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Abstract

A tree T, in an edge-colored graph G, is called a rainbow tree if
no two edges of T are assigned the same color. A k-rainbow coloring
of G is an edge coloring of G having the property that for every set
S of k vertices of G, there exists a rainbow tree T in G such that
S C V(T). The minimum number of colors needed in a k-rainbow
coloring of G is the k-rainbow indez of G, denoted by rzx(G). In
this paper, we investigate the 3-rainbow index rz3(G) of a connected
graph G. For a connected graph G, it is shown that a sharp upper
bound of rx3(G) is rz3(G[D]) + 4, where D is a connected 3-way
dominating set and a connected 2-dominating set of G. Moreover,
we determine a sharp upper bound for K,,: (3 < s < t) and a better
bound for (Ps, Cs)-free graphs, respectively. Finally, a sharp bound
for 3-rainbow index of general graphs is obtained.

Keywords: connectivity, edge-coloring, Steiner tree, connected dom-
inating set, 3-rainbow index.
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1 Introduction

All graphs considered in this paper are simple, connected and undirected.
We follow the terminology and notation of Bondy and Murty [1]. An edge-
colored graph G is rainbow connected if any two vertices are connected by
a path whose edges have distinct colors. The reinbow connection number
7¢(G) of G, introduced by Chartrand et al. [6], is the minimum number of
colors that results in a rainhow connected graph G.
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The concept of rainbow index, introduced by Chartrand et al. (7] in
2009, is a natural generalization of rainbow connection number. A tree T'
is a rainbow tree if no two edges of T are colored the same. For a fixed
integer k with 2 < k < n, an edge coloring of G with order n is called a k-
rainbow coloring if for every set S of k vertices of G, there exists a rainbow
tree in G containing the vertices of S. The k-rainbow indez rzi(G) of G is
the minimum number of colors needed in a k-rainbow coloring of G. Thus
7¢(G) = rzo(G). There is a rather simple and trivial bound for rzx(G) in
terms of the order n of G, regardless of the value of k, i.e., rzx(G) < n—1.

Let k be a positive integer. A dominating set D of G is called a k-way
dominating set if d(v) > k for every vertex v € V(G) \ D. In addition, if
G[D) is connected, we call D a connected k-way dominating set. A subset
D C V(G) is a k-dominating set of the graph G if |[Ng(v)ND| > k for every
v € V(G)\ D. The k-domination number 7(G) is the minimum cardinality
among the k-dominating sets of G. Note that the 1-domination number
71(G) is the usual domination number ¥(G). Furthermore, a subset S is a
connected k-dominating setif it is a k-dominating set and the graph induced
by S is connected. The connected k-domination number v§(G) denotes the
cardinality of a minimum connected k-dominating set. For k = 1, we write
Y. instead of ¥{(G).

Chakraborty et al. [4] showed that computing the rainbow connection
number of a connected graph is NP-hard. So it is NP-hard to compute the
k-rainbow index (k > 3) of an arbitrary connected graph as well. For this
reason, one of the most important goals for studying rainbow connection
number and rainbow index is to obtain good upper and lower bounds.

As with many other interesting graph coloring problems [2], rainbow
connection has received lots of attention. Many results have been obtained,
see [12] for a recent survey. Chartrand et al. [6] determined that for
integers s and t with 2 < s < ¢t, 7¢(K,,) = min{\'/f, 4}. It follows that
rro(Ksi) = me(Kse) < 4. Caro et al. [3] observed that rc(G) can be
bounded by a function of §(G), the minimum degree of G, and proved that
if 6(G) > 3 then r¢(G) < an where a < lis a constant and n = V(G). Fora
graph G without any cut vertex, i.e., a 2-connected graph, of order n, it was
shown that 7¢(G) < % and the bound is sharp in [9]. Li et al. [11] showed
that for a connected graph G of order n with cut vertices, r¢(G) < E";;l,
where r is the number of blocks of G with even orders, and the upper bound
is sharp. Chandran et al. [5] used a strengthened connected dominating set
(connected 2-way dominating set D) to prove rc(G) < re(G[D]) + 3. This
led us to the investigation of what strengthening of a connected dominating
set can apply to the 3-rainbow index of a connected graph.

Compared with rainbow connection number, rainbow index is a new
research subject. For the 3-rainbow index of G, Chen et al. [8] determined
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some basic results and obtained the following theorem.

Theorem 1.1. [8] Let G be a 2-connected graph of order n (n > 4). Then
rz3(G) < n — 2, with equality if and only if G = C, or G is a spanning
subgraph of 3-sun or G is a spanning subgraph of K\ e or G is a spanning
subgraph of K4, where a 3-sun is a graph G which is defined from Cg =
V1Vg - - - Vg1 by adding three edges vovy, vovg and v4vs.

In the same paper, Chen et al. also considered the regular complete
bipartite graphs K. They showed rz3(K, ) = 3 for any integer r with
T > 3.

In this paper, we focus our attention on the 3-rainbow index of a connect-
ed graph G. In Section 2, we adopt connected dominating sets to investigate
the 3-rainbow index of G. A coloring strategy is obtained which uses only
a constant number of extra colors outside the dominating set. We prove
that rz3(G) < rz3(G[D])+4, where D is a connected 3-way dominating set
and a connected 2-dominating set of G, as well as obtain an upper bound
for graphs with §(G) > 3 by the above result. Sharp upper bounds of K ;
(3 £ s <t) and (Ps, Cs)-free graphs are given in Section 3. In Section 4,
we show a sharp upper for 7z3(G) of general connected graphs by block
decomposition.

2 A sharp upper bound for 3-rainbow index
of graphs in terms of connected dominating
set

Chartrand et al. [6] obtained that for every nontrivial connected graph G
of order n, rz2(G) < rz3(G) < - -+ < rz,(G). Since re(K3) = 1, logically,
we can define rz3(K3) = 1 in our paper as well.

Theorem 2.1. Let G be a connected graph. If D is a connected 3-way
dominating set and a connected 2-dominating set of G, then rz3(G) <
rz3(G[D]) + 4. Moreover, the bound is sharp.

Proof. We prove the theorem by demonstrating that G has a 3-rainbow
coloring with rz3(G[D]) + 4 colors. For z € V(G) \ D, its neighbors in D
will be called foots of x, and the corresponding edges will be called legs of
z.

Color the edges in G[D] with k distinct colors from 1,2,...,k (k =
rz3(G[D])) such that for every triple of vertices in D, there exists a rainbow
tree in G[D] connecting them. Let H := G[V(G)\ D]. Partition V(H) into
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sets X,Y, Z as follows. Let Z be the set of all isolated vertices of H. In
every nonsingleton connected component of H, choose a spanning tree. So
we construct a forest on W := V(H)\ Z and choose X and Y as any one of
the bipartitions defined by this forest. Color every X — D edge with k& + 1
or k + 2 where each of k + 1,k + 2 appears at least once at each vertex,
every Y — D edge with k + 1 or k + 3 where each of k + 1, k + 3 appears
at least once at each vertex, and every edge between X and Y with k + 4.
Since D is a connected 3-way dominating set, every vertex in Z will have
at least three legs. Color two of them with k + 1 and k + 3 and all the
others with k +4. Next, we will show that under such an edge coloring, for
any three vertices in G, there exists a rainbow tree containing them.

For three vertices (z,y,z) € D x D x D, there is already a rainbow tree
containing them in G[D)]. For other cases, we first suppose that vertices in
V(H) do not have common foots. For three vertices (z,y,2) € DxDxV(H)
(or D x V(H) x V(H)), join any one leg of z (or k + 1, k + 3 (k +2) legs
of y and z) with a rainbow tree containing the corresponding foot (or two
foots), z and y (or z) in G[D]. Now we consider the case of three vertices
(z,y,2z) € V(H) x V(H) x V(H). For three vertices (z,y,z) € Zx Z X Z,
join three edges colored k+1,k+4 and k+3 with a rainbow tree containing
the corresponding foots (z’,y’,2’) in D. For two vertices (z,y) € Z x Z,
z € W, join a k+1leg of z and k+3, k+4 legs of z, y with a rainbow tree
containing the corresponding foots in G[D]. Consider one vertex z € Z,
two vertices (y,2) € W x W. If (y,z) € X x X, join a k + 4 leg of = and
k+1,k+2 legs of y and 2z with a rainbow tree containing the corresponding
foots in G[D). If (y,2) € X xY or (y,2) €Y x Y, join a k+4 leg of z and
k+1,k+3 legs of y and z with a rainbow tree containing the corresponding
foots in G[D]. Then consider three vertices (r,y,2) € W x W x W. If
(z,y,z) € X x X x X, we know, for z € X, = has a neighbor y(z) € Y.
Join an z-y(z) edge (colored k + 4), a k + 3 leg of y(z), a k + 1 leg of
y and a k + 2 leg of z with a rainbow tree containing the corresponding
foots in G[D). Similarly, in remaining cases, we still can find a rainbow
tree containing S. Note that for two vertices in V(H)NS, we can find their
corresponding legs, which hold different colors. If the corresponding legs
have a common foot v in D, then these two vertices can be connected by
the vertex v to construct the rainbow tree containing S.

Note that |V(G[D])| = 2 is trivial since the edge e in D can be given
a color different from colors used in E(H) U E[D,V(H)]. Hence, G has a
3-rainbow coloring with rz3(G[D]) + 4 colors.

The sharpness of this theorem will be given in the next section. (]

Obviously, for a connected graph G with minimum degree 6(G) 2 3, a
connected 2-dominating set of G is also a connected 3-way dominating set
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of G. We finish this section with general graphs with minimum degree at
least 3. Here, we denote as gmqz(G) the maximum number of components
of G\u among all vertices u € V. The following result is needed in the
sequel.

Theorem 2.2. [10] Let G be a connected graph on n vertices with minimum
degree 6 > 2 and let k be an integer with 1 < k < 6. Then v < n —
Gmaz(G)(6 — k +1)

For general graphs with § > 3, we obtain an upper bound for 3-rainbow
index of a connected graph from Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let G be a connected graph with minimum degree 6§ > 3.
Then rz3(G) £ N — gmaz(6 — 1) + 3.

Note that the bound of 3-rainbow index of a connected graph is better
for the graphs with cut vertices and larger minimum degree.

3 Upper bounds for 3-rainbow index of some
classes of graphs

In this section, we consider two classes of graphs: complete bipartite
graphs K, and (Ps, Cs)-free graphs.

Theorem 3.1. For any complete bipartite graph K,, with 3 < s < t,
rz3(Kse) < min{6,s +t — 3}. Moreover, the bound is sharp.

Proof. As K,; with 3 < s < t is a 2-connected graph, then by Theorem
L1, rz3(Kse) < s+t — 3. The equality clearly holds for s = ¢t = 3 since
rz3(K3.3) = 3. Thus, to complete the proof, it suffices to show rx3(K, ) <
6,3 < s <t Let U and W be the two partite sets of K, ,, where |U] = s
and |W|=t. Set U = {uy,ug,...,us}, W= {wi,ws,...,w}.

Clearly, D = {u1,u, w1, we} is both a connected 2-dominating set
and connected 3-way dominating set of K s,t» Hence, by Theorem 2.1,
r23(K,,) < rz3(G[D]) + 4 = 6.

To show the sharpness of the above upper bound, we prove the following
claimn.

Claim. For any s > 3,t > 2 x 6°, rx3(K,:) = 6.

Firstly, we consider the graph K3:. We may assume that there exists a
3-rainbow coloring c of K3, with k colors. Corresponding to this 3-rainbow

coloring, for every vertex w in W, there is a color code, code(w)=(a,, ay,
a3) :=(c(v1w), c(uaw), c(ugw)). Observe that any three vertices have at
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least three distinct colors in their color codes. Thus, we know that at most
two vertices have a common code except possibly when a; # as # aa.
Otherwise, there is no rainhow tree containing these three vertices which
have the same code and at most two colors in their color code. There-
fore, when ¢t > 2k3, there must exist three vertices w’, w”, w"”’ such that
code(w')=code(w")=code(w")=(a1, az,a3) and a) # az # aa. If a rainbow
tree contains S = {w’, w”, w"}, it must contain u;,uz,u3 and w; to guar-
antee its connectivity, where w; belongs to W and code(w;)=(b1, bz, b3),
where a;, b; are different from each other, i = 1,2,3; j = 1,2,3. Thus
k > 6. So rz3(Ks:) = 6 for ¢ > 2 x 63. Similarly, we can prove
rr3(Ks¢) = 6 for s > 4, t > 2 x 6°. Thus, this claim also provides a
sharp example for Theorem 2.1. (]

Here, we can simply check that the upper bound cannot be generalized
to the graphs K, .. By the same method used in the above claim, we may
assume that there exists a 3-rainbow coloring ¢ of K¢ with k colors. Corre-
sponding to this 3-rainbow coloring, there is a color code, code(w)=(a1, a2)
:=(c(wyw), c(uzw)). Observe that at most two vertices have the common
code. It follows that t < 2k2. Thus, k is not less than a certain constant
when t is enough large.

To state next theorem, we need to introduce the following concepts. A
graph G is called a perfect connected dominant graph if v(X) = v.(X), for
each connected induced subgraph X of G. If G and H are two graphs, we
say that G is H-free if H does not appear as an induced subgraph of G.
Furthermore, if G is H,-free and H,-free, we say that G is (Hy, Hz)-free.
We proceed with an upper bound for the 3-rainbow index of (Ps, Cs)-free
graphs. Zverovich [16] obtained the following result.

Theorem 3.2. [16] A graph G is a perfect connected-dominant graph if
and only if G contains no induced path Ps and induced cycle Cs.

As shown in Theorem 2.1, in order to obtain a better bound of 3-rainbow
index of G with 6(G) > 3, we may turn to a smallest possible connected
2-dominating set. For a graph with minimum degree § > 3 and é > 1, Reed
and Ore proved the following conclusions, respectively.

Theorem 3.3. [15] If G is connected graph with 6 > 3, then v(G) < 3
Theorem 3.4. [14] If G is a graph on n wvertices and without isolated
vertices, then v(G) < 3.

For (Ps, Cs)-free graphs with § > 3, it follows that yc(G) < %" from The-
orem 3.3. Inspired by this result, the extension of the idea of a connected
dominating set to a connected 2-dominating set is what gives the following

lemmna.
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Lemma 3.1. Let G be a connected graph of order n with minimum degree
6 2 2. If D is a connected dominating set in a graph G, then there is a
set of vertices D' 2 D such that D’ is a connected 2-dominating set and
\D' < gn+ 31D

Proof. Let Q be the set of nonisolated vertices of V(G) \ D and let P be
a minimum dominating set of G[Q). Then D’ = DU P is a connected
2-dominating set of G. By Theorem 3.4, we have |P| < 3|V(G[Q])| <
%W(Gl)\pf = (n—|D[)/2, which implies | D| = |DUP| < |D|+4(n—|D|) =

For a connected (Ps,Cs)-free graph with 6 > 3, we can derive the fol-
lowing result by Theorem 2.1, Theorem 3.2, Theorem 3.3 and Lemma 3.1.

Theorem 3.5. For every connected (Ps, Cs)-free graph G with §(G) > 3,
rz3(G) < i—én + 3.

Proof. For every connected (Ps,Cs)-free graph G with §(G) > 3, 4(G) =
Ye(G) by Theorem 3.2. Also, by Theorem 3.3, we have y(G) < %ﬂ. Thus,
7:(G) < 32. Combining this with Lemma 3.1, G has a connected 2-
dominating set D with order less than }—;.-n. Observe that the connected
2-dominating set D has a 3-rainbow coloring using |D| — 1 colors by en-
suring that every edge of some spanning tree gets a distinct color. So the

upper bound follows immediately from Theorem 2.1. O

4 An upper bound for 3-rainbow index of
general graphs

In this section, we derive a sharp bound for 3-rainbow index of general
graphs by block decomposition. Let A be the set of blocks of G isomorphic
to K; let B be the set of blocks of G isomorphic to K3; let C be the
set of blocks of G isomorphic to X, which is a cycle or a block of order
4 < [V(X)| < 6; and let D be the set of blocks of G isomorphic to X, which
is not a cycle and |V(X)| > 7.

Theorem 4.1. Let G be a connected graph of order n (n > 3). If G has a
block decomposition By, By, - - - , By, then rz3(G) < n—|C| - 2|D| -1, and
the upper bound is sharp.

Proof. Let G be a connected graph of order n with ¢ blocks in its block
decomposition. If ¢ = 1, then it was done by Theorem 1.1 and rz3(Ks3) = 2,
which satisfies the above bound. Thus, we can suppose ¢ > 2.
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Note that [AUBUCUD| = q. By Theorem 1.1, we get rz3(X) < [X| -2
for X € C and rz3(X) < |X| — 3 for X € D. Hence, it follows that

(@) < 314324 S (IXI-2)+ Y (1XI-9)

XeA XeB XeC XeD
n—|C| - 2|D] - 1.

In order to prove that the upper bound is sharp, we construct the graph
G of order n, as shown in Figure 1, consisting of a path of length n —
4r — 7,  cycles of order 4, one 7-length-cycle with a chord and an edge
connecting every previous cycle and the subsequent one. As we can see,
IC| = 7, |D| = 1. We consider the size of a rainbow tree T' contain the
vertices {u,v,w}. Since |E(T)| > n—4r-7+3r+4=n—-7—-3and
rz3(G) < n —|C| —2|D| — 1 = n — r — 3 by Theorem 4.1, it follows that
rz3(G) =n—|C| - 2|D| - 1. O

I~—— r cycles of order 4

| u
a path of length o
7

n-4dr-

L%

Figure 1: Graph for Theorem 4.1
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