Turan number for pS, *

Jian-Hua Yin, Yang Rao
Department of Math., College of Information Science and Technology,
Hainan University, Haikou 570228, P.R. China
E-mail: yinjh@hainu.edu.cn

Abstract. The Turdn number ex(m, G) of the graph G is the maximum
number of edges of an m-vertex simple graph having no G as a subgraph.
A star S is the complete bipartite graph K, (or a tree with one internal
vertex and r leaves) and pS, denotes the disjoint union of p copies of S,.
A result of Lidicky et al. (Electron. J. Combin. 20(2)(2013) P62) implies
that ex(m,pS,) = [M}Hﬂj + (p = 1)m — (§) for m sufficiently
large. In this paper, we give another proof and show that ez(m,pS,) =
[Sm—_&;&:ﬂj +(@-1)m—(8) forallr>1,p>1and m > 3r?p(p -
1) + p — 2 + max{rp,r? + 2r}.
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1. Introduction

Graphs in this paper are finite and simple. Terms and notation not
defined here are from (1]. Let S, be the star on r + 1 vertices, that is,
the complete bipartite graph K , (or a tree with one internal vertex and r
leaves). For graphs G and H, GUH denotes the disjoint union of G and H,
H C G denotes that H is a subgraph of G, pG denotes the disjoint union
of p copies of G, and G + H denotes the join of G and H , that is, the graph
obtained from G U H by joining each vertex of G with each vertex of H.
For v € V(G) and H C G, the neighbor set of v in H is denoted by N (V)
and the degree of v in H is denoted by dg(v). Clearly, dy(v) = |Ng(v))-
For V' C V(G), the subgraph of G induced by V" is denoted by G[V’]. For
a set S by |S| we denote the cardinality of S. For subgraphs H, and H, of
G, ec(H;, H,) denotes the number of edges in G with one end in H, and
the other end in H,.

The Turdn number ex(m,G) of the graph G is the maximum number
of edges of an m-vertex simple graph having no G as a subgraph. Let
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H..(m,G) denote a graph on m vertices with ex(m, G) edges not containing
G. We call this graph an extremal graph for G. Let T.(m) denote the
complete r-partite graph on m vertices in which all parts are as equal in
size as possible. Turén [5] determined the value ex(m, K1) and showed
that T,.(m) is the unique extremal graph for K11, where K4y is the
complete graph on r + 1 vertices. Turdn’s theorem is regarded as the basis
of a significant branch of graph theory known as extremal graph theory. It
was shown by Simonovits [4] that if m is sufficiently large then K,_; +
T.(m — p + 1) is the unique extremal graph for pKy,,. Gorgol [2] further
considered the Turdn number for p disjoint copies of any connected graph
G and gave a lower bound for ex(m, pG) by simply counting the number of
edges of the graphs Her(m—pn+1, G)UKpn_1 and Hex(m—p+1,G)+Kpy
which do not contain pG.

Theorem 1.1 [2] Let G be an arbitrary connected graph on n vertices,
p be an arbitrary positive integer and m be an integer such that m > pn.
Then ex(m,pG) > max{ex(m—pn+1,G)+ (’"‘2_1), ex(m—p+1,G)+(p-
m - (5)}- .

Lidicky et al. [3] investigated the Turdn number for a star forest. Their
result implies that ex(m,pS;) = [&ﬁ%w—"uj +(p—-1m-— (§) for m
sufficiently large. Lidicky et al. [3] also pointed out that they make no
attempt to minimize the bound on m in their proof. In this paper, we
present another proof of ex(m, pS,) = [Sﬂ-_-”—"%)—(:uj +(p—1)m— (%) and
give a lower bound on m. That is the following Theorem 1.2.

Theorem 1.2 If m > ir?p(p — 1) + p — 2 + max{rp,r? + 2}, then
ex(m,pSy) = |E=PEE=D | + (p — 1)m - (§).

2. Proof of Theorem 1.2

The lower bound follows from ez(m,S;) = ['—"i’;—llj and Theorem
1.1. To show the upper bound, we consider an arbitrary graph G on
m vertices with [gm—_&guj + (p— 1)m — (§) + 1 edges, where m >
%r2p(p —1) + p — 2+ max{rp,7? + 2r}. We use induction on p to show
that pS, C G. If p = 1, then |E(G)| = |=5| +1, and s0 S, € G.
Assume that p > 2. Since m > 1r?p(p — 1) + p — 2 + max{rp,r> + 2r} >
1r2(p—1)(p—2)+(p—1) -2+ max{r(p—1),7*+2r} and [M—.}Kﬂj +
(p—1)m — (B) +1 > |2l | 4 ((p—1) - m — (731) + 1,
by the induction hypothesis, we have that (p — 1)S, C G. Let V((p -
I)Sr) = {vlo,vlh ce ey Ulry U203 V215« ¢ 5 U2ry - -+ s U (p=1)0s Y(p-1)11 - - sv(p—l)r}
and E((p—l)s,-) = {1)10’011, .oy V10V1F, V20V21, - - -, V20U27, - -« ,v(p_l)ov(p,l)l,
<+« yV(p—1)0V(p-1)r }- Denote H = G[V((p— 1)S,)) and H' = G- H. To the
contrary, we assume that G contains no pS, as a subgraph.
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Claim 1. |E(H')| < L(rn—(z>—1)(r+1))(r—1)J

Proof of Claim 1. If [E(H')| > | Z==D+)(r=1) | then H' contains
an Sy, implying that pS, C G, a contradiction to our assumption. O

Claim 2. For each i € {1,2,...,p — 1}, there exists one vertex z €
{v,o,v,l, ., Vir} with [Ny (z)| = pr and | Ny (y)| < r—1 for y € {vio, vi1,

- vir b\ {z}.

Proof of Claim 2. If there exists an i € {1,2,...,p—1} such that there
exist z,y € {vio,vi1,...,vir} With |Ng/(z)] > 2r and |Ng/(y)| > 7, then
pSr C G, a contradiction. Hence for each i € {1,2,...,p— 1}, we have that
(i) there exists one vertex z € {vio,vip,... yVir} With |Ng(z)] > 2r and
[N (y)| < r—1for y € {wio,vi1,. . ,v,,}\{x} or (ii) [Ny (z)| < 2r—1 for
z € {vio, Vi1, .. ,v,,.} It follows from m > 1r2p(p—1)+p—2+max{rp,r2+
2r} > (r+1)p+7r24r—2that

max{m — (P—1)(r+1)+r(r-1),(r+1)(2r — 1)}
m—(p—-1)(r+1)+r(r-1)
m-—p(r+1)+r2+1

Xm0 [ Na (vi5)|

A

for each i € {1,2,...,p — 1}. If there exists an k € {1,2,...,p — 1} such
that |Ng(2)] £ 2r — 1 for z € {vko,vk1,...,Vkr}, by Claxm 1 and m >
r2p(p — 1) + p — 2 + max{rp,r? + 2r}, then

|E(G) |E(H)| + S22} 7o [Na(vig)| + | E(H')|

(P("+l)-"—l)(P(7‘+l)-T-) +(p— 2)(m — p(7‘+1)+‘r +1)
+(r+ 1)(2,,. -1+ l(m—(P-l)(T+l))(T—l)J

(=t e=D | 4 (5 — 1y — (2) —m

+(p(r+f)-r—1)(p(r+1)-r-2) — (P —2)(p(r +1))

+(p - 2)(r? +1)+(r+1)(2r— 1) — {e=lrr-1) | (7)

= =D 4 (p-Dm - () —m + Lr2p(p— 1)

+p~2+72+2r
< [m=pDE=D )y (p— m - (B),

2

IA

]

a contradiction to |E'(G)| = [_-(Milmj +(@—1)m — (5) + 1. Thus
for each i € {1,2,. — 1}, there exists one vertex = € {vi, v;1,. Sy Vir}
with |Ny:(z)| > 21~ and [Ng:(y)] <7 —1 for y € {vig,vi1,.. ,v,r} \ {=}.
If there exists an k € {1,2,...,p — 1} such that there exists one vertex
T € {Vko,Vk1,...,Vkr} With 27' < |Ng(z)] <pr—1and [Ng:(y)| <7 -1
fory € {vko,'ukl, - Ukr} \ {z}, by Claim 1 and m > 1r?p(p-1)+p—-2+
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max{rp, 2 + 2r}, then

|B(H)| + 2021 5270 INw (vig)| + | E(H)|
(P("+1L—7'-1)2(P(7‘+1)—T—2) +({p-2)(m— p(r+1)+ 24 1)
+@r—1+r(r-1)+ L(’"-(P—l)({+l))(f—1)J
[L":rilw-_llj +e-1)m—-(E) -m
oesDorhipeelor=d) _ (p 9)(p(r + 1))
+(P-2)(r?+ 1)+ (pr—1+r7(r—1)) - e=lr(r=1) 4 (7)
= [{moptD=l |y (p-1)m - (§) —m+ 3r°p(p — 1)
+p—-2+71p
L ]

|E(G)]

IA

a contradiction. This completes the proof of Claim 2. O

Denote U = {z|z € V((p —1)S,) and [Ny (z)| = pr} and W = V((p -
1)S,)\U. By Claim 2, |U| =p— 1, {W| = (p—1)r and [Np:(y)| <7 -1
for y € W. If there exists one vertex z € V(H') such that |Ngw)(2)| 2 7,
then by |Ny:(u)\ {z}{ = pr—1 > (p— 1)r for u € U, we can find p
disjoint copies of S, in G, a contradiction. Hence |[Ngw)(y)| £ 7 —1 for
y € V(H'). For 0 < i < r—1, wedenote X; = {yly € W and |Ny:(y)| = i},
X! = {yly € V(H') and |Ngyw)(y)| = i}, & = |X;| and £ = |X;|. Then
S = (p-1)r, Tisa = m—(p—1)(r +1) and T[2g it = Yi2g iti.

Claim 3. Foreachi € {0,...,7—1}, we have that dgw)(z) <r—i-1
forz € X; and dy(y) <r—i—1forye€ X].

Proof of Claim 3. If there exists one vertex z € X; with dgjw)(z) > 7—1,
let Ny (z) = {z},...,z}}, then by [Ny (u)\{z}, ..., zi}| > pr—i > (p—1)r
for u € U, we can find p disjoint copies of S, in G, a contradiction. Assume
that there exists one vertex y € X with dy/(y) > r —i. If i = 0, then
H' contains an S, implying that pS, C G, a contradiction. If i > 1, let
Yise. Y i € Ni(y), then by [Npr (w)\{y, 1, ..., 97} 2 pr—(r—i+1) 2
(p—1)r for u € U, we can find p disjoint copies of S, in G, a contradiction.
This completes the proof of Claim 3. O

By Claim 3, -3 ti = (p—1)r and Y0 &h = m — (p— 1)(r + 1), we
have that

|B(H)| = |B(CUN|+ec(GU),GIW]) + [E(GW))
< (7’;1)+(P-1)(p—l)r+|____,~_-_;q£'2""__l)%:!'
= (p;l)+r(p—1)2+ﬂ1-_lgip;12+t-z - tliJ’
ec(H, H’) eG(G[U],H’) + 3G(G[W],H’)

(p-1)(m—(p—-1)(r+1)+ i i
(p—1)m - (r+1)(p - 1) + Ticg ibs
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and |E(H")| S| S P (' D& | moptte-D- DN ) _ ooy,

Denote Y72 it = Z,_O 1€, = £. Thus,
|E(G)| |E(H)| + ec(H, H')HE(H')I
et DD e ) 4 (o 1ym— (2)
+H(3) + (731 + l—z‘—“—J (p—1)2 + X120 i)
(DD ia | 4 (- Dy — ()

2
-1
Lico i)

It

IA

Il

- Lﬁ'"——"“ﬁﬂﬂmp—l)m (®) + (132 +0).

If £ is even, then
B < |{m=pt=Dotiy 5 Dm— () + (|5E] +9)
= el D £y qym— (2) + (—£ +0)
= [5—"‘—'&'—‘1} + ( —1)m — (&), a contradiction.

Assume that £ is odd. If (m —p + 1)(r — 1) is even, then

|EG)| L!Eﬂﬂ’i’;‘tj+(p—1)m—('°)+(t FEl+9

Lﬁﬁ:ﬂtﬁ&z‘:_lj Hlip-1m- () + (-4 +9)
= LK"‘_"MZ‘:_)J +(p—1)m — (§) — 1, a contradiction.

VAN

If (m—p+1)(r — 1) is odd, then
IB(G)] <| m=mtBE=Utiy (p—1ym - (5) + (|5 +9)
= [{meptle=d) Z ey (o by (5) + (<442 +0)
= [M_—ZJ + (p -1ym— (), a contradlctlon again.

This contradiction completes the proof of Theorem 1.2. O
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