labels
from {1,...,n} to the isolated vertices. Let the rows of the Latin square L,
determining the tournament, be given by the cyclic permutations 123...n,
234...n1, 345...n12, and so on, with last row n12...(n—1). If two players
ever meet, then their labels always differ by 2 — 27 mod n for a particular
pair i and j. But at most one pair of adjacent vertices can have labels
differing by this value when n > 2max [2¢ — 27| = 2(22-1 — 20) = 4b — 2,
so no pair of players can be adjacent more than once. 0

Corollary 3.7. Let G be an n-player game with b(G) > (3) —logyn. Then
the graph associated to G is connected, and there ezists a balanced tourna-
ment for G.
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Proof. The graph for G is isomorphic to a subgraph of the complete graph
K, formed by removing at most log, n edges. Since K, has edge connec-
tivity n — 1, the resulting graph is connected. The rest of the proof follows

from Theorems 3.5 and 3.6. O

Note that we do not have any opinion concerning whether log, n can be
replaced by a larger quantity.

3.3. Cyclic Diplomacy. We now look at adjacency matrices whose asso-
ciated graphs are cycles, and the family of games that they define.

Definition 3.8. Consider an r-by-r array of integers. We will consider the
upper-left entry in this array to be given the index (1,1), the entry to its
immediate right is indexed (1,2), the lower-right entry in this array to be
indexed (r,7), and all other entries given the obvious indices.

Definition 3.9. In an r-by-r array of integers, the d-diamond is the set of
entries having the indices
{(z,y):ye{d+1-z,z+d,2r—d+1—-z,z—-d}}N(1,7] x [1,7]).

Example 3.10. In the following 7-by-7 array, the 5-diamond has been
written in boldface and traced with dashed lines.

?

1 2 3 4.5 67
2 4 1,6 3 7 5,
3 1,4 2 7 4 8
4,6 2 71 5°3
5 3 7 1 672 4
"6 7 4 52 31
7.5 6,3 4 1 2

’
Ay

Example 3.11. The r-diamond of an r-by-r array is the set of r entries
along the diagonal having indices {(r,1), (r — 1,2),...,(1,7)}.

Note that a d-diamond has cardinality
{27‘ ifd <7, and

r ifd=nr.

Definition 3.12. The content of the d-diamond of an r-by-r array is the
string obtained by reading the contents of the d-diamond, starting with the
entry indexed by (d,1) and reading in clockwise order.

Example 3.13. Reading clockwise around the 5-diamond of the 7-by-7
array in Example 3.10, starting with the entry indexed by (5, 1), we obtain

(56565)(65)(65656)(56),

253



where the parentheses have been included to clarify the four sides of the
diamond. The content of this diamond is simply

56565656565656.

Lemma 3.14. For any distinct d and d’' having the same parity, the d-
and d'-diamonds of an array are disjoint.

Proof. Suppose that the d- and d’-diamonds have nonempty intersection,
and that d > d’, with d and d’ having the same parity. Then an ordered
pair in their intersection will force one of the following equalities:
d+l-z=z+4d,
d+l-z=x-4d,
2r—d+1-z=z+d, or
% —d+l—z=z-d.
However, in each of these cases, the fact that d and d’ have the same parity
and that {z,r,d,d'} C Z causes a contradiction. O

Corollary 3.15. Fiz a positive integer r. Knowing the content of all of
the d-diamonds for positive d € {r,r — 2,7 — 4,...} completely determines
an r-by-r array.

Proof. Consider (z,y) € ([1,7] x [1,7]). Note that z +y € [2,2r], and so
exactly one of the integers z + y — 1 and 2r — (z + y — 1) is in the interval
{1,7]. Moreover, exactly one of the integers —y and y— z is in the interval
(1,7].

Suppose, for the moment that r is odd. If x & y is even, then choose
de{z+y-1,2r—(x+y-1)}Nn[l,r]. If z £y is odd, then choose
d € {zx —y,y —z} N[l,7]. Either way, d is odd, and (z,y) is in the d-
rectangle of the array.

Now suppose that r is even. If z & y is even, then choose d € {z —y,y —
z}N(1,7]. f z+yis odd, then choose d € {z+y—1,2r—(z+y-1)}N[1,7].
Either way, d is even, and (z,y) is in the d-rectangle of the array.

Thus every entry of the array is in some d-rectangle, where d and r have
the same parity. The remainder of the proof follows from Lemma 3.14. O

We will now define a particular array A, when r is odd, using Corol-

lary 3.15.

Definition 3.16. Let r be an odd positive integer, and let A, be the r-by-r
array whose d-diamond has content

d(d+1)d(d+1).--d(d+ 1)
foralld € {r—2,7—4,7—86,...}, and whose r-diamond has content rr---r.

Example 3.17. The 7-by-7 array in Example 3.10 is Az.
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Lemma 3.18. Let r be an odd positive integer. The array A, is a Latin
square.

Proof. We will prove that each row consists of distinct integers. The proof
that each column consists of distinct integers is entirely analogous.
Consider the entries in row i of the array A,. These are of the forms
{d+1-4,d+4,2r—d+1—4i,i—d}, ford € {r,r —2,7r—4,...}. We know
that r is odd, so d is odd as well. We want to show that the r entries in
this row are distinct. If any two were to be equal, then surely they would
have the same parity. Thus we must have either d+1-i=2r—d'+1—14
for some d,d’, or we must have d + 7 = ¢ — d’. Thus either 2r = d + d',
or d = —d'. The former case implies that d = d’ = r, while the latter is
impossible. But in the first case, we would really be talking about a single
entry, not two identical entries, so again there is no repetition within any
row of the array. a

For n > 3, consider a n-player game of Diplomacy whose graph of ad-
jacencies is a cycle, and call this Cyclic Diplomacy. For m > 3, let C,,, be
the cycle on m vertices, and label its vertices 1,2,...,m in order around
the cycle. For example, the graph C- is given in Figure 2. Let B(Cy,) be
the adjacency matrix for the graph Cp,.

FiIGURE 2. The graph C7 describing 7-player Cyclic Diplomacy.

Example 3.19. The adjacency matrix for C7 is

0 10 0 0 0 1]
1010000
0101000
B(C:)=0 01010 0
0001010
0000101
10000 1 0

Theorem 3.20. Let r > 1 be an odd integer. The r-player Cyclic Diplo-
macy tournament defined by (B(C,), Ar) is balanced.
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Proof. What we must determine is how many times the integers a,b € [1,7]
might be adjacent in the rows of the array A,. Because we are playing
Cyclic Diplomacy, a and b are “adjacent” if they appear in the entries
indexed (z,y) and (z,y + 1), where y + 1 is considered modulo .

There are r2 total adjacencies that occur in a tournament of Cyclic
Diplomacy with r players, and there are (3) pairs of the players. Thus the
average number of meetings of any two players would be 72/() = 2r/(r—1).
Because r > 3, we have 2 < 2r/(r — 1) < 3. Thus, we want to show that
any two integers are adjacent either 2 or 3 times in the array A..

Due to the construction of A,, where all the values of a lie along the
(2[%] —1)-diamond, we just need to understand how a d- and a d’-diamond
might have adjacent entries (where we assume for the duration of this proof
that d and d’ are both odd). If @ and b appear on the same d-diamond, then
we can assume, without loss of generality, that (a,b) = (d,d+ 1). Then a
and b are adjacent precisely two times: in the top and the bottom rows of
A, except in the case when (r + 1)/2 € {d,d + 1}, in which case they are
also adjacent around row (r + 1)/2 of the array, for a total of three times.

Now suppose that a appears on the d-diamond and b appears on the
d'-diamond, with d < d’. Ignore, for the moment, any adjacencies that
occur around the array. The four possible remaining sites for adjacencies
between a and b are marked in the following figure.

N .
,* d’-diamond

d-diamond

Note that the rectangle drawn in dark lines has sides of length d in the
southwest-northeast direction, and sides of length » — d’ in the northwest-
southeast direction. The fact that d, d’, and r have the same parity is
enough to show that the four squares comprising the regions of these ad-
jacencies fall into two categories: the north- and south-most (lighter) have
the same layout, while the west- and east-most (darker) have the same lay-
out, and these two layouts are different. The two layouts, each appearing
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twice, are:

a d+1 and o d’
d B d+1 g8°

where {a, 8} = {d,d + 1}, depending on the precise values of d and d'.
Then, since a € {d,d + 1} and b € {d’,d" + 1}, the values a and b are
adjacent exactly two times in these regions.

It remains to consider when a and b might be adjacent around the array.
For this to happen, the corner of the d-diamond along the left side of the
array must differ in height by 1 unit from the corner of the d’-diamond along
the right side of the array; that is, d = r—d’£1. Of course, this means that
the right corner of the d-diamond and the left corner of the d’-diamond also
have heights differing by 1 unit. In the case when d = » —d’ — 1, this gives
the following scenario (the case when d =7 — d’ + 1 is analogous).

,/I \\
d l, N
. L ~
P M
d+1 ! dl J
Z N
/"". i’ ‘,
R d -,l-,l
. /, ’
e 4
” ’
- . ’
e N ‘
’ e
R .7
,/ " '.,.
,
. A
.’ 4
A o
‘ P
~ 4 o8
AN ,’
d™ 1 . d.
A ’ ‘-
AN .
N R4 d+.1
N ’,
N ’
N,

The adjacencies caused by these rectangles that go around the array have
been circled. Note that in one, the values d+1 and d’ are adjacent, while in
the other, the values d’ + 1 and d are adjacent: The degenerate case d’ = r,
where the d'-diamond is just a diagonal of the array, causes 1 and r to be
adjacent around the array one time, and 2 and r to be adjacent around the
array one time. Therefore, a given pair of values {a,b} becomes adjacent
at most one extra time by considering adjacencies around the boundary of

the array.
Thus each pair of values is adjacent either 2 or 3 times, and so the given
tournament is balanced. O
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Example 3.21. The array A; of Example 3.10 gives a balanced tourna-
ment for 7-player Cyclic Diplomacy, the adjacency graph of which depicted
in Figure 2.

4. EXAMPLES OF GAMES THAT CANNOT BE BALANCED

One might conjecture that given any border arrangement B of a game,
there always exists a Latin square L(B) for which the tournament (B, L(B))
is balanced. However, as the next example shows, this is not the case.

Example 4.1. There is no balanced tournament for the graph of four
vertices and two disjoint edges:

0 001
0 010
B“01oo
1 000

Here pn = (2/6)4 = 4/3, so a balanced tournament requires (£,u) =
(14/3],[4/31) = (1,2). However there are only four reduced 4 x 4 Latin
squares, and it is easy to check that none of them has this property. (Inci-
dentally, the two “most balanced” of them, in which u — £ is minimal, both
have (¢, u) = (0,2).)

In fact, Example 4.1 is an instance of a more general class of graphs;
namely, the disjoint union of two cliques K, U K, where the cligue K, is
the complete graph on ¢ vertices. There is a useful parity lemma that holds
for all of these graphs, and explains properties of the graph K, U K5 that
appeared in Example 4.1.

Lemma 4.2. For any distinct players i and j in the graph K, U K, the
number n; ; has the same parity as r + s.

Proof. Partition the 7 + s games of the tournament by which portion of the
graph K, U K, contains player 1.

Consider the r games during which player ¢ occupies a position in K.
Suppose that j is also in this portion of the graph during r — ¢ of those
games; that is, ¢ and j play each other in K, exactly r — ¢ times. During
the s games in which player i occupies a position in K}, player j can also be
in K, for only s —t of these. This is because player j has already occupied
t of the K, positions while i was in K.

Therefore i and j appear in the same component of the graph — that is,
face each other in a game — exactly (r—t)+(s—t) =r+s—2t times. O

Since the matrix in Example 4.1 has pn = (3)4 = 4/3, Lemma 4.2
immediately implies that every tournament must have v — £ > 2. Actually,
the values (¢, u) = (0,2) do occur here.
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The graph for Diplomacy was connected. This makes sense because the
goal of the game is domination of all of the seven countries and one cannot
dominate a country if one cannot reach it. Thus, a weaker conjecture that
would still generalize the Diplomacy result is that given any adjacency
matrix B corresponding to a connected graph, there exists a Latin square
square L(B) so that the tournament (B,L(B)) is balanced. Note that
Example 4.1 does not contradict this conjecture, since the graph for B; is
obviously disconnected.

However, this conjecture, too, is false, since the complement of any
disconnected graph is connected and retains the difference of v — ¢ as
mentioned in Proposition 3.1. The complement of K; U K is Cy, and
(Z(C4),U(C4)) = (2’4)'

One might hope that it is easier to achieve a balanced tournament when
pn is not integer, but our next example has both a connected graph and

méZ.

Example 4.3. There is no balanced tournament for the adjacency matrix

0 0 0 0 0 1]
000010
000111
B2=1g0 101 1
011100
10110 0

The (connected) graph with adjacency matrix Bj is given in Figure 3. We
also verify this with a computer, which determines that the tournament
(Ba, L) that is as close to being balanced as possible has (¢(Bz, L), u(Ba2, L))
equal to (2, 4), instead of the desired values (|(7/15)6], [(7/15)6]) = (2, 3).

ﬂ\
1 6 4 5 2

FicURE 3. The graph with adjacency matrix B;.

Intuitively, it is not surprising that the examples of this section cannot
be balanced, because the strategic asymmetries of these tournaments are
highly pronounced.
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5. AN INFINITE FAMILY OF GRAPHS THAT CANNOT BE BALANCED

The last two examples were graphs that do not have a balanced tourna-
ment, in fact in both examples the smallest value of u — £ is 2. Let us refer
to this minimum difference for the game G as

A =A(G)=inf{u(T) —&T): T is a tournament for G},

and use this difference to measure the deviation from being balanced. For
example, A = 2 in Example 4.3. For all graphs on at most 7 vertices, we
found A < 2. However, by relying on the theory of symmetric balanced
incomplete block designs, we can find an infinite collection of graphs for
which A > 4. In fact it seems likely that A = 4 for all of these, but to
establish equality would require us to find a suitable Latin square for each
graph.

Theorem 5.1. There exist infinitely many graphs of the form K,.U K, for
which A > 4.

Corollary 5.2. There exist infinitely many connected graphs for which
A >4,

Proof of Corollary 5.2. Identity (5) implies that
A(G) = A(G°)

for any game G. In particular, A(K, U K,) = A((K, U K,)¢), and there
are infinitely many such graphs with A > 4, by Theorem 5.1. Note that
(K, U K,)¢ = K, ,, the complete bipartite graph, which is connected. O

In order to prove Theorem 5.1, we will use a theorem of Bruck, Chowla,
and Ryser about symmetric balanced incomplete block designs (“SBIBDs").
An elementary treatment of SBIBDs appears in [8, pp. 456-463]. That work
describes the proof of the easier, v even, case of Theorem 5.3. The difficult
proof of the v odd case appears in [4].

Theorem 5.3 ([3, 4]). Let v, k, and X be positive integers with k < v and
Av—=1)=7r(r-1).
(a) If v is even and there exists a (v,k,\) SBIBD, then k — X is a
perfect square.
(b) If v is odd and there exists a (v,k,\) SBIBD, then the equation
22 = (k= N)y? + (-1)(v—1/2);2
has a solution for some nonnegative integers xz, y, and z, not all 0.

Proof of Theorem 5.1. We interpret graphs and their tournament based on
a Latin square as an SBIBD. In this setting, the number of vertices r + s
is denoted v. The smaller order clique (K., without loss of generality), is
considered a block of order r, and we set kK = r. In the Latin square, each
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vertex i appears r times in the block K,.. If we have perfect balance, then
each pair of vertices {i,j} appear together in a K, block A times, where
balance requires that
viv-1)  r(r—1)
A 3 =V

This simplifies to
Av=1)=AMr+s-1)=r(r—1).

If these parameters admit an SBIBD, then we have a balanced tourna-
ment. This occurs because each pair {i,j} appears together A times in K,
and therefore we have 2(r — \) times when exactly one appears. This leaves
$+7—A=2(r—A) = s—r+ ) times when neither is present in K, meaning
that both i and j are in K,. Thus n;; = s —r + 2A. When the SBIBD
exists, every pair produces this value. Thusu =¢ =s—r+2X, and A =0.

Suppose that no SBIBD exists for certain parameters. Then the average
value of n;; remains s — r + 2, but not every pair produces this value.
Then there will be some pair {i,j} with n; ; > s — 7+ 2A. By Lemma 4.2,
we must have n; ; > s — r + 2A + 2. Similarly, there is a pair {i/,j'} with
ny j» < 8 =7+ 2XA — 2. Therefore, for any such graph K, U K,, we have
A>4.

To show that there are infinitely many parameters that do not admit
an SBIBD, we use Theorem 5.3. For each positive integer t, consider the
graph

‘ Kgi—1 U Kegat2 30044
with v = 64t2 — 24t +3, A =1, and k = 8¢ — 1. Because

Av — 1) = 1(64t% — 24t + 2) = (8t — 1)(8t — 2) = k(k — 1),

existence of an SBIBD requires a nonnegative integer solution to the equa-
tion

z? = (8t - 2)y% - 22
A minimum solution cannot have all {z,y, 2} be even. Reading this equa-
tion modulo 8 yields z2 = 6y% — 22. Choosing any one of {z,y, z} to be
odd leaves an impossible modulo 8 congruence for the other two variables.
Thus no solution exists, and no SBIBD exists. O

We illustrate Theorem 5.1 and Corollary 5.2 with an example.

Example 5.4. Consider Kg U K2;. Then v =8+ 21, A =2, and k = 8.
Existence of an SBIBD requires a nonnegative, not identically 0, integer
solution to z2 = 6y2+222. Suppose that there is such a solution (zq, %o, 20),
chosen so that ged(zg, yo,20) = 1. The value of z¢ is necessarily even, so
write To = 2z;, yielding 222 = 3y + 23. Note that by construction, yo
and zp may not both be even. Taking the equation modulo 2 yields that
vo and 2o must have the same parity, so they must both be odd. But
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then, taking the equation modulo 8 would yield a contradiction. Thus, by
Theorem 5.3(b), we have A > 4. To show equality, we must construct a
demonstrative 29 x 29 Latin square. Read all player labels modulo 29, and
assign row i to place the eight players {,i+1,{+4,i4+6,i4+17,9+19,i+25, i+
26} in Kg. This gives 29 pairs {%,¢ + 12} with n; ;412 = 15, and another
29 pairs {i,i + 14} with n; ;;14 = 15. Likewise, we have 29 pairs {¢,¢ 4 4}
with n; ;44 = 19, and another 29 pairs {i,7 + 13} with n;;413 = 19. All
other pairs, of which there are 290 of them, give n; ; = 17. Consequently,
u—{¢=19-15,and so A =4.

The same Latin square applied to the connected complementary graph
Kg o) also obtains A =u—~{=4.

6. FURTHER DIRECTIONS

We have not yet discussed 2k-player Cyclic Diplomacy. If n = 2k = 4,
then the graph is Cy4, which is the complement of K, U K5 in Example 4.1.
Thus (£,u) = (2,4) and A = 2.

On the other hand, when n = 2k = 6, we have pn = (6/15)6. This
means that a balanced tournament (B, L) for 6-player Cyclic Diplomacy
would need to have (¢(B, L), u(B, L)) = (2,3). The tournament

[1 2 3 4 5 6
2 56 31 4
3615 4 2
4 3 5 2 6 1
51 46 2 3
6 4 2 1 3 5]

has (¢(B, L),u(B, L)) = (2,3) and thus produces a balanced tournament.
Similarly, the following Latin square produces a balanced tournament for
8-player Cyclic Diplomacy:

(1 2 3 4 56 7 8
2 1 436587
346 287165
4 8 5173 2 6
5 7 1 8 2 4 6 3
6 5 2 7 48 31
73 86 12 5 4
8 6 7 5 3 1 4 2

Theorem 3.20 and the two Latin squares above show that A is equal to
0 for all n-player games of Cyclic Diplomacy when

ne{2k+1:keZ}u{s6,8}.
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On the other hand, we have shown above that the error measure A = 0
in 4-player Cyclic Diplomacy. An argument very similar to the proof of
Theorem 3.20 produces, for each cyclic graph of even length (that is, each
game of Cyclic Diplomacy with an even number of players), a tournament
for which A < 2. However, given that A is actual equal to 0 for the 6- and 8-
player games, it seems quite possible that there are balanced tournaments
for 2k-player Cyclic Diplomacy for larger values of k. Proving that, for
n # 4, the n-player game of Cyclic Diplomacy can be balanced (that is, a
tournament can be produced with A = 0) would be most satisfying.

Another avenue for future research would be to work with adjacency
matrices arising from more general graphs. One first step in this direction
might be to try to determine the error measure A for circulant graphs.

Theorem 5.1, which produces infinitely many graphs with A > 4, leaves
two open problems. The first is to determine whether the inequality in the
theorem could be improved to a statement of equality. The second, more
general, open problem is to determine if any graphs exist with A > 5. Our
experience up to this point gives us no reason to suspect that this may
occur.
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