A note on K_r -free graphs with chromatic number at least r

Michael E. Picollelli

Department of Mathematics
California State University San Marcos
San Marcos, CA 92096, USA
Email: mpicollelli@csusm.edu

Abstract

We provide a new proof of a result of Hanson and Toft classifying the maximum-size K_r -free graphs on n vertices with chromatic number at least r.

1 Introduction

Fix integers $n \geq 1$ and $r \geq 3$, and let $[n] = \{1, 2, ..., n\}$. Turán's classical theorem [6] states that the maximum size of a K_r -free graph on n vertices is achieved only by the so-called Turán graph, $T_{r-1}(n)$, the (r-1)-partite graph on n vertices in which each part has $\lfloor n/(r-1) \rfloor$ or $\lceil n/(r-1) \rceil$ vertices. In this work we consider the related question: what is the largest size of a K_r -free graph G on n vertices with chromatic number $\chi(G) \geq r$? To that end, we define

$$\mathcal{G}_{n,r} := \{G : V(G) = [n], \ G \not\supseteq K_r, \ \text{and} \ \chi(G) \ge r\}.$$

We then let $g(n,r) := \max_{G \in \mathcal{G}_{n,r}} e(G)$, where e(G) denotes the size of the graph G, and let $\mathcal{G}_{n,r}^* := \{G \in \mathcal{G}_{n,r} : e(G) = g(n,r)\}$. That is, $\mathcal{G}_{n,r}$ is the family of K_r -free graphs on [n] with chromatic number at least r, while g(n,r) and $\mathcal{G}_{n,r}^*$ are the size and family, respectively, of maximum-size such graphs. We note that each graph $G \in \mathcal{G}_{n,r}^*$ is r-saturated, i.e., the addition of any missing edge creates a copy of K_r .

The first to consider g(n,r) were Erdős and Gallai, and, independently, Andrásfai ([2]), who determined g(n,3) and $\mathcal{G}_{n,3}^*$ for all $n \geq 5$. To state their results we introduce further definitions and notation. First, for a

graph H on [n], we say a graph G is a blow-up of H if there exist positive integers k_1,\ldots,k_n and a partition $V_1\cup V_2\cup\cdots\cup V_n$ of V(G) such that $|V_i|=k_i$ for $1\leq i\leq n$ and $E(G)=\{xy:x\in V_i,y\in V_j,ij\in E(H)\}$, and we write $G=H(k_1,\ldots,k_n)$. As a blow-up of H has the same chromatic and clique numbers as H, candidates for $\mathcal{G}_{n,3}^*$ are blow-ups of the cycle C_5 (taking $V(C_5)=[5]$ and $E(C_5)=\{12,23,34,45,51\}$) of maximum size. Let \mathcal{H}_n denote the family of maximum-size blow-ups of a C_5 on [n]; routine maximization arguments show each graph $H\in\mathcal{H}_n$ has the form $H=C_5(1,1,a,b,c)$, where $\{a+c,b+1\}=\{\lfloor\frac{n-1}{2}\rfloor,\lceil\frac{n-1}{2}\rceil\}$, and has size $\lfloor\frac{(n-1)^2}{4}\rfloor+1$.

Theorem 1 (Erdős and Gallai, Andrásfai [2]). For $n \geq 5$, $g(n,3) = \lfloor \frac{(n-1)^2}{4} \rfloor + 1$ and $\mathcal{G}_{n,3}^* = \mathcal{H}_n$.

For a simple construction of K_r -free r-chromatic graphs for all $r \geq 3$, let $G \vee H$ denote the join of two vertex-disjoint graphs G and H, formed from the union of G and H by adding all edges between V(G) and V(H). We note that $\chi(G \vee H) = \chi(G) + \chi(H)$. Furthermore, to simplify notation, we allow for H to be the null graph on 0 vertices (and with 0 edges), in which case we take $\chi(H) = 0$ and $G \vee H = G$ for all graphs G. Next, for $r \geq 3$ and $n \geq r + 2$, let $\mathcal{F}_{n,r}$ be the family of maximum-size graphs G on [n] of the form $G = H \vee T_{r-3}(n-k)$, where $1 \leq k \leq n-(r-3)$ and $1 \leq H$. We note that $1 \leq H$, and that $1 \leq H$, are construction and Toft $1 \leq H$, asserts that this is the correct construction.

Theorem 2 (Hanson and Toft [3], Kang and Pikhurko [4]). For $r \geq 3$ and $n \geq r+2$, $\mathcal{G}_{n,r}^* = \mathcal{F}_{n,r}$.

The condition $n \ge r+2$ is necessary: a graph G on $n \le r+1$ vertices with $\chi(G) \ge r$ has at least r singleton color classes under a proper coloring, and hence must contain a copy of K_r . From Theorem 2, determining g(n,r) is a straightforward task.

Corollary 1. For $r \geq 3$,

(i) if
$$r+2 \le n \le 2(r-1)$$
, then $g(n,r) = e(T_{r-1}(n)) - 2$, and

(ii) if
$$n > 2(r-1)$$
, then $g(n,r) = e(T_{r-1}(n)) - \lfloor \frac{n}{r-1} \rfloor + 1$.

The existence of a constant C such that $g(n,r) \le e(T_{r-1}(n)) - \frac{n}{r-1} + C$ for fixed $r \ge 3$ and n sufficiently large was first established by Simonovits [5], while (ii) was first shown by Brouwer [1]. Our aim is to give a new

¹In [3], the authors determine the graphs which are 'maximal' with respect to the number of edges; our statement is equivalent to theirs.

proof of Theorem 2 through a novel swapping procedure, which avoids the inductive approach taken in [4] and many of the case analyses presented in [3].

2 The proofs

For $k \geq 5$, let $F_3(k) \in \mathcal{H}_k$ be formed by subdividing an edge in a copy of the complete bipartite graph $T_2(k-1)$ on [k-1] with the vertex $v^*=k$, so that $F_3(k)=C_5(1,1,1,\lfloor\frac{k-1}{2}\rfloor-1,\lceil\frac{k-1}{2}\rceil-1)$. Next, for $r\geq 3,\, n\geq r+2$ and $5\leq k\leq n-(r-3)$, let $F_r(n,k)$ denote the graph formed from the join of $F_3(k)$ and a copy of $T_{r-3}(n-k)$ on $[k+1,\ldots,n]$, noting $F_r(n,k)\in\mathcal{G}_{n,r}$ holds. Letting X_1,X_2 and X_3,\ldots,X_{r-1} denote the parts of $F_3(k)-v^*$ and of the copy of $T_{r-3}(n-k)$, respectively, we may assume

$$|X_1| \le |X_2| \le |X_1| + 1$$
 and $|X_3| \le |X_4| \le \dots \le |X_{r-1}| \le |X_3| + 1$.

Since every graph in \mathcal{H}_k has the same size, for some k we must have $F_r(n,k) \in \mathcal{F}_{n,r}$, but rather than identify which such k maximize $e(F_r(n,k))$, we will only need the following short claim:

Claim 1. If $r \geq 4$, $n \geq r + 2$, and $F_r(n, k) \in \mathcal{F}_{n,r}$, then

- (a) if $k \ge 6$, then $|X_3| \ge |X_2|$, and
- (b) there exists an integer k' for which $F_r(n, k') \in \mathcal{F}_{n,r}$ and $|X_{r-1}| \leq |X_1| + 1$.

Proof. If $k \geq 6$, then $|X_2| \geq 3$, so suppose $|X_2| > |X_3|$: we then form a copy of $F_r(n,k-1)$ by deleting a vertex in X_2 nonadjacent to v^* and duplicating a vertex in X_3 . This procedure first removes $|X_1| + (n-k)$ edges and then adds $(k-1) + (n-k-|X_3|) = |X_1| + |X_2| + (n-k) - |X_3|$ edges, increasing the size by $|X_2| - |X_3| > 0$ edges and contradicting the maximality of $e(F_r(n,k))$. Similarly, if $|X_{r-1}| \geq |X_1| + 2$, the analogous procedure yields $e(F_r(n,k+1)) \geq e(F_r(n,k))$, and k''s existence follows from finiteness.

2.1 Proof of Theorem 2

Let $\mathcal{G}'_{n,r} = \{G \in \mathcal{G}^*_{n,r} : \exists v \in [n] \text{ such that } \chi(G - v) = r - 1\}.$

Lemma 1. For all $n \ge r + 2 \ge 5$, if $\mathcal{G}'_{n,r} \ne \emptyset$, then $\mathcal{G}'_{n,r} = \mathcal{F}_{n,r}$.

Proof. Let $G \in \mathcal{G}'_{n,r}$, and choose a vertex v satisfying $\chi(G-v)=r-1$ so that v has minimum degree among all such vertices. Let $X_1, X_2, \ldots, X_{r-1}$ be the color classes of G-v under an (r-1)-coloring: then $N_G(v) \cap$

 $X_i \neq \emptyset$ holds for all i, so for some pair of distinct classes (X_i, X_j) we have $e(X_i, X_j) < |X_i| \cdot |X_j|$. We relabel if necessary so that (X_1, X_2) is such a pair satisfying both $|X_1| \leq |X_2|$ and $|X_1| \geq \min\{|X_i|, |X_j|\}$ for all other such pairs (X_i, X_j) . We then let $K = \{v\} \cup X_1 \cup X_2$, k = |K|, and $L = [n] \setminus K$, noting $\chi(G[K]) = 3$ and $\chi(G[L]) = r - 3$.

Since G is r-saturated, there exist vertices $x_i \in X_i$ so that $x_1x_2 \notin E(i)$ and $v, x_1, x_2, \ldots, x_{r-1}$ form a copy of K_r in the graph $G + x_1x_2$. We claim that $k \geq 5$: otherwise, $\chi(G[K]) = 3$ and $x_1x_2 \notin E(G)$ together imply $X_1 = \{x_1\}$, $X_2 = \{x_2, y\}$ for some vertex y, and $G[\{v, x_1, y\}] \cong K_3$. Since G is K_r -free, $yx_j \notin E(G)$ holds for some j > 2, implying $1 = |X_1| \geq \min\{|X_2|, |X_j|\}$ and so $X_j = \{x_j\}$. But then $\chi(G[K \cup X_j]) = \chi(G[\{v\} \cup \{x_1, x_2\} \cup \{y, x_j\}]) \leq 3$, a contradiction.

We next construct a graph G' from G through a sequence of edge 'swaps' as follows. For $i \in \{1,2\}$ and each vertex $y \in N_G(v) \cap (X_i \setminus \{x_i\})$, $yx_j \notin E(G)$ holds for at least one index $j \in [r-1] \setminus \{i\}$: we delete the edge yv and add one such edge yx_j . Let G' denote the graph formed following these swaps, observing that e(G') = e(G) = g(n,r), $N_{G'}(v) \cap K = \{x_1, x_2\}$, and $G'[\{v\} \cup L] = G[\{v\} \cup L]$.

Since $\chi(G'[L]) = \chi(G[L]) = r - 3$, $e(G'[L]) \le e(T_{r-3}(n-k))$ follows. As $k \ge 5$, we also have $e(G'[K]) \le |X_1||X_2| + 1 \le \lfloor (k-1)^2/4 \rfloor + 1 = e(F_3(k))$. Thus,

$$g(n,r) = e(G') \le e(G'[K] \lor G'[L]) \le e(F_3(k) \lor T_{r-3}(n-k)) = e(F_r(n,k)),$$

implying equality throughout. This yields the containment $\mathcal{F}_{n,r} \subseteq \mathcal{G}'_{n,r}$, and that the graph G' satisfies $G' = G'[K] \vee G'[L]$, $G'[L] \cong T_{r-3}(n-k)$, and $G'[K] \cong F_3(k)$ (viewing v as subdividing the edge x_1x_2 in a copy of $T_2(k-1)$ on $X_1 \cup X_2$), so $G' \cong F_r(n,k)$.

It remains, then, to argue that $G \in \mathcal{F}_{n,r}$. Suppose first that $G \neq G[K] \vee G[L]$, implying we swapped an edge $yv \in E(G)$ for an edge $yx_j \in E(G')$, j > 2, where $y \in X_i \setminus \{x_i\}$ for some $i \in \{1,2\}$. We claim $yx_{3-i} \in E(G)$ and so $G[\{v,y,x_{3-i}\}] \cong K_3$, which follows as $yx_{3-i} \in E(G')$ and $N_{G'}(y) = (N_G(y) \setminus \{v\}) \cup \{x_j\}$. Now, $N_G(v) \cap L = L = N_G(x_{3-i}) \cap L$ and $N_G(y) \cap L = L \setminus \{x_j\}$, yielding $X_j = \{x_j\}$ as G is K_r -free. Thus, $x_j \in U$ and, by Claim 1(a), k = 5 and so $|X_1| = |X_2| = 2$. By our choice of $v \in U$, $|L \cup \{y,x_1,x_2\}| \leq d_G(v) \leq d_G(x_j) \leq (|L|-1)+(k-1) = |L|+3$, so equality holds throughout and $N_G(v) = L \cup \{y,x_1,x_2\}$. Writing $X_{3-i} \setminus \{x_{3-i}\} = \{z\}$, $\chi(G[K \cup X_j]) = \chi(G[\{x_1,x_2\} \cup \{v,z\} \cup \{y,x_j\}]) \leq 3$ follows, a contradiction showing that $G = G[K] \vee G[L]$.

Since $G[L] = G'[L] \cong T_{r-3}(n-k)$, G[K] is therefore triangle-free, and since $G[(X_1 \cup X_2) \setminus \{x_1, x_2\}] = G'[(X_1 \cup X_2) \setminus \{x_1, x_2\}]$ is a complete bipartite graph, $N_G(v) \cap X_i = \{x_i\}$ follows for some $i \in \{1, 2\}$. If $N_G(v) \cap X_{3-i} = X_{3-i}$, then $N_G(x_i) \cap X_{3-i} = \emptyset$, implying $\chi(G[K]) = \chi(G[(\{v\} \cup X_i) \cup X_i)]$

 $(X_{3-i} \cup \{x_i\})] = 2$, a contradiction. Thus, G[K] must be a blow-up of C_5 with (non-empty) parts $\{v\}, \{x_i\}, X_{3-i} \setminus N_G(v), X_i \setminus \{x_i\}, \text{ and } X_{3-i} \cap N_G(v), \text{ and } G \in \mathcal{F}_{n,r} \text{ follows.}$

By Lemma 1, it suffices to show $\mathcal{G}_{n,r}^* \subseteq \mathcal{G}_{n,r}'$, which we do through a simple application of Zykov's symmetrization [7]. Given nonadjacent vertices x, y in a graph G, we symmetrize x to y by deleting all edges incident with x and then adding all edges between x and $N_G(y)$. It is well-known that symmetrization in a K_r -free graph produces a K_r -free graph.

Let $G \in \mathcal{G}_{n,r}^*$, and let $Z \subseteq [n]$ with $G[Z] \cong K_{r-1}$. Label the vertices in $[n] \setminus Z$ as v_1, \ldots, v_{n-r+1} arbitrarily, and let $G_0 = G$. For $1 \le i \le n-r+1$, we form a graph G_i from G_{i-1} by symmetrizing v_i to a nonadjacent $z = z(i) \in Z$, which exists as G_{i-1} is K_r -free inductively. Let j be the maximum index so that $G_0, \ldots, G_j \in \mathcal{G}_{n,r}^*$, noting that $\chi(G_{n-r+1}) = r-1$ and so $j \le n-r$. We show by induction that $G_j, G_{j-1}, \ldots, G_0 = G$ all lie in $G'_{n,r}$.

To see that $G_j \in \mathcal{G}'_{n,r}$, observe that $G_{j+1} \notin \mathcal{G}^*_{n,r}$ implies $\chi(G_{j+1}) = r-1$ or $e(G_{j+1}) \neq e(G_j)$. In the former case, $\chi(G_j - v_{j+1}) = \chi(G_{j+1} - v_{j+1}) = r-1$. In the latter case, letting $\{x,y\} = \{v_{j+1}, z(j+1)\}$ with $d_{G_j}(x) < d_{G_j}(y)$, symmetrizing x to y in G_j produces a K_r -free graph G' with $e(G') > e(G_j) = g(n,r)$, and so $\chi(G_j - x) = \chi(G') = r-1$.

Now, suppose $1 \leq i \leq j$ and $G_i \in \mathcal{G}'_{n,r} = \mathcal{F}_{n,r}$, so $G_i = H \vee T$, where, for some $k, T \cong T_{r-3}(n-k)$ and $H \cong H'$ for some $H' \in \mathcal{H}_k$. Letting $K^- = V(H) \setminus \{v_i\}$ and $L^- = [n] \setminus (K \cup \{v_i\})$, as $\chi(G_{i-1} - v_i) = \chi(G_i) = r$ it follows that $G_{i-1}[L^-]$ is a complete (r-3)-partite graph with parts W_1, \ldots, W_{r-3} , and $G_{i-1}[K^-]$ is a blow-up of C_5 with parts Y_1, \ldots, Y_5 , where, without loss of generality, $Y_1 = \{y_1\}$ and $Y_2 = \{y_2\}$ for some vertices y_1, y_2 . Now, if $G_{i-1}[K^- \cup \{v_i\}]$ contains a triangle, then $N_{G_{i-1}}(v_i) \cap W_\ell = \emptyset$ for some ℓ , yielding $\chi(G_i[L^- \cup \{v_i\}]) = r-3$ and, say, $\chi(G_{i-1} - y_1) = r-1$. Otherwise, $N_{G_{i-1}}(v_i) \cap K^- \subseteq Y_a \cup Y_{a+2}$ for some a (with addition performed modulo 5): let $Y'_{a+1} = Y_{a+1} \cup \{v_i\}$ and $Y'_b = Y_b$ for $b \neq a+1$. Then $G_{i-1}[K^- \cup \{v_i\}]$ is contained in the blow-up of C_5 with parts Y'_a , and $\min\{|Y'_1|, |Y'_2|\} = 1$ implies $\min\{\chi(G_{i-1} - y_1), \chi(G - y_2)\} = r-1$. We conclude that $G_{i-1} \in \mathcal{G}'_{n,r}$, completing the proof.

2.2 Proof of Corollary 1

Recalling the discussion at the start of this section, select an integer k for which $F_r(n,k) \in \mathcal{F}_{n,r} = \mathcal{G}^*_{n,r}$, and let v^* and X_1,\ldots,X_{r-1} as given above. Suppose that $r+2 \leq n \leq 2(r-1)$: then Claim 1 implies that $|X_3|=1$, $|X_1|=|X_2|=2$, and $|X_j|\leq 2$ for j>3. Letting $X_3=\{x_3\}$, by deleting the edge v^*x_3 and adding v^* to X_3 , we obtain a subgraph of $T_{r-1}(n)$ missing exactly 3 edges: one between X_1 and X_2 and two connecting v^* to $X_1 \cup X_2$, yielding (i).

If $n \geq 2(r-1)+1$, then by Claim 1 we may also assume that $|X_1| \leq |X_2| \leq \cdots \leq |X_{r-1}| \leq |X_1|+1$. Deleting the sole edge connecting v^* to X_1 and then adding v^* to X_1 produces a subgraph of $T_{r-1}(n)$ missing only $1+(|X_2|-1)=\lfloor \frac{n}{r-1} \rfloor$ edges, and (ii) follows.

Acknowlegment. The author wishes to thank the anonymous referee for various helpful comments and suggestions.

References

- A. E. Brouwer, Some lotto numbers from an extension of Turán's theorem, Math. Centre report 1978, MR82c: 05057.
- [2] P. Erdős, On a theorem of Rademacher-Turán, Illinois Journal of Math 6(1962), 122-127.
- [3] D. Hanson and B. Toft, k-saturated graphs of chromatic number at least k, Ars Combinatoria 31 (1991), 159-164.
- [4] M. Kang and O. Pikhurko, Maximum K_{r+1} -free graphs which are not r-partite, Mat Studii, 24 (2005), 12-20.
- [5] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, 1968 Theory of Graphs (Proc. Colloq., Tihany, 1966) pp. 279-319, Academic Press, New York.
- [6] P. Turán, On an extremal problem in graph theory, Matematikai és Fizikai Lapok 48 (1941), 436-452.
- [7] A. A. Zykov, On some properties of linear complexes, Mat. Sbornik N. S., 24 (1949), 163-188.