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Abstract

We provide a new proof of a result of Hanson and Toft classify-
ing the maximum-size K, -free graphs on n vertices with chromatic
number at least r.

1 Introduction

Fix integers n > 1 and r > 3, and let [n] = {1,2,...,n}. Turén’s classical
theorem (6] states that the maximum size of a K,-free graph on n vertices
is achieved only by the so-called Turan graph, T._,(n), the (r — 1)-partite
graph on n vertices in which each part has |n/(r—1)] or [n/(r—1)] vertices.
In this work we consider the related question: what is the largest size of a
K, -free graph G on n vertices with chromatic number x(G) > r? To that
end, we define

Gnyr={G:V(G)=[n], G2 K,, and x(G) > r}.

We then let g(n,7) := maxgeg, , e(G), where e(G) denotes the size of the
graph G, and let G}, . := {G € G, + : &(G) = g(n,7)}. That is, G is the
family of K, -free graphs on [n] with chromatic number at least r, while
g(n,r) and Gy, . are the size and family, respectively, of maximum-size such
graphs. We note that each graph G € G;, .. is r-saturated, i.e., the addition
of any missing edge creates a copy of K.

The first to consider g(n,r) were Erdds and Gallai, and, independently,
Andrésfai ({2]), who determined g(n,3) and G;, ; for all n > 5. To state
their results we introduce further.definitions and notation. First, for a
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graph H on [n], we say a graph G is a blow-up of H if there exist positive
integers kj,...,kn and a partition Vi U Vo U .- UV, of V(G) such that
[Vi] =kifor 1 <i<nand E(G)={zy:z € V;,,y e V,,ij € E(H)}, and
we write G = H(ky,...,kn). As a blow-up of H has the same chromatic
and clique numbers as H, candidates for G, ; are blow-ups of the cycle
Cs (taking V(Cs) = [5] and E(Cs) = {12,23,34,45,51}) of maximum
size. Let H,, denote the family of maximum-size blow-ups of a Cs on [n];
routine maximization arguments show each graph H € H, has the form
H = Cs(1,1,a,b,c), where {a +¢,b+ 1} = {|252], [251]}, and has size
L5t +1.

Theorem 1 (Erddés and Gallai, Andrasfai [2]). For n > 5, g(n,3) =
[2=2) 41 and G 5 = Ha

For a simple construction of K,-free r-chromatic graphs for all » > 3,
let G v H denote the join of two vertex-disjoint graphs G and H, formed
from the union of G and H by adding all edges between V(G) and V(H).
We note that x(GV H) = x(G)+ x(H). Furthermore, to simplify notation,
we allow for H to be the null graph on 0 vertices (and with 0 edges), in
which case we take x(H) = 0 and GV H = G for all graphs G. Next, for
7> 3and n > 7+ 2, let F,, ;. be the family of maximum-size graphs G on
[n] of the form G = HVT,_3(n—k), where 5 < k <n—(r—3) and H € H,.
We note that F,, 3 = H,, and that F,, . C G, ,. A result! of Hanson and
Toft (3], and, later and independently, Kang and Pikhurko [4], asserts that
this is the correct construction.

Theorem 2 (Hanson and Toft [3], Kang and Pikhurko [4]). Forr >3 and
nZT+2, G;'r‘:fn,r'

The condition n > r + 2 is necessary: a graph G on n < r + 1 vertices with
X(G) > 7 has at least r singleton color classes under a proper coloring, and
hence must contain a copy of K,. From Theorem 2, determining g(n,r) is
a straightforward task.

Corollary 1. Forr > 3,
(1) ifr+2<n < 2r—1), then g(n,r) = e(Tr_1(n)) — 2, and
(i) if n > 2(r — 1), then g(n,r) = e(Tr_1(n)) — [ Z5] + 1.

The existence of a constant C such that g(n,r) < e(T—1(n)) — 27 +C
for fixed 7 > 3 and n sufficiently large was first established by Simonovits
(5], while (ii) was first shown by Brouwer [1]. Our aim is to give a new

'In [3], the authors determine the graphs which are ‘maximal’ with respect to the
number of edges; our statement is equivalent to theirs.
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proof of Theorem 2 through a novel swapping procedure, which avoids the
inductive approach taken in [4] and many of the case analyses presented in

[3]-

2 The proofs

For k > 5, let F3(k) € H; be formed by subdividing an edge in a copy of
the complete bipartite graph T5(k — 1) on [k — 1] with the vertex v* = k,
so that F3(k) = Cs(1,1,1, | 551] —1,[%32]1 - 1). Next,forr >3, n > r+2
and 5 < k < n—(r—3), let F,.(n, k) denote the graph formed from the join
of F3(k) and a copy of T._3(n — k) on [k +1,...,n], noting Fr.(n,k) € Gn »
holds. Letting X, X3 and X3, ..., X,—1 denote the parts of F3(k) —v* and
of the copy of T;._3(n — k), respectively, we may assume

X1 <] Xo| < [X1|+1 and | X3| S [Xqf < -+ S [|Xroa] S| Xa + 1.

Since every graph in H; has the same size, for some k¥ we must have
F,(n, k) € Fur, but rather than identify which such k¥ maximize e(F.(n, k)),
we will only need the following short claim:

Claim 1. Ifr >4, n > r +2, and F.(n,k) € F, ,, then
(a) if k > 6, then | X3| 2| X2|, and

(b) there exists an integer k' for which F.(n,k') € F,, and | X,—1| <
|X1| + 1.

Proof. If k > 6, then |X3| > 3, so suppose |X2| > |X3|: we then form
a copy of F,.(n,k — 1) by deleting a vertex in X, nonadjacent to v* and
duplicating a vertex in X3. This procedure first removes |X;| 4+ (n — k)
edges and then adds (k— 1) + (n — k — | X3|) = | X1| + | X2| + (n — k) — | X3|
edges, increasing the size by | X3| —| X3a| > 0 edges and contradicting the
maximality of e(F,(n,k)). Similarly, if |X,-_1| 2| X1| + 2, the analogous
procedure yields e(F.(n,k + 1)) > e(F.(n,k)), and ks existence follows
from finiteness. |

2.1 Proof of Theorem 2
Let G, , = {G € G}, . : v € [n] such that x(G —v) =r —1}.
Lemma 1. Foralln>r+22>5,if G, . #0, thenG,, . = Fy r.

Proof. Let G € G;, .., and choose a vertex v satisfying x(G —v) =r—1so
that v has minimum degree among all such vertices. Let X3, Xs,..., X,_1
be the color classes of G — v under an (r — 1)-coloring: then Ng(v) N
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Xi # 0 holds for all 7, so for some pair of distinct classes (X;, X;) we

have e(Xi, X;) < (Xi| - |X;|. We relabel if necessary so that (X1, X?) is

such a pair satisfying both |X;| < |X,] and |X;| = min{|X;|,|X;|} for all

other such pairs (X;, X;). We then let K = {v} U X, U X3, k = |K}, and
= [n] \ K, noting x(G{K]) = 3 and x(G[L)) =7 - 3.

Since G is r-saturated, there exist vertices z; € X; so that z1x9 ¢ E(3)
and v,z1,T2,...,Zr—1 form a copy of K, in the graph G + z1z2. We
claim that £k > 5: otherwise, x(G[K]) = 3 and ;22 ¢ E(G) together
imply X; = {z1}, X2 = {z2,y} for some vertex y, and G[{v,z;,y}] =
K3. Since G is K,-free, yz; ¢ E(G) holds for some j > 2, implying
1 = |X,| > min{|X,|,]X;|} and so X; = {z;}. But then x(G[K U Xj]) =
x(G[{v} U {z1,z2} U {y,z;}]) < 3, a contradiction.

We next construct a graph G’ from G through a sequence of edge ‘swaps’
as follows. For i € {1,2} and each vertex y € Ng(v) N (X; \ {z:}), yz; ¢
E(G) holds for at least one index j € [r — 1] \ {¢}: we delete the edge yv
and add one such edge yz;. Let G’ denote the graph formed following these
swaps, observing that e(G’) = e(G) = g(n,r), Ng/(v) " K = {z;,z2}, and
G'[{v} U L] = G[{v} U L].

Since x(G'[L]) = x(G[L}) =r -3, e(G'[L]) < e(T—3(n —k)) follows. As
k > 5, we also have e(G'[K]) < | X1]|X2| +1 < [(k—1)%/4] +1 = e(F3(k)).
Thus,

9(n,7) = e(G') < e(G'|K|V G'[L]) < e(Fa(k) V Trz(n — k)) = e(Fu(n, k)),

implying equality throughout. This yields the containment .7-',.,, C Ghr
and that the graph G’ satisfies G’ = G'[K| Vv G'[L], G’[L] & T,_3(n — k),
and G'[K] = F;(k) (viewing v as subdividing the edge r,z2 in a copy of
To(k — 1) on X1 U X3), so G’ & F.(n, k).

It remains, then, to argue that G € F,,. Suppose first that G #
G[K] v G[L], implying we swapped an edge yv € E(G) for an edge yz; €
E(G'), j > 2, where y € X; \ {z;} for some i € {1,2}. We claim yz3; €
E(G) and so G[{v,y,z3—;}] = K3, which follows as yz3_; € E(G’) and
Ng:(y) = (Na(y) \ {v}) U {z;}. Now, Ng(v)NL =L = Ng(z3-;)NL and
Ng(y)N L = L\ {z;}, yielding X; = {z,} as G is K,-free. Thus, z; € U
and, by Claim 1(a), £k = 5 and so | X;| = | Xs| = 2. By our choice of v € U,
[LU{y, z1, 72} < de(v) < dg(z;) < (|L]—1)+(k—1) = |L|+3, so equality
holds throughout and Ng(v) = LU{y, z1,z2}. Writing X3_;\{z3_;} = {z},
x(GIKUX;)) = x(G[{z1, z2}U{v, z2}U{y, 2;}]) < 3 follows, a contradiction
showing that G = G[K] Vv G[L].

Since G[L] = G'|L] = T,—3(n — k), G[K] is therefore triangle-free, and
since G[(X1UX2)\ {71, z2}] = G'[(X1UX2)\{z1, z2}] is a complete bipartite
graph, Ng(v) N X; = {z;} follows for some i € {1,2}. If Ng(v) N X3_; =
Xa_i, then Ng(z:) N X3_; = 0, implying x(G[K]) = x(G[({v} U X;) U
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(X3-i U {zi})] = 2, a contradiction. Thus, G[K] must be a blow-up of Cs
with (non-empty) parts {v}, {z:}, X3-i\Ng(v), X;\{z:}, and X3_;nNg(v),
and G € F, , follows. a

By Lemma 1, it suffices to show G; . C G, ., which we do through
a simple application of Zykov's symmetrization [7]. Given nonadjacent
vertices z,y in a graph G, we symmetrize £ to y by deleting all edges
incident with z and then adding all edges between x and Ng(y). It is well-
known that symmetrization in a K,-free graph produces a K,-free graph.

Let G € Gy, ., and let Z C [n] with G[Z] & K,_,. Label the vertices in
[n]\Z asvy,...,vn_r41 arbitrarily, andlet Go = G. For1 <i < n—r+1, we
form a graph G; from G;_; by symmetrizing v; to a nonadjacent z = 2(i) €
Z, which exists as G;_; is K,-free inductively. Let j be the maximum index
so that Go, ..., Gj € G, ., noting that X(Gn—r41) =7—1landsoj <n-r.
We show by induction that G;,G;-1,...,Go =G all liein G}, ...

To see that G; € G, ., observe that G;;1 ¢ Gy . implies x(Gj4+1) =
r —1 or e(Gj+1) # e(Gj). In the former case, x(G; — vj+1) = x(Gj+1 —
vj4+1) = r — 1. In the latter case, letting {z,y} = {vj41,2(j + 1)} with
dg,(z) < dg,(y), symmetrizing = to y in G; produces a K,-free graph G’
with e(G’) > e(G;) = g(n,r), and so x(G; —z) = x(G') =7 - 1.

Now, suppose 1 <1 < j and G; € Q’,’,,, = Fnr, 850 G; = HV T, where,
for some k, T = T,_3(n — k) and H = H’ for some H' € Hi. Letting
K~ =V(H)\{v:} and L™ = [n]\ (K U {v:}), 8s x(Gi-1 —v:) = x(Gi) =7
it follows that G;_;[L~] is a complete (r — 3)-partite graph with parts
Wi,...,We_3, and G;_1[K~] is a blow-up of Cs with parts Y3,...,Ys,
where, without loss of generality, Y; = {y1} and Y, = {y.} for some vertices
Y1, y2. Now, if G;_1[K~U{v;}] contains a triangle, then Ng,_, (v;)NW, =0
for some ¢, yielding x(Gi[L~U{v:}]) =r—3 and, say, x(Gi-1—y1) =r—1.
Otherwise, Ng,_, (v;)Nn K~ C Y,UY, 42 for some a (with addition performed
modulo 5): let Y/, , = Yoy1 U{w} and Y] = Y} for b # a + 1. Then
Gi—1[K~ U {v}] is contained in the blow-up of Cs with parts Y], and
min{|Y{|,|Y3|} = 1 implies min{x(Gi-1 — 1), x(G —y2)} = r — 1. We
conclude that G;—; € Gy, ,., completing the proof. O

2.2 Proof of Corollary 1

Recalling the discussion at the start of this section, select an integer k for
which F.(n,k) € Fn, =Gy, ., and let v* and Xi, ..., X,.—; as given above.
Suppose that 7 +2 < n < 2(r — 1): then Claim 1 implies that | X3 = 1,
[ X1] = |X2| =2, and | X;| < 2 for j > 3. Letting X3 = {z3}, by deleting the
edge v*z3 and adding v* to X3, we obtain a subgraph of T;_1(n) missing
exactly 3 edges: one between X; and X2 and two connecting v* to XU Xa,
yielding (i).
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If n > 2(r — 1) + 1, then by Claim 1 we may also assume that | X;| <
| X2 € -+ € [Xr21] € )X1| + 1. Deleting the sole edge connecting v* to
X and then adding v* to X; produces a subgraph of T;._;(n) missing only
1+ (| X2| — 1) = [ 23] edges, and (ii) follows. (]
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References
[1] A. E. Brouwer, Some lotto numbers from an extension of Turdn’s theorem,
Math. Centre report 1978, MR82c: 05057.

[2] P. Erdds, On a theorem of Rademacher-Turdn, Illinois Journal of Math
6(1962), 122-127.

[3] D. Hanson and B. Toft, k-saturated graphs of chromatic number at least k,
Ars Combinatoria 31 (1991), 159-164.

[4] M. Kang and O. Pikhurko, Mazimum K,i1-free graphs which are not r-
partite, Mat Studii, 24 (2005), 12-20.

[5] M. Simonovits, A method for solving extremal problems in graph theory,
stability problems, 1968 Theory of Graphs (Proc. Colloq., Tihany, 1966) pp.
279-319, Academic Press, New York.

(6] P. Turan, On an eztremal problem in graph theory, Matematikai és Fizikai
Lapok 48 (1941), 436-452.

[7} A. A. Zykov, On some properties of linear complezes, Mat. Sbornik N. S.,
24 (1949), 163-188.

222



