On Monotonicity of Some Sequences Related to
Hyperfibonacci Numbers and Hyperlucas Numbers!

Feng-Zhen Zhao
Department of Mathematics,
Shanghai University,
Shanghai 200444, China.
{E-mail: fengzhenzhao@shu.edu.cn }

Chun Wang
School of Mathematical Sciences,
Dalian University of Technology,
Dalian 116024, China.

{E-mail: wangchunmath@gmail.com}

Abstract

In this paper, we mainly discuss the monotonicity of some sequences re-
lated to the hyperfibhonacci sequences {F,[,’]},.zo and the hyperlucas se-
quences {L!{ I }n>0, where 7 is a positive integer. We prove that { vV F,[,ll}nzl
and {/ F1[z2]}n21 are unimodal and {1, LEl}nZI, {¥ F,lllil /F,[ill}nZI and

{3 LLI_]H / Y ]}nzz are decreasing. Furthermore, we discuss the monotonic-

ity of the sequences of { "*{/F!,/ 3/ Fl1},5, and { Y, LLl_ll_l /v LM s
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1 Introduction

Let r be a positive integer. The hyperfibonacci sequences {F’,[fl }n>0 and
the hyperlucas sequences {L!f ]}nZO are defined by (see (5})

F =S FrY, =Y Lf™, r2e
k=0 k=0

Fi = iFk, LY = i Ly,
k=0 k=0

where {F,}n>0 and {Ln}n30 denote the Fibonacci sequence and the Lucas
sequence, respectively. The Binet form of F,, and L, is
an —_ (__1)na-n
Fp=————,
NG
where a = (14 1/5)/2. It is well known that {F,}.>0 and {Ln}n3o satisfy

Ln=a" +(-1)"a™",

the following recurrence relation
Wn+1 = Wn + W, -1, N 2 1. (11)

Some values of {F,l,ll}nzo, {F,[lzl}nzo and {LL‘]},,ZO are as follows:

n [0 1 2 3 4 5 6 7 8 9 10 11 12

F'lo 1 2 4 7 12 20 33 54 88 143 232 376

F,[lzl 0 1 3 7 14 26 46 79 133 221 364 596 973

Wlg 3 6 10 17 28 46 75 122 198 321 520 842

The sequences {F,[f] }n>0 and {LLT ]}nzo are sequences AG00071 and A0001610
in Sloane’s Encyclopedia [13]. In fact, {Fi} >0 and {L¥1},,50 are the con-
volutions of {F " }n>0 and {1}ns0, { LYY} a>0 and {1}n>0, respectively.
For some properties of {F,[fl},,zo and {Lw}n?_o, see (3,5,11,13].

Sun {15] posed a series of conjectures on monotonicity of sequences of

the types { ¢/zn} and { “+Y/Zny1/ {/Zn}, Where {za}n>o0 is a combinatorial
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sequence of positive integers. Many conjectures of (15] have been confirmed.
See for instance [4,9,15-17]. In this paper, we mainly discuss the mono-
tonicity of some sequences related to {F,[,rl}nzo and {L;f] }n>0. Now we

recall some definitions involved in this paper.

Definition 1.1 Let {zn}n>0 be a sequence of positive real numbers. We
say that {2z, }n>o is log-concave (or log-convez) if 22 > 2z 1724 (or 22 <

Zn—12n+1) for alln > 1.

Definition 1.2 Let {zn}n50 be a sequence of positive real numbers. If
20221 << Zm1 £ Zm 2 Zm1 2 -+ for some m, {z,}n30 s called

unimodal, and m is called a mode of the sequence.

Log-concavity (log-convexity) and unimodality of combinatorial sequences
play an important role in many subjects such as quantum physics, white
noise theory, probability, and mathematical biology and they are instru-
mental in obtaining the growth rate of a sequence. In particular, log-
concavity and log-convexity of sequences are also fertile sources of inequal-
ities. For some applications of log-concavity (log-convexity) of combinatori-
al sequences, see for instance [1,2,6-10,12,14]. In the next section, we prove
that {{‘/;,[,T]}nzl and {{/}F}nZI are unimodal, { y LL”},,ZI is decreas-
ing, and { F,[ll_,l_l /F,llll}nzl and {{/ LQ_IH /L!}‘},,Zz are decreasing. Fur-
thermore, we discuss the monotonicity of the sequences { "* F,[,ﬂl / {/IT}I,I—’ In>1

and { "5/LUL, / /L),

2 The Monotonicity of Some Sequences Re-
lated to Hyperfibonacci Numbers and Hy-
perlucas Numbers

In this section, we state and prove the main results of this paper. We first

prove a lemma.
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Lemma 2.1 Let {z,}n>0 be a positive sequence of real numbers defined by

the following recurrence relation
Zn = C1Zp_1 — C2Zn—2 — *** — CkZn—k, N2k, (2.1)

where k > 2, ¢, >0, ¢; >0 (2 <35 <k). If{z0,21,22, " s Zky 2k 41} 8

log-concave (log-convez), the sequence {zn}n>0 is log-concave (log-convez).

Proof. Assume that {z0,21,22, " ,Zk, 2k41} is log-concave. For n > 0,

let T, = zn41/2n. It follows from (2.1) that

c C c
Tp=cC1 — 2 _ 3 — = k , n>k (2.2)
Tn-1 Tpn-1Tn-2 Tn-1Tn-2"""'Tn—k+1

We need prove that {z, }>0 is decreasing in order to verify the log-concavity
of {zn}n>0. We prove by induction that {Tn}nxo0 is decreasing. In fact,
since {20, 21, 22, - » 2k, Zk+1} is log-concave, {zo, Z1,Z2," - , Tk } is decreas-

ing. For n > k, assume that £, < zp—1 < +++ < Tp_k. It follows from (2.2)

. c ( 1 1 ) + C3 ( 1 1 ) +
-, = —— — PN
m T \2Zn ZTn-1)  Tn-1\ZTn Tn-2

Ck ( 1 1 )
Tn-1Tp-2"""Tn—k4+2 \Tn Tn-k+l

By the assumption, we have 2, — Zn41 = 0. Hence {Zn}n>0 is decreasing

that

and {z,}n>0 is log-concave. [ ]

Lemma 2.2 (16} Let {z,}n>0 be a sequence of positive numbers. Assume
that {zp }ns N 18 log-concave and Y/zy > M+YZny for some N > 1. Then

{4/Zn}n>n is strictly decreasing.

Theorem 2.1 For the hyperfibonacci sequences {F,l,” }n>0, {F,[f]}nzl, and

the hyperlucas sequence {LLl ]},,20, we have
() {V F,[.l]}nzl and { 4, F2 }n>1 are unimodal;

(i) {\, L!}]}nzl is decreasing.
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Proof. (i) Using (1.1), we get
FM=Fop-1, L=L,,-1 (2.3)
For n > 1, it is clear that

VEU > "/Fl) | o (Fue— 1)1 > (Fys - 1)
< (n+1)In(Fryg —1)—nln(Fu3—1)>0.

For n > 1, let f(n) = (n + 1)In(Frt2 — 1) — nln(Fny3 — 1). Clearly,
f(1)=—In2. For n > 1, we have

f@n)-f(2n+1) = (2n+1)In(Fonyz —1) —2nIn(Fony3 — 1)

~(2n +2) In(Fynys — 1) + (20 + 1) In(Fanps — 1)
(Fant2 = 1)(Fongq — 1)
(F2n+3 - 1)2
Linte —5Fpn43 —5Fon 14+ 2
Linys —10F5 43 +7

= (2n+1)ln

= (2n+1)In

and

(Fony3 — 1)(Fonys — 1)
(Fanya — 1)2
Lan+s —5F2n43 —5F3n45 +8
L4n+8 - 10F2n+4 +3

f@en+1)-f(2n+2) = (2n+2)In

= (2n+2)In

For n > 0, it follows from (1.1) that

—5F3n42 — 5F3niq + 10Fonss =5 = —5F,, — 5
< 0

~5F3n43 — 5Fonys + 10Fonsq +5 = —5Fpy1 +5
< 0, (n>1).

Then

Lan+e — 5Fon42 —5Fpn 14+ 2
L4n+6 - 10F2n+3 +7
Lint+g —5Fpn43 —5F 45+ 8
Linys —10Fon44 + 3

0< <1,

0< <1, (n>1).
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For n > 1, we have f(2n) — f(2n+1) <0 and f(2n+1) — f(2n+2) <0.

Hence {f(n)}n>2 is strictly increasing. We observe that

f) = 2ma-tnvE+ s nin[i- G- 2]

—nln[ (L v5 ]

1+ o2nt6  gnt3

and
lim f(n)=2lno- Inv5>0.
n—oo
On the other hand,
f(1)=-1In2, f(2)=-In2,
f(3)=8In2-3In7<0,
F(4) =5In7—8In2 —4In3 < 0.
Then there exists a positive integer N such that f(n) < 0 (n < N) and

f(n) >0 (n > N). This means that { {/ F,l‘l]}nzl is unimodal.

It follows from (2.3) that
F¥ = Fopa—n-3.
For n > 1, it is evident that

VER > "YF & (Fapa—n—-3"*'>(Fus—n—4"
& (n+1)In(Foya—n—-3)—nln(Frys—n—4) 20.

For n > 1, set g(n) = (n+1) In(Fr4+4—n—3)—nIn(Fr4s—n—4). Evidently,
g(1) = —In3. For n > 1, we have

g(2n) —g(2n +1)

(Fon4+4 — 2n — 3)(Fonis — 2n — 5)
(Fants —2n — 4)2

Lint10 -3+ Xy

Liny10+2+1

={(2n+1)In

=(2n+1)In
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and

g(2n+1) —g(2n+2)

(Fon+s — 2n — 4)(Font7 — 2n — 6)
(Fante — 2n — 5)2

Lyni12+3+ X,

=(2n+2)In

=(2n+2)In Loz =015,
where
X1 = =5(2n+5)Fanis — 5(2n + 3)Fonys + 5(2n + 3)(2n + 5),
Yi = -20(n+2)Fones + 20(n + 2)?,
X2 = —=5(2n+6)Fanss — 5(2n + 4)Fopt7 + 20(n + 2)(n + 3),
Y2 = —10(2n + 5)Fonys + 5(2n + 5)%.

Applying (1.1), we obtain

X1-Y1 = —10nFani2 —5Fon42 +10Fon4; — 5
< =10F3n42 — 5Fopnq0 + 10F5, 1

= —10F, — 5F2,49

< 0
and
Xo=Y, = —10nFyn 43 + 10F5,42 -5
< =5.
Then
Lyny10 =3+ X,
0<In <1,
Ligny10+2+ 1
0<1n Ling12 +3+ X, <1

Lint12-2+Y, ’
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and g(2n) — g(2n+1) < 0 and g(2n +1) — g(2n+2) < 0 for n > 1. Hence

{g(n)}n31 is strictly increasing. We note that

g(n) = 4lna—-InV5+(n+1)n [1 - ((1;}3: + (n:ni):/g]
-1)" 4)V/5
i 2 4 28]

nli_{r;()g(n) = 4lna—-Inv5>0,
and
g(1)=-1n3<g(2)=3In3-2In7<g(3) =In7-3In2<0.

Then there exists a positive integer M such that g(n) < 0 (n < M) and
g(n) >0 (n > M). This implies that {/ F,l.zl}nzl is unimodal.
(ii) By (1.1) and (2.3), we can verify that {LLl ]},,20 satisfies

Wit = 2Wy — Wa_a. (2.4)

On the other hand, {Lg],LE‘l],Lg],Lgl} is log-concave. It follows from
Lemma 2.1 that {Lw}nzg is log-concave. We note that \a/L_Ll-] > \‘/L_‘[,lT .
By applying Lemma 2.2, we prove that { M}nzzg is decreasing. On the
other hand, we can verify that Lllll > \/LT;] > {/LT;] . Hence { ﬁ }n>1

is decreasing. n

Theorem 2.2 For the hyperfibonacci sequence {F,[,l]},,?_o and the hyperlu-
cas sequence {Ly]}nzo, the sequences { {/ F,l,l_}_l/F,[lll}nZl and { LL{L,/LL‘I In>2

are decreasing.

Proof. Forn>1,putz, = F,[ll.'l_l /F,[,”. It is obvious that {Flll], Fz[l],Fgll,

FP],Féll} is log-concave. On the other hand, the sequence {F,l,ll}nzl sat-
isfies the recurrence (2.4). It follows from Lemma 2.1 that {F,llll},,zl is

log-concave. Then {zn}>1 is decreasing.
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For n > 1, it is obvious that

n/xn 2 n+1 Tn+l =Y x:""l Z $:+l

® (n+1l)lnz, —nlnz,y; >0.

For n > 1,
(n+1)Inz, —nlnz,y; = Ilnz,+nln In
Tn+ti
- 1nx,.+n1n(l+w).
Tn+l

Since In(1 + z) > /(1 + z) for £ > 0 and z,, > 1, we have

Tn = Tntl

(n+1)Inz, —nlnz,yy > p

> 0.

Then the sequence { §, F,[lll i F,[,l]},,z 1 is decreasing. Using a similar method

it can be shown that the sequence { {/ LLI.]H /LL1 ]}n_>_2 is also decreasing. M

From the proofs of Theorems 2.1-2.2, we also show that {Flll}nzl and
{LL1 l}n23 are log-concave by Lemma 2.1. In fact, their log-concavity can

be proved by the monotonicity of their quotient sequences (see [18)).

Theorem 2.3 For the hyperfibonacci sequence {F,[,ll}nzo and the hyperlu-
cas sequence {LI!'} >0, the sequences { {/nFil }n>s and {3, nLLl]}nza are

decreasing.

Proof. It is well known that
n
Vortl> DRl o @R s oeye)
& (n+1)lnn—nln(n+1)+ (n+1)In £l
—nln F,lll_ll

> 0.

163



For n > 1, let

h(n) = (n+1) In(nF1) —nln [(n + l)F,[‘I_ll],
h’(;:) = (n+1)lnn—nln(n+1).

Clearly,
h(n) = l:(;;) +(n+1)InFM —nln F,El_,],l.
For n > 1, we obtain

(2n + 1) In(4n? +4n) —2(2n + 1) In(2n + 1)

1l

h(2n) — h(2n + 1)

< 0,
h@n+1)—h(@Zn+2) = (2n+2)In(4n? +8n+3) — 2(2n +2)In(2n +2)
< o

Then {’;(;)}nzl is increasing. Since {(n + 1)In FY —nln F,El_,l_l} is also
increasing, {h(n)}n>1 is increasing. We can verify that h(5) > 0. Then
h(n) > 0 (n > 5). Hence { { nF,[lll}nzs is decreasing.

As { \/_@ }n>1 and { {/n}n>3 are decreasing, { |, nL¥} >3 is decreas-
ing. |

Theorem 2.4 For the hyperfibonacci sequence {F,[,l]}nzo and the hyperlu-
cas sequence {LY Yoo, { "W/ F,/ ¥/ FM}nse and { "V L,/ LY nse

are increasing.

Proof. Forn > 2,

= FM L FY = Y RN FY,
mFY, wFY, omEY

n+1 n—1 n
& @ —n)nFY, + (@ +n)nFY, —2(n? =)l FY > 0,

ey 0> /2l /7

om )L +@2+n)Lll —2(n? 1)Ll >0

>0

164



For n > 2, let

—

fln) =

g’-(Tz)=

(n? —n)InFY, + (0 +n)In F | — o(n? — 1) In 1Y,
(n? —n)In LY + (n? +n)In LV | —2(n? — 1)In LI,

We observe that

For n > 2, let

We can prove

Fady (P
Flll (FU])

LhLy (L))
L,y

f(n) - fin¥ 1) =n(n+1)In

gn)—g(n+1)=n(n+1)ln =2

S(n) = FU (FO) - M (R,
T(n) = LU (L)% - LM, i,

that
(PR - LD = (- 4 R, (2.5)
(Lgl)z‘LLll-lLﬂl = 5(=1)"+La-1. (2.6)

By using (2.5) and (1.1), we have

S(2n) =

i1 (Fan + DFRL ) = (Fynoy = 1)Ef, FY)

(F2n+1 — 1)(F2n43 = 1) + Fan(Fant1 — 1)(Fangs — 1)
+(Fans2 — 1)(Fanga — 1) = Fon_1(Fonga — 1)(Fanga — 1)
(Fan+1 = 1)(Fangs = 1) + Fon(Fangy — 1)(Fanga — 1)
+(Font2 — 1){(Fanta = 1) = Fon_1(Fans2 — 1) (Fanygs — 1)
—Fon_1(Fant2 — 1) Fany2

(Fant1 — 1) (Fonss — 1) + (Fong2 — 1)(Fongs — 1)
—Fon-1{Fant2 — 1) Fony2 — (Fon_2 + 1)(Fan4s — 1)
Fans1Fonis + FongoFonsa + Fon 1 Fanga — Fanys — Fongs

+2 = Fon—2Fon13 — (Fan4a — 1 — Fon_3) = Fon_1 F2, 0.
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Due to

Font1Fonys + FonyoFonta + Fon1Fony2 — Fon—2Fon4s
_ Lanta+ Lante +15

5
F22n+2
— L4n+4 -2
5 I

and (1.1), we get

Linta + Lan+es — Fon-1Lanta | 2F3n-1 _ Fon_1
5 5

—2Fon43 = Fony2 — Fangq + 6

Lint+a + Lanye — Fon—1Lan44
3 )

S(2n) =

<

Forn >3, F3,_1 > 5. Then we have

Lint+e —4L4n+a
5
—Lani2 — Lanta
5

S(2n) <

< 0.

For n > 1, using the similar method, we have

i

Py (Fang1 — 1)F2[:11+2 - F2[:11+1(F2n + 1)F2[:;]+3
= [(Fans2 — 1)(Fon41 — 1)
—(Font3 = 1)(Fan + 1))(F2n4a — 1)
—(Fant+s — 1)(Fan + 1) F2nqs
= (3= Font2 — Fong1 — Fongs + Fon)(Fonga — 1)
—(Fon+3 = 1)(Fan + 1) Fanss
= (3-2Fm41 — Fonia)(Fonta — 1)
—(Fan43 — 1)(F2n + 1) Fanys

S(2n+1)

< 0.
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Then, for n > 6, S(n) < 0 and { R;)}nze is decreasing. We note that

nlgrgof(n) =4lna—-In5>0.

Then f(n) > 0 (n > 6) and { "*y/ F,[,l_'l_l /V F,l,ll}nzs is increasing.
By (2.6) and (1.1), we derive

T(n) = LY (Lan —5)LE) — L8 (Lonoy +5)LLL,,
= —5(L{2111-1Ll2111+1 + leﬂlelr]L-pz) + (5 — Lan-2)(Lon4s — 1)
—Lon-1Lany2(Lonsz — 1)
< 0
and

I

5(Lon+2 —1)(Lan+a — 1) + 5(Lants — 1) (Lonts — 1)

—(5+ Lon-1)(Lan+4 — 1) = Lon(Lonts — 1) Lonts

T(2n+1)

= 5(Lont2Lon+a + Lan+3Llants) + LoanLongs — Lan—1Lonys
~5(Lan+a — 1) + Lon-1 — 5(Lans2 + Lonya — 1)
—5(L2n+3 + Langs — 1) — LanL3, 13

< 5(Lan+2Lon+a + Lont3Lants) + LanLon+s — Lan—1Lon4q
—L2n(Lante —2) —5Lany2

= 5(Lan+6 + Lan+8) + 15 — Lon(Lan46 —2) — 5Lon4a

< 5(Lan+s + Lan+s) — LanLanys.
We note that T'(7) < 0. For n > 4,

T(2n+1) < 5(Lan+6 + Lin+s) —29L4nqe
< 0

—

Hence g(n) > 0 (n > 6) and { "*{ LLI_]H /V Lgl}nze is increasing. [ ]
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We have discussed the monotonicity of some sequences related to hyper-
fibonacci numbers and hyperlucas numbers. Now we consider the general-
ized hyperfibonacci sequences {U,I,r]},,zo and the generalized hyperlucas se-
quences {V,ﬁ"]}nzo, where 7 is a positive integer. Let {Up}n>0 and {Va}nzo0
be the generalized Fibonacci and Lucas sequence, respectively. The Binet
forms of U,, and V,, are

™ — (=1t "
RO
where A = p2 +4,7 = (VA +p)/2, and p > 1 is an integer. It is well
known that {Uy,}n>0 and {V,}n3o satisfy

, Vo=1"+(-1)"",

Woppr =pWon + Wyy, n2> 1

(UM} 50 and {Vi{1} .50 are defined as follows:

n

U7[‘r] - Z Ul[cr—ll’ V’lr] — Zn: Vk[r—l],

k=0 k=0
where U,[,O] = U, and V,!Ol = V,. Some properties of {U,[f]}nzo and
{V,!rl}nzo are discussed in [3,11,18]. We discuss the monotonicity of some
sequences involving generalized hyperfibonacci numbers and generalized

hyperlucas numbers. For example, we can prove that

Theorem 2.5 For p > 2, the sequence {" U,[,l]},,zl s increasing. For

p > 1, the sequence { \ V,!l]}nz 1 15 decreasing.

Proof. (i) Let A(n) =(n+1)In UM —nln U,Llll. In order to prove that
{ \"/ U,{,ll},,a 1 is increasing, we need verify that A(n) < 0 for n > 1. Clearly,
UbiULY,

1 Y
(Ukn11)?

Ujns1Uinsa

(U, )2

A(2n) — A(2n+1) = (2n+1)In

A2n+1)—A@2n+2) = (2n+2)In
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By using (see {18])

Un + Un+1 -1
ot = St Lo 21,

we have

A(2n) — A(2n +1)
(Uzn + Uznt1 = 1)(Uzns2 + Uzngs — 1)
(Uzns1 + Uzpyo — 1)2
A@n+1) — A@2n+2)
(Uzn+1 + Uzny2 — 1)(Uangs + Uzngq — 1
(Uzn42 + Uzngs — 1)2

b

=(2n+1)In

=(2n+2)In

It follows from

Vanto — V- Vinis — V:
U2nU2n+2 = ‘%2’ U2nU2n+3 = %,
V. + V; V. + V
U2n+lU2n+2 = %, U2n+lU2n+3 = iﬁ&___z,
Vinss — Vs Vi + W
Usng1Usnig = =222 Uy yolUppyg = —nt5 T 71
A A
Vinya +2 Vings — 2
U2n+l = _n-FK—‘ and U22n+2 = 'ﬂA——
that
Ving2 + 2Vini3 + Vanypa + X3
A2n) - A(2n+1) = (2n+1n
(2n) ( ) ( ) Vint2 + 2Viani3 + Vanpa + Ya
< 0,
+2V4n 5+V4n+6+},4
A@n+1)—A@2n+2) = (2n+2)In Antd +
( ) Al ) ( ) Vant+a + 2Vanys + Vanye + Ya
< 0,
where
X3 = —pVo— A(Uan + Usng1 + Usnya + Usnys) + A,
Ya = 2p—2AUnq1 + Uonga) + A,
Xs = pVa—AUzsnt1 + Usny2a + Usnya + Usngd) + A,
Y, = —2p— 2A(U2n+2 + U2n+3) + A.
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Then the sequence {A(n)}n> is increasing. We note that

lim A(n)
n—o0
—-1)" -1)*
=nle2°{ —InvA-Inp+(1+n)ln [1 +7— ‘(1.23 + E-‘Zn-i)-l}

—nln [1+T+ (anl;l —%}}

=—InvVA—-Inp+In(1+7)<0.

Thus A(n) < 0 for n > 1 and the sequence { § Ur{f]}nzl is increasing.

(ii) Some initial values of {Vn ]}n>3 are

il =p+2, Vl=p*+p+4,
Vil =pd+p? +ap+4, VI =p'+p3+5p° +4p+6.

We can prove that V[1 V[1 Since the log-concavity of {V ]},,>3

is proved in [18], we show that { {/ Vit ]},,>3 is decreasing by using Lemma

2.2. On the other hand, Vlm > V[l > \/Vm Hence the sequence
{Y/Vi"},,>, is decreasing. [ |
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