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Abstract

A graph G admits an H-covering if every edge in E(G) belongs to
a subgraph of G isomorphic to H. The graph G is said to be H-magic
if there exists a bijection f from V(G) U E(G) to {1,2,...,|V(G)| +
|E(G)|} such that for every subgraph H’ of G isomorphic to H,
Luevun fv) + 2eceuy f(e) is constant. When f(V(G)) =
{1,2,...,]V(G)|}, then G is said to be H-supermagic. In this paper,
we investigate path-supermagic cycles. We prove that for two posi-
tive integers m and ¢t with m > t > 2, if C,, is P,-supermagic, then
Cim is also P.-supermagic. Moreover, we show that for ¢ € {3.4,9},
Chr is Pe-supermagic if and only if n is odd with n > ¢.
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1. Introduction

We consider finite undirected graphs without loops or multiple edges.
Let V(G) and E(G) denote the vertex set and the edge set of a graph G,
respectively. We denote the path and the cycle on n vertices by P, and
Ch, respectively.

An edge-covering of a graph G is a family of subgraphs Hy, Hs, ... , Hy
of G such that each edge of G belongs to at least one of the subgraphs H;,
1 < ¢ < k. Then it is said that G admits an (H;, Hs,... , Hi)-edge-covering.
If every H; is isomorphic to a given graph H, then we say that G admits
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(a)

Fig. 1 (a) A Ps-supermagic labeling of Cs. (b) A Ps-supermagic labeling of Co.

an H-covering. Suppose that G admits an H-covering. A bijection f from
V(G)U E(G) to {1,2,...,|V(G)| + |E(G)|} is called an H-magic labeling
of G if there exists a constant m(f), called the magic sum, such that for
every subgraph H' of G isomorphic to H, 3 ey ur) f(V) + X ecpr fl€) =
m(f). An H-magic labeling f of G is called an H-supermagic labeling of
G if f(V(G)) = {1,2,...,|V(G)]} and f(E(G)) = {IV(G)| + L|V(G)| +
2,...,|V(G)| + |E(G)|}. The magic sum of an H-supermagic labeling f of
G is called the supermagic sum and we denote it by s(f). A graph G which
admits an H-covering is called H-magic (resp. H-supermagic) if there
exists an H-magic (resp. H-supermagic) labeling of G. In Fig. 1(a) and (b),
we show Pj-supermagic and Pj-supermagic labelings of Cy, respectively.
When H = P,, an H-magic graph and an H-supermagic graph are called
an edge-magic graph and a super edge-magic graph, respectively. Surveys
of H-magic and related topics are included in Gallian [2].

In this paper, we investigate path-supermagic labelings of cycles. The
following results are known.

Proposition 1 (Enomoto et al. [1]). The cycle C, is super edge-magic,
i.e. Py-supermagic, if and only if n is odd with n > 3.
Proposition 2 (Gutiérrez and Lladé (3]).
(i) Let G be a P;-magic graph, t > 2. Then G is C;-free.
(i) The cycle Cn is Pi-supermagic for any 2 < t < n such that
ged(n, t(t — 1)) =1.

Proposition 3 (Ngurah et al. [4]). If C, is P;-supermagic, 2 <t <n-—1,
then n is odd.
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Fig. 2. Py-supermagic labelings of C;s, C21, and Cas.

Moreover, Ngurah et al. [4] proposed an open problem that for 3 < t <
n — 1, determine whether there is a P;-supermagic labeling of C,, such that
ged(n, t(t — 1)) # 1.

We get the following theorem.

Theorem 1. Let m and t be two positive integers withm >t > 2. If Cm
is P,-supermagic, then Cay, is also P,-supermagic.

In Fig. 1, we show that Cy is P3-supermagic and Pj-supermagic. Fur-
thermore, in Fig. 2, we show that C)5, Cs,, and Cy; are Py-supermagic.
From Propositions 2, 3, and Theorem 1 with the facts, we obtain the fol-
lowing theorem.

Theorem 2. Fort € {3,4,9}, C, is P,-supermagic if and only if n is odd
with n > t.

In the next section, we prove Theorem 1.

2. Proof of Theorem 1

We use the following notations. For two integers n and m with n < m,
let [n, m| denote the set of all consecutive integers from n to m. When some

pattern of integers (z1, 2, ...,z}) is repeated r times, we write (z1, za, . . ., zr)".

For instance, the sequence of integers (0,1,2,0,1,2,3, 4) is denoted by
(0,1,2)%(3,4). For a graph G and a mapping f from V(G) U E(G) to
Z, we define 3 f(V(G)) = Lyey(e) f(v), LHEG) = T.epe) fle),
and 3 f(G) = 3 f(V(G)) + L f(E(G)).
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Let V(Cp) = {v:i:0<i<n—1} and E(Cp) = {&i = vivi41: 0 < i <
n — 1}, where the subscripts are taken modulo n.

Lemma 1. Let n and t be two positive integers with n >t > 2. If there is
a mapping f from V(Cr)UE(Cy) to Z such that f(uk)+ f(ex) = f(vkse) +
f(exse—1) for 0 < k < n—1, then for every subgraph H of C, isomorphic
to P, 3 f(H) = 2(¢ T f(V(Cn)) + (¢t = 1) X F(E(Cn)))-

Proof. Let P® be the subpath of C, with V(P{) = {vi, vi41, .-, vige1}
and E(Pt(i)) = {€ei,€it1,...,€ipt—2} for0<i<n—1. By f(vk) + f(ex) =
F(vese) + flerseot) for 0 < k < n—1, we have ¥ fF(P) — T F(PH*Y) =
f(vk) + f(ex) — f(vkse) — fexse—1) = 0 for 0 < k < n — 1. Therefore, we
getY f (P,(i)) is constant for 0 < ¢ < n —1. We can verify that each vertex
of C, is contained t different subpaths P,(i) and each edge of C, is con-
tained ¢ — 1 different subpaths P{"). Hence, " f (Pt(i)) =Lt fF(V(Ca))+
t-1)Y f(E(Cn))) for0<i<n-1. DO

Lemma 2. Let m and t be two positive integers with m > t > 2. There
is a mapping f from V(Cam) U E(Cam) to {0,1,2} U{ 2,3,4} such that
f({vj!vm+j’v2m+j}) = {0:172} and f({ej7em+j!62m+j}) = {2’314} for
0< j<mo1, and f(ux)+f(ex) = fWkre)+ flersem) for 0 < k < 3m—1.

Proof. Let a be the integer such that m = a (mod ¢) with 0 < a <
t — 1. We denote V; = (f(vim), f(Vim+1)s-+ -+ f(Vim4m—1)) and E; =
(feim), f(€im+1)s- -, f(€imtm—1)) for i = 0,1,2. We divide our proof
into four cases depending upon the values of a and m.

Case 1: a = 0. We define a mapping f from V(Czm) U E(Cam) to
{0,1,2} U{ 2,3, 4} as follows:

t—2 m-—1

—N— e e,
Vo = (0,0,...,0,1)%, Eo=(4,4,...,4,2),
t—2 m-—1
p—— m e N,
Vi =(21,....1,0%, E;=(33,...,3,4),
t—2 m—1

,—A_\ ,—/h\
Vo =(1,2,...,2,2)%, Ez=(2,2,...,2,3).

We remark that f({vj, Um+j, V2m+5}) = {0,1,2} and f({ej.em+jr€2m4j}) =
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{2,3,4} for 0 < j < m—1. Moreover, we can verify that for 0 < k < 3m—1,

5 ifk=t-1 (modt)
witht—1<k<m-t—-lork=3m-1,
_ k=0 (modt) withm < k <2m — ¢,
FOor)+f(e) =1 3 jfk=¢t—1 (modt) withm—1<k<2m—t—1,
k=0 (modt) with2m <k <3m —t,
4 otherwise

and
(5 ifk=t—1 (modt) witht—1<k<m-1,
k=0 (modt) withm+t <k < 2m,
3 ifk=t-1 (modt)
F(or) + Fleny) = ¢ withm+t—1<k<2m -1,

k=0 (mod?t)
withk=0or2m+t<k<3m-—-t,
4 otherwise.

\

Therefore, we get f(ux) + f(ex) = f(vk+e) + fexse—1) for 0 < k < 3m—1.

Case 2: 1 < a<t—2and m =t+a. We define a mapping f from
V(Cam) U E(C3y) to {0,1,2} U {2,3,4} as follows:

t—1l=m-~a-1 a
- ~ e N,
Vo = (0,0,...,0,0,...,0,1)(0,...,0,0),
t—a-2 a a
N, e e
Vi=(21...,12,...,2,00, ...,22),
t—a-2 a a
N e N, e e,
Va=(1,2...,2,1,...,1,21,...,1,D),
t=m-—a a-1
/ N | —
Eo = (4,4,...,4,4,...,4,49)4,....4,2),
t—a-—1 a a—1
e e, e e, e N,
E1=(33,..,32,...,2,3)2,...,2,3),
t—a-—1 a a—1
E;=(2,2,...,2,3,...,3,2)(3,...,3,4).

Note that f({vj,'vm+j:7)2m+j}) = {01 1v2} and f({ej: €m+j,82m+j}) =
{2,3,4} for 0 < j < m — 1. Furthermore, we can check that for 0 < k <
3m -1,

5 ifk=t-1,m2m—-1,3m-1,

3 ifk=m+t-1,2m,
f(vk)"l'f(ek): 2 ifk=m—1,

4 otherwise
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and

5 ifk=t—-1,m+t—a—-1(=2t-1), m+1t,
2m+t -1,

ifk=2m+t—a-1(=m+2t—-1),2m+t,

ifk=m+t—1,

4 otherwise.

w

f(ve) + fek—1) =

N

Hence, we have f(vk) + f(ex) = f(Vk4t) + fler4e—1) for 0 < bk <3m —1.

Case 3: 1<a<t—2andm>t+a.Let r = 22 — 1. We define a
mapping f from V(Cam) U E(Cam) to {0,1,2} U{ 2,3,4} as follows:

t—1 t—-1

Vo = (0,...,0,0,0,...,0,1)7(0,0,...,0,0,...,0,1)(0,...,0,0),

t—a-1 a-1 t—a-2 a

V= (‘1;...,11‘,2,‘1,...1, 1‘,0)*(2,‘12...,21',‘2,...,2‘,0)(‘2,...,2,2),
—a- a— —-a-— a a

Ve = (‘2,...,2‘,1,;2,...,2‘,2)*(1,‘2,...,2‘;‘1,...,1‘, 2)(‘1,...1,1,1),

Eo = (21,...,4,t4,A4,1...,4,£) (21,:1,...1,4,A4,...,4,4)(4,...1,4,3),
m—t—a— —a-— a a-—

B = (§,...,3,t§, 332) 63,7352 HE.. 22,
m—t—a— —a- a a—

. -~ ,—-—M\,—M ,—M
Erx=(,...,2,22,...23) (2,2,...,2,3,...,3,2)(3,...,3,4).

We remark that f({vj, Um+j, Vem+j}) = {0, 1,2} and f({e;, em+j, €2m+j}) =
{2,3,4} for 0 < j < m—1. Moreover, we can show that for 0 < k<3m-1,

(5 ifk=t-1 (modt) witht—1<k<m-—a-—1,
k—-m=t—a-1 (modt)
withm+t—a—-1<k<2m-t—2a-1,
k=2m—-t—a,3m—-t—a—1,3m—1,

3 ifk—-m=t—-1 (modt)

fve) + flex) = < withm—-1<&k<2m—-2t—a-—-1,
k—-2m=t—a-1 (mod?t)
with2m—a-1<k<3m—-t—2a-1,
k=3m—-t—a,

2 fk=2m—-t—a-1,

| 4 otherwise
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and

(5 ifk=t-1 (modt)witht—1<k<m-—a-—1,
k-m=t—a—-1 (mod?t)
withm+t—-a—-1<k<2m-—-2a-1,
k=2m—a,3m—a -1,

3 ifk-m=t-1 (modt)

flue)+f(ex-1) = ¢ withm+t-1<k<2m—-t—a-1,
k-2m=t—a—1 (modt)
with2m+t—-a-1<k<3m-2a -1,
k=3m—a,

2 fk=2m—-—a-1,

[ 4 otherwise.

Therefore, we obtain f(vi)+f(ex) = f(vVk+t)+f(erse-1) for 0 < k < 3m—1.
Case 4: a =t—1.Let r = 2t — 1. We define a mapping f from
V(Csm) U E(Cs,,) to {0,1, 2} U {2 3 4} as follows:

t— '2 m—t+1 t—-2

m t+1 t—
Vi = (2, ‘1 1‘ 0)'(‘2 i 2‘), B =33 3HE. 2,
rn.-t+l

Vz_(12 22)r(‘ 1,) Ex=(32,...290....3

Note that f({vj,vmﬂ,vgm“}) = {0,1,2} and f({ej, em+j: €2m+;}) =
{2,3,4} for 0 < j < m — 1. Furthermore, we can verify that for 0 < k <

3m -1,

5 ifk=t—1 (modt)witht—1<k<m-—t,
k—m=0 (modt) withm <k <2m—2t+1,
_ k=3m-1,
Flve)+flex) = 3 ifk—m=t—1 (modt)withm—1<k<2m-—t,
k—2m =0 (modt) with2m <k <3m -2t +1,
4 otherwise

and

(5 ifk=t—1 (modt)witht—1<k<m-t,
k—m=0 (modt) withm<k<2m—t+1,

3 ifk—m=t—1 (mod?t)

flue)+flex~1) = 4 withm+t—-1<k<2m-—t¢,

k—2m=0 (mod t)

with2m$k$3m—t+1,

| 4 otherwise.
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Hence, we get f(ve) + f(ex) = f(vicre) + fext-1) for 0 <k <3m-—-1. O

We are now ready to prove Theorem 1. Let V(Cp) = {z; : 0 < i <
m — 1} and E(Cp) = {zi%i+1 : 0 < i < m — 1}, where the subscripts are
taken modulo m. Let V(Csn) = {v; : 0 < i < 3m—1} and E(C3y,) = {&: =
v;vi31 : 0 < 4 < 3m — 1}, where the subscripts are taken modulo 3m. Let f
be a P,-supermagic labeling of C, with supermagic sum s(f). By Lemmas 1
and 2, there is a mapping g from V(Cs,,)JUE(C3m) to {0,1,2}U{2, 3,4} such
that g({vj, Ym+j, vam+5}) = {0,1,2} and g({e;, em+j, €2m+;}) = {2,3,4}
for 0 < 7 < m — 1, and for every subgraph H of C3,, isomorphic to B,
So9(H)=z(t-3m+(t—1)-9m) =4t 3. For 0 <i < 3m—1, let in, be
the integer such that i = i, (mod m) with 0 < i, < m — 1. We define a
bijection A from V(C3,,)UE(C3m) to [1,6m)] as follows: For 0 <i < 3m-—1,

h(v;) = f(zi,,) + g(vi) - m,
h(e:) = f(xi,, Tin+1) + glei) - m.

Then, we can check that A(V(Cin)) = [1,3m] and A(E(Csm)) = [3m +
1,6m], and for every subgraph H of Csm isomorphic to P,, Y h(H) =
s(f) + mY_g(H) = s(f) + (4t — 3)m. Therefore, h is a Pe-supermagic
labeling of Csp,.
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