On the E_3 -coordiality of some Graphs*

Ni Chen-min^{1†} Liu Zhi-shan² Lu Fu-liang³
(1. Teaching Department of Mathmatics, Xiamen Institute of Technology

Huaqiao University, Xiamen 361021)
(2. Mathmatics Department, Yangen University, Quanzhou 362014)
(3. Mathmatics Department, Linyi University, Linyi 276005)

Abstract The definition of E_k -cordial graphs is advanced by Cahit and Yilmaz^[1]. Based on [1],a graph G is said to be E_3 -cordial if it is possible to label the edges with the numbers from the set $\{0, 1, 2\}$ in such a way that, at each vertex v, the sum of the labels on the edges incident with v modulo 3 satisfies the inequalities $|v(i) - v(j)| \le 1$ and $|e(i) - e(j)| \le 1$, where v(s) and e(t) are, respectively, the number of vertices labeled with s and the number of edges labeled with t.In [1]-[3], authors discussed the E_3 -cordiality of $P_n(n \ge 3)$; stars S_n , $|S_n| = n+1$; $K_n(n \ge 3)$, $C_n(n \ge 3)$, the one point union of any number of copies of K_n and $K_m \odot K_m$. In this paper, we give the E_3 -cordiality of W_n , $P_m \times P_n$, K_m , n and trees . Keyword edge-cordial labellings, E_3 -cordial graph, $P_m \times P_n$, K_m , n, trees MR(2000) 05C78

1 Introduction

Edge-graceful graphs and cordial graphs have been attracting the attention of graphs theorists for a long ${\rm time}^{[2]-[7]}.{\rm In}$ [4] the authors have adopted cordial labeling of graphs [5],[6] to edge-cordial graphs. Cahit and Yilmaz generalized edge-cordial labellings to E_k -cordial labelings of graphs [1],and they hoped that a study of E_k -cordial labelings of graphs may give us a better understanding of edge-graceful graphs.Based on the definition of E_k -cordial graphs,we give the detailed definition of E_3 -cordial graphs.

Definition 1 Let G be a graph with vertex set V(G) and edge set E(G). f is an edge labeling of G, such that $f(e) \in \{0, 1, 2\}, e \in E(G)$, and the induced vertex labeling is given as $f(v) = \sum_{x_i \in N(v)} f(vx_i) \pmod{3} \in \{0, 1, 2\}$ where $v \in V(G)$ functions one

 $\{0,1,2\}$, where $v\in V(G),\{vx_i\}\in E(G)$. If the following two conditions are satisfied for $i,\ j=0,1,2,i\neq j$:

^{*}This work is supported by NSFC (No. 11226288).

[†]Corresponding author e-mail: nichenmin@gmail.com

Figure 1: The graphs described in Lemma 1, Lemma 2 and Lemma 3

 $|v(i) - v(j)| \le 1;$ $|v(i) - v(j)| \le 1;$ $|v(i) - v(j)| \le 1;$

where v(i) and e(j) are, respectively, the number of vertices labeled with i and the number of edges labeled with j.

G is said to be E_3 -cordial, and f is an E_3 -cordial labeling.

Cahit and Yilmaz^[1] proved the following graphs are E_3 -cordial: $P_n(n \ge 3)$; stars S_n , $|S_n| = n+1$ if and only if $n \ne 1 \pmod{3}$; $K_n(n \ge 3)$, $C_n(n \ge 3)$, etc. Bapat and Limaye^[3] provide E_3 -cordial labelings for $K_n(n \ge 3)$ and $K_m \odot K_m$; the one point union of any number of copies of K_n where $n \equiv 0$ or $2 \pmod{3}$.

In this paper, we mainly give the proof for $W_n, P_m \times P_n, K_{m,n}$ and trees to be E_3 -cordial.In the following discussion, we consider finite, undirected simple graphs. $G^* - G$ is a graph with vertex set $V(G^* - G) = V(G^*) - V(G) + V(G \cap G^*)$ and edge set $E(G^* - G) = E(G^*) - E(G)$. The definitions of $W_n, P_m \times P_n, K_{m,n}$, trees and other undefined terms can be found in [8].

2 Preliminaries

Lemma 1 Let G be E_3 -cordial, $w \in V(G)$, $xy \in E(G)$, then G_1 (see Figure 1(a)) constructed by adding three new vertices u_1, u_2, u_3 to the edge xy and joining w to u_i , is E_3 -cordial for i = 1, 2, 3.

Proof. Let f be an E_3 -cordial labeling of G and f(x) = a, f(y) = b, according to Definition $1, f(xy) \in \{0, 1, 2\}$. Suppose that f(xy) = 1 in G, let $f(wu_1) = 2$, $f(wu_2) = 0$, $f(wu_3) = 1$ in G_1 , then $f(u_1) = 0$, $f(u_2) = 2$, $f(u_3) = 1$. One can easily check that v(0) = v(1) = v(2) and e(0) = e(1) = e(2) in $G_1 - G$. Since G is E_3 -cordial, G_1 is E_3 -cordial. When f(xy) = 0 or f(xy) = 2, the Lemma can be proved with the same method.

Figure 2: The graphs G, G_1 and G_2 in Lemma 4

Lemma 2 Let G be E_3 -cordial, $\{x, y\} \subset V(G)$, then G_2 (see Figure 1(b)) constructed by adding three new vertices u_1, u_2, u_3 to G and joining the vertex x to u_1 and u_2 , joining y and u_3 , is E_3 -cordial.

Proof. Let f be an E_3 -cordial labeling of G and f(x) = a, f(y) = b, we can prove it by giving the labels 1,2 and 0 to the edges xu_1 , xu_2 , and yu_3 respectively. It can be clearly seen that when x = y, the conclusion is still true.

Here the transform from G to G_2 in Lemma 2 is called α -transform, simply recorded as α -Tra, and the transform from G_2 to G in Lemma 2 is called the inversion of α -Tra.

Lemma 3 Let G be E_3 -cordial, $\{x, y\} \subset V(G)$, then G_3 , as shown in Figure 1(c), constructed by adding three new vertices u_1 , u_2 , u_3 to G and joining the vertex x and u_1 , u_1 and u_2 , u_3 and u_3 , is E_3 -cordial.

Proof. This maybe refer to 9 cases with the different labellings of x and y. Without loss of generality, we assume that f(x) = 0, f(y) = 2. In this case, just label the edges xu_1 , u_1u_2 , yu_3 with the numbers 0, ,2 ,1, the question is solved. Other cases could be proved in the same way, where the most important thing is ensuring e(i) = e(j) and v(i) = v(j) in $G_3 - G$, i, j = 0, 1, 2.

The transform from G to G_3 in Lemma 3 is called β -transform, simply recorded as β -Tra, and the transform from G_3 to G in Lemma 3 is called the inversion of β -Tra.

Lemma 4 Let G be E_3 -cordial, $\{x_1, x_2, ..., x_k\} \subset V(G)$ (as shown in Figure 2(a)), then the new graphs G_1 ((as shown in Figure 2(b))) and G_2 ((as shown in Figure 2(c)))are E_3 -cordial,where $V(G_1) = V(G) \bigcup \{u_1, u_2, u_3\}$, $E(G_1) = E(G) \bigcup \{u_i x_j\}$ for $i = 1, 2, 3; j = 1, ..., k, \text{and } V(G_2) = V(G_1), E(G_2) = E(G_1) \bigcup \{u_1 u_2, u_3 u_2, u_1 u_3\}$.

Figure 3: Illustrating Case 1 and Case 3 of Lemma 4

Proof. Firstly, we prove the E_3 -coordinatity of G_1 , there are three cases to be discussed.

Case 1. $k \equiv 0 \pmod{3}$. Label the new edges $u_i x_j$ as Figure $3(a_1)(b_1)(c_1)$ shows, then $f(u_1) = 1$, $f(u_2) = 2$, $f(u_3) = 0$, while the labels of x_j stay the same as they are in G, the number of edges $u_i x_j$ labeled i is $\frac{k}{3}, \ i = 1, 2, \ 3; \ j = 1, ..., k.$ This satisfies $|v(i) - v(j)| \le 1$, $|e(i) - e(j)| \le 1$,

i, j = 0, 1, 2, and of course, G_1 is E_3 -cordial.

Case 2. $k \equiv 1 \pmod{3}$. Just exchange the labellings of u_1x_j and u_2x_i , while keeping the other edge labellings staying the same as they are

in Case 1. Thus, one can easily check the E_3 -coordinate of G_1 . Case 3, $k \equiv 2 \pmod{3}$. The edge labellings of $u_i x_j$, are shown in Figure $3(a_2)(b_2)(c_2)$. Similarly, we get the E_3 -cordiality of G_1 . Secondly, we consider G_2 , let $f(u_1u_2) = 0$, $f(u_3u_2) = 2$, $f(u_1u_3) = 1$, while other edges are labeled the same as they are in G_1 , then $\{f(u_1), f(u_2), g(u_2), g(u_2$ $f(u_3)$ = {0, 1, 2}. According to the above discussion and Definition 1, G_2 is E_3 -cordial.

Lemma 5 Let G be E_3 -cordial, $\{x_1, x_2, ..., x_n\} \subset V(G)$, then G_1 (as shown in Figure 4(a)) is E_3 -cordial.

We distinguish the following two cases.

Case 1. Assume that n is odd. Label $G_1 - G$ as shown in Figure 4(b), consider the labels of the adding edges from G to G_1 , that is the edges of $G_1 - G$. e(0) = 2n - 1, e(1) = n + n - 1 = e(2) = 2n - 1 = e(0). It is easy

Figure 4: Illustrating Lemma 5

Figure 5: The E_3 - cordial labellings of W_5 , W_6 , $K_{2,3}$ and $K_{3,3}$

to check that v(0) = v(1) = v(2) = 1 on every vertical line of $G_1 - G$, so that v(0) = v(1) = v(2) in $G_1 - G$. Hence G_1 is E_3 -coordial.

Case 2. When n is even. See the edge labellings of $G_1 - G$ in Figure

4(c), we get the E_3 -coordinality of G_1 .

3 Main Results

Theorem 1 (1) Wn(|Wn| = n) is E_3 -cordial when $n \ge 4$. (2) $K_{m,n}$ is E_3 -coordial except $K_{1,3k+1}$ and $K_{3k+1,1}$ for $n, m, k \geq 1$.

Proof. (1) Since $W_4 = K_4$ is E_3 -cordial^{[1][2]}, and we can simply get the E_3 -cordial labellings of W_5 (as shown in Figure 5(a)) and W_6 (as shown in Figure 5(b)), by Lemma 1, W_{3k+1} , W_{3k+2} , W_{3k} is E_3 -cordial. Of course, Wn is E_3 -cordial when $n \geq 4$.

(2) If m = 1 or n = 1, $K_{1,n} = K_{n,1} = S_n$ is E_3 -cordial^{[1][8]} if and only if $n \not\equiv 1 \pmod{3}$, i.e. $K_{1,3k+1}$ is not E_3 -cordial, while $K_{1,3k} = K_{3k,1}$ and $K_{1,3k+2} = K_{3k+2,1}$ are E_3 -cordial. Since $K_{2,1} = K_{1,2} = S_2$, $K_{2,2} = K_{3k+2,1}$

Figure 6: The E_3 - cordial labellings of $K_{4,4}$

Figure 7: A step in the proof of Theorem 2

 C_4 are $E_3\text{-cordial}^{[1][3]},\ K_{2,3}$ labeled as shown in Figure 5(c) is $E_3\text{-cordial}.$ Based on Lemma 4, $K_{2,3k+1},\ K_{2,3k+2},\ K_{2,3k}$ are $E_3\text{-cordial}$, so $K_{2,n}$ is $E_3\text{-cordial}$, then $K_{n,2}=K_{2,n}$ is $E_3\text{-cordial}$. Go on using Lemma 4 , $K_{n,3k+2}$ is $E_3\text{-cordial}(n\geq 1);\ K_{3,3}$ labeled as shown in Figure 5(d) is $E_3\text{-cordial}$, and $K_{1,3}$, $K_{2,3}$ are all $E_3\text{-cordial}$, so in the same way , by Lemma 4 $K_{n,3k}$ is $E_3\text{-cordial};\ K_{4,1}=K_{1,4}$ is not $E_3\text{-cordial},\ K_{4,2}=K_{2,4},\ K_{4,3}=K_{3,4}$ are $E_3\text{-cordial},\ K_{4,4}$ (see Figure 6(a)), label the edges of the graph (a) as the graphs (b), (c), (d),(e) of Figure 6 shows, it is easily to check that $K_{4,4}$ is $E_3\text{-cordial}$. By Lemma 4, $K_{4,3k+2},\ K_{4,3k},\ K_{4,3k+1}$ are $E_3\text{-cordial}$. As stated above, $K_{n,3k+2},\ K_{n,3k},\ K_{n,3k+1}$ are all $E_3\text{-cordial}$. We draw the conclusion that $K_{m,n}$ is $E_3\text{-cordial}$ except $K_{1,3k+1}$ and $K_{3k+1,1}$ for $n,m,k\geq 1$.

Theorem 2 $P_m \times P_n (m \ge 2, n \ge 2)$ is E_3 -cordial.

Proof. Firstly, we prove that $P_2 \times P_n$ is E_3 -cordial. Label the edges of $P_2 \times P_2$, $P_2 \times P_3$, $P_2 \times P_4$ as shown in Figure 7(a), (b), (c), we can easily check that they are E_3 -cordial. By Lemma 5, $P_2 \times P_5$, $P_2 \times P_6$, $P_2 \times P_7$ are also E_3 -cordial. Go on using Lemma 5, we get the E_3 -cordiality of $P_2 \times P_{3k+2}$, $P_2 \times P_{3k}$, $P_2 \times P_{3k+1}$, that is, $P_2 \times P_n$ is E_3 -cordial. Secondly, we give the proof to the E_3 -cordiality of $P_3 \times P_n$ and $P_4 \times P_n$. Since $P_3 \times P_1 = P_3$, $P_3 \times P_2 = P_2 \times P_3$, $P_3 \times P_3$ can be labeled as shown in Figure 7(d), applying Lemma 5, $P_3 \times P_4$, $P_3 \times P_5$, $P_3 \times P_6$ are E_3 -cordial. Go on

Figure 8: Illustrating Theorem 3

using Lemma 5, $P_3 \times P_n$ is E_3 -cordial. As for $P_4 \times P_n$, the proof can use the same method. Now applying Lemma 5 to $P_2 \times P_n$, $P_3 \times P_n$, $P_4 \times P_n$ respectively, we can get the E_3 -cordiality of $P_{3k+2} \times P_n$, $P_{3k} \times P_n$, $P_{3k+1} \times P_n$. The desired result $P_m \times P_n$ ($m \ge 2$, $n \ge 2$) is E_3 -cordial would be gotten.

Theorem 3 Let T be a tree, |T| = n+1, $d(T) \ge 3$, then T is E_3 -coordial.

Proof. Since $d(T) \geq 3$, T is not S_n .

Find two endpoints x and y of T, between which the distance is the largest in T. Let v be the neighbor vertex of y, as shown in Figure 8(a), consider the degree of v, obviously, $d(v) \geq 2$. If d(v) = 2, let w be the other neighbor of v, applying the inversion of β -Tra on the edges ux, wv, vy, thus T is reduced; If d(v) = 3, another neighbor of v is z, using the inversion of α -Tra on the edges ux, yv, vz, the graph T can be reduced; If d(v) = 4, let the fourth neighbor of v is a, as shown in Figure 8(a), using the inversion of α -Tra on the edges va, yv, vz, tv is reduced. In a word, we can reduce the graph tv by using these inverse transforms. If tv is tv we can firstly reduce tv by using the inversion of tv-Tra tv-Tra

Go on the above steps on the new reduced graphs, T will be reduced again and again. In fact, if $|T| = n+1 \neq 3k+2$, that is, $n \neq 3k+1$, T will be reduced to be S_3 or a path P_2 or P_3 , as shown in Figure 8(b)(c)(d). If |T| = n+1 = 3k+2, there is a particular situation should be considered, that is ,the final graph is S_4 , as we know S_4 is not E_3 -cordial. In this situation, we should consider the above step, and change the way of the above inverse transform in case of the appearance of S_4 . At last, T will be reduced to P_5 or the graph whose edge labellings are shown in Figure 8(e). All in all, it is obviously to see that the reduced graphs shown in Figure 8(b)(c)(d)(e)(f) are all E_3 -cordial. Now starting from these reduced graphs, constantly using α -Tra or β -Tra , we can construct T. And at each stage , the constructed graph is E_3 -cordial (by Lemma 2 or Lemma 3). So T (tree) is E3-cordial.

References

- I. Cahit and R. Yilmaz, E3-cordial graphs, Ars Combin., 54 (1999) 119-127.
- [2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, the Electronic Journal of Combinatorics, 16(2012) 52-53.
- [3] M. V. Bapat and N. B. Limaye, Edge-three cordial graphs arising from complete graphs, J. Combin. Math. Combin. Comput., 56 (2006) 147-169.
- [4] R.Yilmaz and I. Cahit, Edge-cordial graphs, Ars Combinatoria, 46 (1997) 251-266.
- [5] I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23 (1987) 201-208.
- [6] I.Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R.Bodendrek (Ed.), Wissenschaftsverlag, Mannheim, 1990, pp.209-230.
- [7] Xie Yan-tao, Che Ying-tao, Liu Zhi-shan. The Cordiality on the Union of 3-regular Connected Graph and Cycle . Chin. Quart. J. of Math. 2010, 25(2):244-248.
- [8] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, Posts and Telecom Press, 2006.