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Abstract

Let G be an edge-colored connected graph. A path P is a proper
path in G if no two adjacent edges of P are colored the same.
If P is a proper u — v path of length d(u,v), then P is a proper
u — v geodesic. An edge coloring c is a proper-path coloring of
a connected graph G if every pair u,v of distinct vertices of G
are connected by a proper u — v path in G and c is a strong
proper coloring if every two vertices « and v are connected by
a proper u — v geodesic in G. The minimum number of col-
ors used a proper-path coloring and strong proper coloring of
G are called the proper connection number pc(G) and strong
proper connection number spc(G) of G, respectively. These con-
cepts are inspired by the concepts of rainbow coloring, rainbow
connection number rc(G), strong rainbow coloring and strong
connection number src(G) of a connected graph G. The num-
bers pc(G) and spc(G) are determined for several well-known
classes of graphs G. We investigate the relationship among
these four edge colorings as well as the well-studied proper edge
colorings in graphs. Furthermore, several realization theorems
are established for the five edge coloring parameters, namely
pe(G), spe(G), re(G), sre(G) and the chromatic index of a con-
nected graph G.
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1 Introduction

The Department of Homeland Security was created in 2003 in response
to weaknesses discovered in the transfer of classified information after the
September 11, 2001 terrorist attacks. In [8] Ericksen made the following
observation:

An unanticipated aftermath of those deadly attacks was the re-
alization that law enforcement and intelligence agencies couldn’t
commaunicate with each other through their reqular channels from
radio systems to databases. The technologies utilized were sepa-
rate entities and prohibited shared access, meaning there was no
way for officers and agents to cross check information between
various organizations.

While the information needs to be protected since it relates to national
security, there must also be procedures that permit access between appro-
priate parties. This two-fold issue can be addressed by assigning infor-
mation transfer paths between agencies which may have other agencies as
intermediaries while requiring a large enough number of passwords and fire-
walls that is prohibitive to intruders, yet small enough to manage (that is,
enough so that one or more paths between every pair of agencies have no
password repeated). An immediate question arises: What is the minimum
number of passwords or firewalls needed that allows one or more secure
paths between every two agencies so that the passwords along each path
are distinct? This situation can be represented (modeled) by a graph and
studied by means of what is called rainbow colorings introduced by Char-
trand, Johns, McKeon and Zhang in [2]. A rainbow coloring of a connected
graph G is an edge coloring of G with the property that for every two
vertices u and v of G, there exists a u — v rainbow path (no two edges of
the path are colored the same). In this case, G is rainbow-connected (with
respect to ¢) . The minimum number of colors in a rainbow coloring of G is
referred to as the rainbow connection number of G and denoted by rc(G).
In recently years, this topic has been studied by many (see (3, 5, 7, 10| for
example).

An edge coloring of a graph G is an assignment c of colors to the edges
of G, one color to each edge of G. Once the edges of G are assigned colors,
an edge-colored graph results. Let G be a nontrivial connected graph of
order n with an edge coloring ¢ : E(G) — [k] = {1,2,...,k}. If adjacent
edges of G are assigned different colors by c, then c is a proper (edge)
coloring. The minimum number of colors needed in a proper coloring of
G is referred to as the chromatic index of G and denoted by x'(G). One
property that a properly edge-colored graph G has is that for every two
vertices © and v of G, every u — v path of G is properly colored. However,
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if our main interest is that of having only at least one properly colored
u —v path in G for every two vertices u and v of G, then it is possible that
this can be accomplished using fewer than x’(G) colors. With regard to
the national security discussion above, we are then interested in the answer
to the following question: What is the minimum number of passwords or
firewalls that allow one or more secure paths between every two agencies
where as we progress from one agency to another along such a path, we are
required to change passwords?

Inspired by rainbow colorings and proper colorings in graphs, we in-
troduce the concept of proper-path colorings. Let G be an edge-colored
connected graph, where adjacent edges may be colored the same. A path
P in G is properly colored or, more simply, P is a proper path in G if no
two adjacent edges of P .are colored the same. An edge coloring c is a
proper-path coloring of a connected graph G if every pair u,v of distinct
vertices of G are connected by a proper u—v path in G. If k colors are used,
then c is referred to as a proper-path k-coloring. The minimum number of
colors needed to produce a proper-path coloring of G is called the proper
connection number pc(G) of G. A proper-path coloring using pc(G) colors
is referred to as a minimum proper-path coloring.

Let G be a nontrivial connected graph of order n and size m. Since every
rainbow coloring is a proper-path coloring, it follows that pc(G) exists and

1 < pe(G) < min{x'(G),rc(G)} < m. (1)

Furthermore, pc(G) = 1 if and only if G = K, and pc(G) = m if and only
if G = Ky m is a star of size m. To illustrate this concept, we consider
the 3-regular graph G of Figure 1 and a proper-path 3-coloring of G using
the colors 1, 2, 3 where the uncolored edges can be colored arbitrarily with
these three colors. Since the three bridges in G must be assigned distinct
colors, this coloring is minimum and so pe(G) = 3. Note that this 3-regular
graph G is not 1-factorable and so x'(G) = 4.

We refer to the books [4, 6] for graph theory notation and terminol-
ogy not described in this paper. All graphs under consideration here are
nontrivial connected graphs.

2 Preliminary Results

In this section, we present some preliminary observations and results on
proper-path colorings of graphs. The example of Figure 1 illustrates the
following two useful facts of the path connection numbers of graphs.

Proposition 2.1 If G is a nontrivial connected graph and H is a con-
nected spanning subgraph of G, then pc(G) < pe(H). In particular, pc(G) <
pe(T) for every spanning tree T of G.
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Figure 1: A proper-path 3-coloring

Proof. Let H be a spanning subgraph of G and cy a minimum proper-
path coloring of H. Define a coloring c of G by c(e) = cu(e) if e € E(H)
and c(e) = 1 for the remaining edges of G. Then c is a proper-path coloring
of G using pc(H) colors and so pc(G) < pe(H).

Proposition 2.2 Let G be a nontrivial connected graph that contains
bridges. If b is the mazimum number of bridges incident with a single
vertez in G, then pc(G) > b.

Proof. Since pc(G) > 1, the result is trivial when b = 1. Thus we may
assume that b > 2. Let v be a vertex of G that is incident with b bridges
and let vw; and vw, are two bridges incident with v. Since (w1,v,w2) is
the only w; — wo path in G, it follows that every proper-path coloring of G
assigns distinct colors to vw; and vwy. Hence all b bridges incident with v
are colored differently and so pc(G) 2 b.

In a nontrivial tree T, every edge is a bridge and so pc(T) > A(T) by
Proposition 2.2. By Kénig’s theorem [9], x'(G) = A(G) for every nonempty
bipartite graph G. Hence, the following is a consequence of (1), Proposi-
tion 2.2 and Konig’s theorem. ‘

Proposition 2.3 If T is a nontrivial tree, then pc(T) = x'(T) = A(T).

Propositions 2.1 and 2.3 provide an upper bound for the proper connec-
tion number of a graph.

Proposition 2.4 For a nontrivial connected graph G,

pc(G) < min{A(T): T is a spanning tree of G}.
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A Hamiltonian path in a graph G is a path containing every vertex of G
and a graph having a Hamiltonian path is a traceable graph. The following
is an immediate consequence of Proposition 2.4.

Corollary 2.5 If G is a traceable graph that is not complete, then
pe(G) = 2.

We saw in (1) that if G is a nontrivial connected graph that is not
complete such that pc(G) = a and r¢(G) = b, then 2 < a < b. In fact, this
is the only restriction on these two parameters.

Proposition 2.6 For every pair a,b of positive integers with 2 < a < b,
there is a connected graph G such that pc(G) = a and r¢(G) = b.

Proof. By Proposition 2.3, if T is a tree of order at least 3, then pc(T) =
A(T) 2 2. It is easy to see that rc(T') is the size of T. Thus if ¢ and b are
integers with 2 < a < b, then let T be a tree of size b and A(T) = a. Hence
pc(T) = a and re(T) = b. n

By (1), if G is a nontrivial connected graph that is not complete such
that pe(G) = a and x'(G) = b, then 2 < a < b. Again, this is the only
restriction on these two parameters.

Proposition 2.7 For every pair a,b of integers with 2 < a < b, there
exists a connected graph G such that pc(G) = a and x'(G) = b.

Proof. If b = 2, then a = b = 2 and any path of order at least 3 has
the desired property by Corollary 2.5. Thus, we may assume that b > 3.
Let G be the graph obtained from the path (z1, 72,3, %4,%5) of order 5
by (i) adding the b — 2 new vertices vy,vs,...,v5-2 and joining each v;
(1 <i<b-2) to both z; and z4 and (ii) adding the a — 1 new vertices
W1, W2,...,Wa—) and joining each w; (1 < i < a—1) to zs. Since G is
a bipartite graph and A(G) = b, it follows that x/(G) = b. It remains
to show that pc(G) = a. Define an edge coloring ¢ by assigning (1) the
color 1 to each of z;z2, Tov; (1 < i < b—2), z3z4 and z5wy, (2) the color 2
to each of zoz3,z4v; (1 < @ < b—2) and zswy (3) the color i to Tsw;
(3<i<a-1ifa > 4) and (4) the color a to z4z5. Then every two
vertices u and v are connected by a proper u — v path. For example, v, and
w) are connected by the proper path (vy,z2,z3,%4,25,w;). Hence c is a
proper-path coloring of G using a colors and so pc(G) < a. Assume, to the
contrary, that pc(G) < a ~ 1. Let ¢* be a minimum proper-path coloring
of G. Since deg zs = a and at most a — 1 colors are used by c*, there are
two edges e and f incident with x5 that are colored the same, say e = uzs
and f = xsv. However then, there is no proper u — v path in G, which is
impossible. Thus pc¢(G) > a and so pe(G) = a. =
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3 On Graphs with Proper Connection Num-
ber 2

We saw that a nontrivial connected graph G has proper connection num-
ber 1 if and only if G = K,. Also, if G contains a Hamiltonian path and
G is not complete, then pc(G) = 2 by Corollary 2.5. However, there are
connected graphs G without a Hamiltonian path for which pc(G) = 2. The
corona cor(Kp,) of the complete graph K, of order n > 2 is such an exam-
ple. In fact, the coloring that assigns the color 1 to each edge that belongs
to the subgraph K, in cor(X,) and the color 2 to each pendant edge in
cor(K,) is a proper-path coloring of cor(Ky,). This example suggests that
we can construct a new graph from each graph such that the resulting
graph has proper connection number 2. For a given graph G of order n, let
com(G) be the graph obtained from G by replacing the n vertices of G by
n mutually disjoint complete graphs, where v € V(G) is replaced by K(v)
of order degg v, such that (i) one vertex in K(v) is adjacent to one vertex
in K (u) if and only if uv € E(G) and (ii) a vertex z in com(G) has degree
k if and only if z € V(K (v)) for some v € V(G) for which degg v = k. This
is illustrated in Figure 2. Thus if G contains three or more end-vertices,
then com(G) contains no Hamiltonian path. In particular, if G = K\ x is
a star, then com(G) = cor(K,). The coloring of com(G) that assigns the
color 1 to each edge in the complete graph K (v) of order deggv > 2 for
every vertex v of G and the color 2 to the remaining edges of com(G) is a
proper-path coloring. This gives rise to the following observation.

C\fvwﬁ% X ><f
~ %5’)
A e i

Figure 2: Constructing the graph com(G) from a given graph G

L
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Observation 3.1 If G is a nontrivial connected graph, then
pc{com(G)) = 2.

In this section, we show that several classes of well-known graphs have
proper connection number 2. We begin with complete multipartite graphs.

3.1 Complete Multipartite Graphs

In this subsection, we show that every complete multipartite graph that is
neither a complete graph nor a tree has proper connection number 2. In
order to do this, we first present two lemmas.

Lemma 3.2 Let H be the graph obtained from the cycle C; =(uy, v1, ug,
vg, u1) of order 4 and two empty graphs K, and K, of order r and s,
respectively, by joining each of u; and uy to every vertex in K, and joining
each of vy and vy to every vertez in K,. Then pc(H) = 2.

Proof. Since H is not complete, it suffices to show that H has a proper-
path 2-coloring. Define a coloring ¢ by assigning the color 1 to (i) the edge
uv; for i = 1,2, (ii) the edge u)z for each vertex = of K, and (iii) the edge
v1y for each vertex y of K and assigning the color 2 to the remaining edges
of H. We show that c is a proper-path 2-coloring of H. Let u,v € V(H).
Since every two vertices on Cy are connected by a proper path, we may
assume that at least one of u and v does not belong to Cy, say v is not
in 04.

First, suppose that u is a vertex of Cy. By symmetry, we may assume
that = u; or ¥ = up. Assume first that © = u;. If v is a vertex of K,
then (u,v1,u2,v3,v) is a proper u — v path, while if v is a vertex of K 59
then (u,v) is a proper u — v path. Next, assume that u = uy. If v is a
vertex of K., then (u,vs,v) is a proper u — v path, while if v is a vertex of
K, then (u,v) is a proper u — v path. Next, suppose that u is not a vertex
of C4. By symmetry, we may assume u is a vertex of K r. If vis a vertex
of K., then (u,v;,uz,vs,v) is a proper u — v path, while if v is a vertex
of Ky, then (u,vs,uz,v) is a proper u — v path. Thus ¢ is a proper-path
2-coloring of H and so pc(H) = 2.

The proof of Lemma 3.2 provides the following lemma.

Lemma 3.3 Let F be the graph obtained from the cycle (v1,v2,v3,v4,v1)
of order 4 and an empty graphs K, of order r by joining each of v, and vs
to every vertex in K,. Then pc(F) = 2.

Theorem 3.4 IfG is a complete multipartite graph that is neither a com-
plete graph nor a tree, then pc(G) = 2.
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Proof. Let G = Ky, n,,..,n. be a complete k-partite graph that is not
complete, where k > 2 and n = ny +ng + -+ +n is the order of G.
Suppose that Vi, V2,..., Vi be the partite sets of G where |Vi] = n; for
1<i<kand |V 2|V 2> 2|Vi| and |W}] 2 2.

First, suppose that k = 2. Since G is not a tree, [V2] = 2. By Corol-
lary 2.5, we may assume that G # C4 and so n > 5. Thus either G contains
the graph H in Lemma 3.2 as a spanning subgraph or contains the graph
F in Lemma 3.3 as a spanning subgraph. It then follows by Proposition 2.1
and Lemmas 3.2 and 3.3 that pc(G) < 2. Hence pc(G) = 2.

Next, suppose that k > 3. If n = 4, then G contains a 4-cycle as a
spanning subgraph and so pc(G) = 2 by Corollary 2.5 and Proposition 2.1.
Thus, we may assume that n > 5. First, suppose that n; > 2 andn; =1
for 2 < i < k. Define a coloring c of G by assigning the color 1 to each edge
that is incident with a vertex in V] and the color 2 to the remaining edges
of G. Let u and v be two nonadjacent vertices of G. Then u,v € Vi. Let
z € V and y € V5. Then (u,z,y,v) is a proper u — v path and so cis a
proper-path 2-coloring of G. Next, suppose that n; > 2and np > 2. Let Cy4
be a cycle of order 4 in the subgraph Kn,,n, of G where the partite sets of
Ko, n, are V; and Vo. Then either G contains the graph H in Lemma 3.2 as
a spanning subgraph or contains the graph F' in Lemma 3.3 as a spanning
subgraph. By Proposition 2.1 and Lemmas 3.2 and 3.3, pc(G) = 2 in either
case.

3.2 Joins of Graphs

The join G V H of two graphs G and H has vertex set V(G) UV(H) and
its edge set consists of E(G) U E(H) and the set {uv:u € V(G)andv €
V(H)}. With the aid of Lemmas 3.2 and 3.3, we present the following
result.

Theorem 3.5 If G and H are connected graphs such that GV H is not
complete, then pc(GV H) = 2.

Proof. If G and H are both nontrivial connected graphs such that GV H
is not complete, then G V H contains either the graph in Lemma 3.2 as a
spanning subgraph or the graph in Lemma 3.3 as a spanning subgraph. By
Proposition 2.1 and Lemmas 3.2 and 3.3, it follows that pc(GV H) =2 in
either case. Thus, we may assume that G is a nontrivial connected graph
of order at least 3 that is not complete and H = K, where V(H) = {w}.
Since G V K, is not complete, it follows that pc(G V K,) > 2 and so it
remains to show that pc(G V K)) < 2. Let T be a spanning tree of G. By
Proposition 2.1, it suffices to show that pc(T Vv K;) < 2. For a vertex v of
T, let er(v) denote the eccentricity of v in T (that is, the distance between
v and a vertex farthest from v in T'). For each integer i with 1 <i < er(v),
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let V; = {u:d(v,u) =1i}. Hence Vp = {v}. Define a 2-coloring c of T V K,
by

_ 1 ifzxeV,iisoddand1<i<er(v)
c(wz) = 2 ifzeV,iiseven and 0<i < er(v);

_ 1 ifreV,y€Viy,iisevenand 0<i<ep(v)—1
c(zy) = 2 ifzeV,yeViy,iisoddand1<i<er(v) —1.

Let z and y be two vertices of T V K. Since w is adjacent to every vertex
in T', we may assume z # w and y # w and so z,y € V(T). First, suppose
that z € V; and y € Vj, where 0 < i < j. If { and j are of opposite parity,
then (z,w,y) is a proper z — y path in TV K. Thus, we may assume that
i and j are of the same parity and so j —¢ > 2. Let z € Vj—1 such that yz
is an edge of T. Then (z,w, z,y) is a proper z — y path in T V K;. Next,
suppose that z,y € V; for some i with 1 < i < ep(v). Let z € V;_; such
that zz is an edge of T. Then (z, z,w,y) is a proper z — y path in TV K;.
Hence, ¢ is a proper-path 2-coloring of TV K; and so pc(T V K 1) = 2.
Therefore, pc(G V K;) = 2. a

3.3 Cartesian Products of Graphs

The Cartesian product G O H of two graphs G and H has vertex set
V(GO H) = V(G) x V(H) and two distinct vertices (u, v) and (z,y) of
G O H are adjacent if either (1) uz € E(G) and v =y or (2) vy € E(H)
and u = z. The Cartesian product G O K3 of a graph G and K is a special
case of a more general class of graphs. We partition the edge set G O H into
two sets Ey and E; such that E is the set of edges (u, v)(z, yyinGOH
such that uz € E(G) and v = y and E; is the set of edges (u, v)(z, y) in
G U H such that u = z and vy € E(H). We show that pe(G O H) = 2 for
every two nontrivial connected graphs G and H. In order to do this, we
first present a lemma.

Lemma 3.6 For integers s and t with s >t > 2, let Py = (uy,ug,...,u)
be a path of order s and P, = (v1,v2,...,v:) be a path of order t. Define the
coloring of P, O P, by assigning the color 1 to all edges in E; and the color
2 to all edges in Ey. Then there is a proper path Jrom (uy,v1) to (us,v;) in
P, O P, . Furthermore, if s = t, then there are two proper paths (uy,v;)
to (us,vs), one of which has its initial edge colored 1 and the other one has
its initial edge colored 2.

Proof. We consider three cases, according to whether t = 2, s=tor
s>t>3.

Casel. t = 2. If s is even, then P = ((u1,v1), (ug,v), (u2,v2), (us,v2),
(u3,01), ..., (us—1,v1), (us,v1), (us,v2)) is a proper (w1, v1)-(us, v2) path

197



that the colors of edges alternate 1 and 2. If s is odd, then P’ = ((u,v1),
(u2,v1), (u2,v2), (us, v2), (u3,v1), ..., (ts—1,92), (s, v2)) is a proper (u1,v1)-
(us,v2) path that the colors of edges that alternates 1 and 2.

Case 2. s = t. Observe that P’ = ((u1,v1), (u2,v1), (u2,v2), (u3,ve),
(u3,3)s -+ . (Ug—1,Vs—1), (Us,Vs—1), (Us,¥s)) is a proper (u1,v1)-(s,Vs)
path whose initial edge is colored 1. Furthermore, P” = ((u1,v1), (u1,v2),
(‘U.g,‘b‘z), (u2703)a (u39v3)v v (us—l)va—l), (us-—la vs)v (u.'n Us)) isa proper
(u1,v1)-(us, vs) path whose initial edge is colored 2.

Case 3. s >t > 3. Then s = t + p for some positive integer p. By
the same argument used in Case 1, we consider the subgraph P41 (0 P, of
P, O P,, where Ppy1 = (uy,u2,...,Up41) and P2 = (v1,v2). If p+1 is even,
then ((ulavl)s (u2)vl), (‘u,2,1)2), (U3,1)2), (U3,‘Ul), ceey (upv'vl)’ (up+la vl))
is a proper (u1,v1)-(2p+1,1) path that the colors of edges alternate 1 and
2. If p+ 1 is odd, then ((u1,v1), (u2,v1), (u2,v2), (u3,v2), (us,v1), .-
(upy v2), (Up+1,v2), (Up41,v1)) is & proper (u1,v1)-(up+1,v1) path the colors
of whose edges alternate 1 and 2. By Case 2, there are two proper (up+1, v1)-
(up+t,ve) paths P’ and P” such that the initial edge of P’ is colored 1 and
the initial edge of P” is colored 2. If the terminal edge of P is colored 1,
then P followed by P” is a proper path from (u1,v1) to (us,v:); while if
the terminal edge of P is colored 2, then P followed by P’ is a proper path
from (u),v1) to (ug,ve). n

Theorem 3.7 If G and H are nontrivial connected graphs, then
pe(G O H) =2.

Proof. As we saw, it suffices to show that G O H has a proper-path
2-coloring. Let V(G) = {u1,u2,...,u,} and V(H) = {v1,v2,...,0.} for
some integers s,¢ > 2. Define a coloring ¢ of G O H by assigning the color
1 to all edges in E; and the color 2 to all edges in E;. We show that cis a
proper-path 2-coloring of G O H. Let (us,v,) and (uj,vq) be two vertices
of GO H, where 4,5 € {1,2,...,s} and p,q € {1,2,...,t}.

First, suppose that either u; # u; and v, = v, or u; = u; and vp # vg.
We may assume, without loss of generality, u; # u;. Furthermore, we can
assume that v, is adjacent to vp4) in H. Since G is connected, there is a
u; —uj path P in G. Note that P O (vp,vp41) is a subgraph of GOH
and by the proof of Case 3 of Lemma 3.6, there exists a proper path from
(ui,vp) to (uj,vp) = (uj,vq). Next, suppose that u; # u; and vy # v,.
Since G is connected, there is a u; — u; path Pg in G. Similarly, since His
connected, there is a v, —vq path Py in H. Thus PO Py isa subgraph of
G O H and by Lemma 3.6, there is a proper path from (u;, vp) to (uj,vq)-
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3.4 Permutation Graphs

Let G be a graph with V(G) = {v,va,... ,Un} and let & be a permutation
of the set S = {1,2,...,n}. The permutation graph P,(G) of a graph G
is the graph of order 2n obtained from two copies of G, where the second
copy of G is denoted by G’ and the vertex v; in G is denoted by u; in
G’ and v; is joined to the vertex Uq(s) in G'. The edges viuq(;) are called
the permutation edges of P.(G). This concept was first introduced by
Chartrand and Harary [1]. Therefore, if « is the identity permutation on
S, then P,(G) = G O K3 is the Cartesian product of a graph G and Ko.
We show that every permutation graph of a traceable graph has proper
connection number 2. In order to do this, we first present a lemma. A
connected graph of order 3 or more is unicyclic if it contains exactly one
cycle.

Lemma 3.8 If H is a bipartite unicyclic graph with mazimum degree 3
such that H contains exactly two vertices of degree 3 each of which lies on
the cycle in H, then pc(H) = 2.

Proof. Let C, = (v1, v, ...,¥p, Upt+1 = v1) be the unique cycle in H,
where then p is even. We may assume that degg v, = degy vi = 3 where
2 < i £ p. Suppose that P = (vy, uy,..., us) and P’ = (v;, wy,...,

w,) are paths in H, where s,¢ > 1, such that E(P) N E(C,) = 0 and
E(P')NE(Cp) = 0. Define a 2-coloring ¢ of G by first coloring Cp properly
and then coloring P and P’ properly such that c(vju;) = c(vpv;) and
c(viw1) = c(vivi41). Each of the paths (P, vs,..., vy, P, (P, vg,...,
vp) and (P, vi_y,...,v1, Up,..., ¥i41) is & proper path. Since every two
vertices of H lie on one of these three proper paths, it follows that ¢ is a
proper-path 2-coloring and so pc(H) = 2.

Theorem 3.9 If G is a nontrivial traceable graph of order n, then
pe(Pa(G)) =2

for each permutation o of the set {1,2,...,n}. In particular, pe(Pa(G)) =
2 if G is Hamiltonian.

Proof. For a nontrivial traceable graph G of order n, let (vi,v2y...,vp)
be a Hamiltonian path in G and let (v{,v},...,v}) be the correspond-
ing Hamiltonian path in the second copy G’ of G. Since P,(G) is not
complete for each permutation « of {1,2,...,n}, it remains to show that
pPc(Pa(G)) < 2. We consider two cases.

Case 1. {a(1),a(n)} N {1,n} # 0. We may assume that a(1) = 1 or
o(n) = 1., If (1) = 1, then (vn,vn-1, ..., v1, ¥},v5,...,v.) is a Hamil-
tonian path of P, (G); while if a(n) = 1, then (v;,vs,. -y Un,y V], Ul ..., VL)
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is a Hamiltonian path of P,(G). It then follows by Corollary 2.5 that
pe(Pa(G)) = 2.

Case 2. {a(1),a(n)} N {1,n} = 0. Suppose (1) = i and &(n) = j
where 2 < i # j < n — 1. We will only consider the case when i < j (since
the argument for the case when i > j is similar and we use the path (vl
v!_y, ..., v, v}) in the proof). Furthermore, assume that a(k) =1 for
some k with 2 < k < n — 1. We consider three cases, depending on the
parities of two of the integers k — 1,i—1 and n — j.

Subcase 2.1. k—1 and i — 1 are of the same parity. Let H be the
subgraph of P,(G) consisting of the even cycle (U1, V2yeevs Uky U]y Ugyones
vl, v1) and two paths (vk, Vk+1,- .-, vp) and (v}, v{;;,..., ¥p)- Then His
a spanning subgraph of P,(G). By Lemma 3.8, pc(H) = 2. It then follows
by Proposition 2.1 that pc(Pa(G)) < 2 and so pc(Pa (G)) =2.

Subcase 2.2. k—1 and n — j are of the same parity. Let H be the sub-
graph of P,(G) consisting of the even cycle (Vky Vk41s+++» Uny v;., v;-_l, ceeh
v}, vx) and the two paths (vy, ve, ..., v,) and (v;-, v;-_,_l, .., vh). Then H is
a spanning subgraph of P,(G). By Lemma 3.8, pc(H) = 2. It then follows
by Proposition 2.1 that pc(Ps(G)) < 2 and so pc(Fa(G)) = 2.

Subcase 2.3. i — 1 and n — j are of the same parity. Let H be the
subgraph of P,(G) consisting of the even cycle (v1, vz, ..., ¥n, Vi Uiqse s
v!, v;) and the two paths (v], v, ..., v}) and (v}, Vj,1s- .-, vp)- Then His
a spanning subgraph of P,(G). By Lemma 3.8, pc(H) = 2. It then follows
by Proposition 2.1 that pc(Py(G)) < 2 and so pc(Fa(G)) = 2.

By Theorem 3.9, every permutation graph of a traceable graph has
proper connection number 2. However, traceable graphs are not only con-
nected graphs with this property, as we show next.

Proposition 3.10 Every permutation graph of a star of order at least 4
has proper connection number 2.

Proof. For an integer m > 3, let G = Kj,» be the star with vertex set
{vo,v1,-..,Ym}, Where vp is the central vertex. Then there are exactly
two non-isomorphic permutation graphs, namely P, (G) = G O K3 where
; is the identity permutation on the set {0,1,...,m} and Py, (G) where
a3 = (0,1). By Theorem 3.7, pc(Po, (G)) = 2. It remains to show that
Pa,(G) = 2. Let {v),v},...,v},} be the corresponding vertex set in the
second copy G’ of G. Since P,,(G) is not complete, it remains to show
that pe(Pa, (G)) < 2.

Define an edge 2-coloring c by assigning the color 1 to (i) the edge vy,
vy, voh, (ii) the edge vou; for each i > 3 and (iii) the edge vyv; for each
i > 3 and assigning the color 2 to the remaining edges of Py, (G). We show
that ¢ is a proper-path 2-coloring of Po,(G). Let u,v € V(Pa,(G)). Since
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every two vertices on Cy = (vo,v1,%p, ], V) are connected by a proper
path, we may assume that at least one of © and v does not belong to Cy,
say v is not in Cjy.

First, suppose that u is a vertex of Cy. By symmetry, we may assume
that u = vp or u = v;. Assume first that u = vy. If v = v; where 7 > 2, then
(u,v) is a proper u — v path, while if v = v} where i > 2, then (u,v;,v) is a
proper v — v path. Next, assume that v = v;. If v = v,, then (u, v}, v}, v)
is a proper u — v path, while if v = v3, then (u, v}, v) is a proper « — v path.
If v = v; where i > 3, then (u, v, v) is a proper u — v path, while if v = V)
where i > 3, then (u, vo,v;,v) is a proper u — v path. Next, suppose that
u is not a vertex of Cy. By symmetry, we may assume u = v or u = vs.
We first assume that u = v,. If v = v}, then u and v are adjacent and
so there is a proper u — v path. If v = v; where ¢ > 3, then (u,v,v) is a
proper u — v path, while if v = v; where 7 > 3, then (u, vo, v;, v) is a proper
u — v path. Now, we assume that u = vs. If v = v}, then (v, Vo, V2,V) is a
proper u — v path, while if v = v, then (u,v) is a proper  — v path. If
v = v; where i > 4, then (u, v, va, v, v, v}, v) is a proper u — v path, while
if v = v; where i > 4, then (u, vo, v2, V3, vf,v) is a proper u — v path. Thus
¢ is a proper-path 2-coloring of Py, (G) and so pc(Pa,(G)) = 2. ]

We conclude this subsection with the following question: Is there a
class of nontrivial connected graphs G such that pc(Pn(G)) > 3 for some
permutation graph P, (G) of G?

4 The Strong Proper Connection Numbers of
Graphs

A related concept concerning rainbow colorings was introduced in [2]. Let
¢ be a rainbow coloring of a connected graph G. For two vertices « and v of
G, a rainbow u — v geodesic in G is a rainbow u — v path of length d(u, v),
where d(u, v) is the distance between u and v (the length of a shortest u —v
path in G). The graph G is strongly rainbow-connected if G contains a
rainbow u — v geodesic for every two vertices u and v of G. In this case,
the coloring c is called a strong rainbow coloring of G. The minimum k
for which there exists a coloring ¢ : E(G) — {1,2,...,k} of the edges of G
such that G is strongly rainbow-connected is the strong rainbow connection
number src(G) of G. A strong rainbow coloring of G using src(G) colors is
called a minimum strong rainbow coloring of G. Thus rc(G) < src(G) for
every connected graph G.

Inspired by this concept, we consider an analogous concept in proper-
path colorings. Let ¢ be a proper-path coloring of a nontrivial connected
graph G. For two vertices u and v of G, a proper u — v geodesic in G is a
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proper u — v path of length d(u,v). If there is a proper u — v geodesic for
every two vertices u and v of G, then c is called a strong proper coloring of G
or a strong proper k-coloring if k colors are used. The minimum number of
colors needed to produce a strong proper coloring of G is called the strong
proper connection number spc(G) of G. A strong proper coloring using
spc(G) colors is referred to as a minimum strong proper coloring. In general,
if G is a nontrivial connected graph, then 1 < pc(G) < spe(G) < x'(G).
Since every strong rainbow coloring of G is a strong proper coloring of G,
it follows that spc(G) < src(G). Therefore, if G is nontrivial connected
graph, then

1 < pe(G) < spe(G) < min{x'(G),sre(G)}- (2)

We present several useful observations on the strong connection numbers
of graphs. The diameter diam(G) of a connected graph G is the largest
distance between two vertices of G.

Observation 4.1 Let G be a nontrivial connected graph of order n and
size m. Then

(1) spc(G) = pe(G) =1 if and only if G = Ki;

(2) spe(G) = pc(G) = m if and only if G = Kym;

(3) if G is a tree, then spc(G) = pc(G) = A(G);

(4) if G is a connected graph with diam(G) = 2, then spc(G) = sre(G);

(5) if b is the mazimum number of bridges incident with a vertez in G,
then spc(G) > b.

By Observation 4.1 and (2), if G is a connected graph of order n that
is not complete such that pc(G) = a and spc(G) = b, then 2 < a < b.
In [2), it is shown that src(K,,:) = [V/t] for all integers s and t with 2 <
s < t. Since diam(K, ) = 2, it follows by Observation 4.1 that spc(K,,) =
src(Ks ) = [v/1] for 2 < s < t. Moreover, we saw in Theorem 3.4 that
pe(K,.) = 2 for 2 < s < t. Thus, if s = 2 and ¢ = b% where b > 2, then
spe(K,, 1) — pe(Ks,e) = b — 2 which can be arbitrarily large. In fact, more
can be said. Next, we show that every pair a, b of integers where 2 < a <b
is realizable as the strong proper connection number and proper connection
number, respectively, of some connected graph. In order to do this, we first
present a lemma.

Lemma 4.2 For each integert > 2, let G = K, 42 be the complete bipartite
graph of order 2 + t? with partite sets U and W, where [U| =2 and |W| =
t2. If ¢ is a strong proper t-coloring of G using the colors 1,2,...,t, then
{c(uw) : w € W} = {1,2,...,t} for each vertexu € U.
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Proof. Let U = {u1,u2}. Since spc(G) = ¢, every strong proper coloring
of G uses at least t colors. Assume, to the contrary, that there is a strong
proper t-coloring ¢ of G using the colors 1,2,...,¢ such that {c(uw): w €
W} #{1,2,...,t} for some u € U, say t ¢ {c(uyw) : w € W}. For each
vertex w € W, we can associate an ordered pair code(w) = (a;(w), az(w))
called the color code of w, where a;(w) = c(u;w) for i = 1,2. Since 1 <
aj(w) <t —1 for each w € W, the number of distinct color codes of the
vertices of W is at most (¢t — 1)t. However, because t2 > (t — 1)¢, there
exists at least two distinct vertices w’ and w” of W such that code(w’) =
code(w”). Since c(u;w’) = c(u;w”) for i = 1,2, it follows that G contains
no proper w’ — w"” geodesic in G, contradicting our assumption that c is a
strong proper t-coloring of G. ]

Theorem 4.3 For every pair a,b of integers where 2 < a < b, there exists
a connected graph G such that pc(G) = a and spc(G) = b.

Proof. Ifa=1b> 2, then let G be a tree with maximum degree a. Thus
spc(G) = pe(G) = a. Thus, we may assume that 2 < a < b, where then
b2 3. Let H = Ky (5_1)2 be the complete bipartite graph with partite
sets U = {‘ul,’LLz} and W = {wl,wg, ces ,w(b_l)z} and let F' = Kl,n-l with
V(F) = {v,v1,va,...,va—1} where v is the central vertex of F. Now let G
be the graph obtained from H and F by adding the edge usv.

First, we show that pc(G) = a. Since the vertex v is incident with a
bridges in G, it follows by Observation 4.1 that pc(G) > a. Next, define
an edge coloring ¢ of G by assigning (1) the color 1 to each of the edges
ww; (2<i< (b-1)2), wyug and vy, (2) the color 2 to each of ujwy, uow;
(2 <i < (b~1)?) and vu; (3) the color i to vv; (3 <i<a—1ifa > 4) and
(4) the color a to usv. Then every two vertices = and y are connected by a
proper £ —y path. For example, (v1, v, u2, w1, u1,ws) is a proper v; — wy
path in G. Hence c is a proper-path coloring of G using a colors and so
pc(G) £ a. Thus, pe(G) = a.

Next, we show that spc(G) = b. First, we show that spc(G) < b. Since
spc(Ky,(5-1)2) = b — 1, there is a strong proper (b — 1)-coloring co of the
subgraph H of G using colors 1,2,...,b — 1. Define an edge coloring ¢, of
G by assigning (1) the color co(e) to each edge e of H, (2) the color b to
the edge upv and (3) the color i to vv; for 1 < i < a—1. It is easy to
see that c; is a strong proper b-coloring of G and so spc(G) < b. Next,
we show that spc(G) < b. Let ¢ be a strong proper k-coloring of G. For
every two vertices r and y in the subgraph H of G, each = — y geodesic
lies completely in H. Hence the restriction ¢y of c to H is a strong proper
coloring of H and so k > b — 1. Assume, to the contrary, that k = b — 1.
By Lemma 4.2, {c(u;w) : w € W} = {1,2,...,b—~1} for i = 1,2. Since
c(uzv) € {1,2,...,b — 1}, there exists w € W such that c(uaw) = c(uav).
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However then, G contains no proper w — v geodesic in G, contradicting our
assumption that c is a strong proper coloring of G. ]

By Observation 4.1 and (2), if G is a connected graph of order n that
is not complete such that spc(G) = a and x'(G) = b, then2<a < b<n.
In fact, this is the only restriction on these three parameters.

Theorem 4.4 For every triple a,b,n of integers where 2 < a < b < n,
there erists a connected graph G of order n such that spc(G) = a and
X'(G) =b.

Proof. First suppose that 2 < a = b < n. Let G be the graph obtained
from the star K, , of order a+1 and the path Pr_a—1 of order n—a—1 by
adding an edge joining an end-vertex of K, and an end-vertex of P,_q_1.
Then G is a tree of order n with A(G) = a and so spc(G) = x'(G) = a by
Observation 4.1.

Next, suppose that 2 < a < b < n. We begin with a graph H construct-
ing from the complete graph Ky_o42 by adding a — 1 pendant edges at a
vertex v of Kp_as2. Then the graph G is obtained from H and Pp_p-1
by adding an edge joining an end-vertex u of H and an end-vertex w of
P,_,_1. Then G has order n and A(G) =b.

We show that x/(G) = A(G) = b. It suffices to provide an edge b-
coloring of G. First, suppose that b—a+2 > 4 is even. Since x'(Kp—a+2) =
b—a+ 1, there is a proper edge coloring ¢; of Kp_o4+2 using the colors 1,
2,....,b—a+1.8Since T = G — E(Kp—q42) is a tree of maximum degree
a — 1, there is a proper edge coloring c; of T using the a — 1 colors b —
a+2,b—a+3,...,b. Then the coloring c of G defined by c(e) = c1(e) if
e € E(Ky_a+2) and c(e) = cz(e) if e € E(T) is a proper b-coloring of G.
Next, suppose that b —a + 2 > 3 is odd. Since x'(Kp-a42) =b—a+2,
there is a proper edge coloring ¢; of Ky_o42 using the colors 1, 2,...,
b—a+2. Since v is incident with b — a + 1 edges in Kp_q+2, there is a color
i€{1,2,...,b—a+ 2} that is not used to color any edge incident with v
in Kp_ay2, say i = b—a + 2. Now, the subgraph T = G — E(Kp—q+2) is
a tree of maximum degree a — 1. Hence there is a proper edge coloring c;
of T using the a — 1 colors b—a +2,b—a+3,b—a+4,...,b. Then the
coloring ¢ of G defined by c(e) = ci(e) if e € E(Kp—a+2) and c(e) = ca(e)
if e € E(T) is a proper b-coloring of G. In either case, x'(G) = A(G) = b.

Next, we show that spc(G) = a. First, define the coloring c by (i)
assigning the color 1 to each edge of Kp_a+2 and distinct colors from the
set {2,3,...,a} of colors to the a — 1 pendant edges of H and (ii) assigning
the color 1 to the edge uw and the colors 1 and 2 properly to the edges
of P,_p_1 such that the initial edge of Pn_p—1 (that is adjacent to uw)
is colored 2. Since c is a strong proper a-coloring of G, it follows that
spc(G) < a. Next, we show that spc(G) > a. Since there are a — 1 pendant
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edges incident with v, it follows by Observation 4.1 that spc(G) > a — 1.
Suppose that spc(G) = a — 1. Let ¢’ be a strong proper (a — 1)-coloring of
G. Thus, ¢/ must assign a — 1 distinct colors to the a — 1 edges incident
with v that do not long to Kp—q42. This implies that there are edges e and
[ incident with v in G such that e is an edge Kp_o..2 and f is not an edge
Kp—q42 for which ¢'(e) = ¢/(f). Let e = uv and f = vw. However then,
there is no proper u — w geodesic in G, such that which is not possible.
Thus spe(G) = a.

By Observation 4.1, if G is a tree, then spc(G) = x/(G) = A(G). How-
ever, there are many connected graphs G that are not trees and spc(G) =
X'(G). For example, for the cycle C, of order n > 4, it can be shown that

2 if nis even

spe(Cr) = x'(G) = { 3 ifnisodd.

The following result provides a sufficient condition for a non-tree connected
graph G such that spc(G) = x'(G). The girth g(G) of a graph G having
cycles is the length of the smallest cycle in G. In particular, g(C,) = n for
each n > 3.

Proposition 4.5 If G is a connected graph having g(G) > 5, then
spe(G) = X'(G).

Proof. Since spc(G) < x'(G), it suffices to show that x'(G) < spc(G).
Let ¢ be a minimum strong proper coloring of G using spc(G) colors. We
show that c is proper; for otherwise, there are adjacent edges e and f such
that c(e) = c(f). Let e = uv and f = vw. Since g(G) > 5, it follows that
(u,v,w) is the only u — w geodesic in G. However then, there is no proper
u — w geodesic in G, which is a contradiction. Thus, x'(G) < spc(G). =

Since the girth of the Petersen graph P is 5, it then follows by Propo-
sition 4.5 that spc(P) = x'(P) = 4. The lower bound 5 for the girth of a
graph is best possible. For example, the complete bipartite graph G = K ;2
(where t > 2) has g(G) = 4, spc(G) =t and x/(G) = t2. Also, notice that
the converse of Proposition 4.5 is not true. For example, the 4-cycle C; has
girth 4 and spc(Cy) = x'(Cy) = 2.

We saw that spc(G) < src(G) for every connected graph G and if G is
a connected graph with diam(G) = 2, then spc(G) = src(G). Also, as one
may expected, the value src(G) — spc(G) can be arbitrarily large. In fact,
more can be said. First, we present a result on the rainbow connection
number and strong rainbow connection number of a graph.
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Proposition 4.6 [2] Let G be a nontrivial connected graph of size m.
Then

(1) sre(G) = 1 if and only if G is a complete graph;
(2) re(G) = m if and only if G is a tree.

Proposition 4.6 implies that the only connected graphs G for which
re(G) = 1 are the complete graphs and that the only connected graphs G of
size m for which src(G) = m are trees. Thus, if T is a tree of size b > 2 and
maximum degree a, then spc(T) = a and sre(T) = b by Observation 4.1 and
Proposition 4.6. If we replace an end-vertex of such a tree T by a complete
graph, the resulting graph G has spc(G) = a and src¢(G) = b as well. This
observation gives rise to the following result.

Theorem 4.7 For every triple a,b,n of integers 2 < a < b < n, there
exists a connected graph G of order n such that spc(G) = a and src(G) = b.
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