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Abstract

We consider a discrete-time dynamic problem in graphs in which
the goal is to maintain a dominating set over an infinite sequence
of time steps. At each time step, a specified vertex in the current
dominating set must be replaced by a neighbor. In one version of the
problem, the only change to the current dominating set is replace-
ment of the specified vertex. In another version of the problem, other
vertices in the dominating set can also be replaced by neighbors. A
variety of results are presented relating these new parameters to the
eternal domination number, domination number, and independence
number of a graph.
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1 Introduction

Consider the problem of maintaining a dominating set in a network where
single nodes may fail or be shut down for a time unit. If the node that fails
is not in the current dominating set, there is nothing to do. If it is, then it
should be replaced by a neighboring vertex not in the current dominating set
so that the modified collection of vertices is a dominating set that can also
handle such node failures. This can be regarded as a variation of the eternal
domination problem, which has received considerable recent attention (1,
3,4,5, 78,9, 10, 11]. A survey on graph protection using mobile guards,
including eternal domination, can be found in [12]. In the remainder of
this section, we review some basic terminology and definitions from the
study of domination in graphs, as well as from eternal domination, before
moving on to the variation that we shall study. In subsequent sections, we
present results on complexity and bounds. The paper concludes with some
suggestions for future research.

Denote the open and closed neighborhoods of a vertex z € V by N(z)
and N|[z], respectively. That is, N(z) = {v|zv € E} and N[z] = N(z)u{z}.
Further, for § C V, let N(S) = J,es N(z). Forany X C V and z € X,
we say that v € V — X is an ezternal private neighbor of z with respect to
X if v is adjacent to z but to no other vertex in X. The set of all such
vertices v is the external private neighborhood of z with respect to X.

A dominating set of graph G is a set D C V with the property that
for each u € V — D, there exists z € D adjacent to u. A dominating set
D is a connected dominating set if the subgraph G[D] induced by D is
connected. The minimum cardinality amongst all dominating sets of G is
the domination number (G), while the minimum cardinality amongst all
connected dominating sets is the connected domination number v.(G). A
thorough background on domination can be found in [6].

For a graph G, we denote the independence number by B(G), and the
clique covering number by 8(G). Of course, 8(G) = x(G). We shall say the
size of a clique is the number of vertices it contains.

1.1 Eternal Domination

Eternal domination problems can be modeled as two-player gamnes between
a defender and an attacker. To start the game, the defender chooses a
set D; of vertices to be occupied by guards. The two sides then move
alternately, with the attacker choosing a vertex r;, i > 1 to attack, followed



by the defender choosing the next set D;;; of vertices to be occupied by
guards. Note that the location of an attack can be chosen by the attacker
depending on the location of the guards. Each attack is handled by the
defender by choosing the next guard locations subject to the rules of the
particular game. The defender wins the game if they can successfully defend
any series of attacks; the attacker wins otherwise.

In the eternal dominating set problem, each D;,i > 1, is required to be
a dominating set, each r; € V (assume without loss of generality r; ¢ D;),
and D;y; is obtained from D; by moving one guard to r; from a vertex
v € D;,v € N(r;). The size of a smallest eternal dominating set for G is
denoted ¥*°(G). This problem was first studied in [3].

In the m-eternal dominating set problem, each D;,i > 1, is required
to be a dominating set, each r; € V' (assume without loss of generality
i ¢ D;), and Dy, is obtained from D; by moving guards to neighboring
vertices. Subject to the condition that r; € D;,, - some guard moves to
r; — each guard in D; can either move to an adjacent vertex or stay at the
vertex where he is located. The size of a smallest m-eternal dominating set
for G is denoted 73°(G). This “all-guards move” version of the problem

was introduced in [4].

We say that a vertex is protected if there is a guard on the vertex or on
an adjacent vertex. We say that a vertex is “empty” or “unoccupied” if it
contains no guard and “occupied” if it contains a guard.

1.2 Eviction Model

In a distributed computer system or a computer network, it may be de-
sirable to maintain copies of a file throughout the network so that each
computer can have fast access to a close copy of the file. However, having
too many copies of a file in the network means it can be costly to propagate
updates to the file, maintain consistency among copies, and keep track of
the files’ locations. Hence it is desirable to find a balance between these
two competing interests.

In computer networks, it is also the case that servers storing file copies
sometimes undergo maintenance or upgrades. At these times, it may be
necessary to migrate the files on that machine to another in the network to
maintain good access for all users of the network. This problemn motivates
the following variation of the eternal domination problemn, which we term
the eviction model. For consistency in terminology, we shall use the term
“guard” synonymously with “file”, i.e., we shall talk about moving guards
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around the network, instead of files.

In the eternal domination set eviction problem, each D;, ¢ > 1, is re-
quired to be a dominating set. An attack is a vertex r; € D;. If there
exists at least one v € N(r;) with v ¢ D;, then the next guard configu-
ration D;,, is obtained from D; by moving the guard from r; to a vertex
v € N(r;),v ¢ D; (i.e., this is the one-guard moves model). If no such v
exists, then D;,1 = D;. (The rationale for taking D;,, = D; when every
neighbor of 7; holds a guard is that the guards on vertices in D —r; form
a dominating set.)

By an eternal dominating set in the eviction model we mean any dom-
inating set starting from which it possible to defend all possible sequences
of attacks. For any graph G, the vertex set V(G) has this property, hence
there is a least integer, e (G), for which there is an eternal dominating set
in the eviction model.

The eternal dominating set eviction problem can be regarded as main-
taining a dynamic dominating set in a network model where single nodes
can fail for a unit length interval of time, and where vertices in the dynamic
dominating set that fail must be replaced by neighboring vertices, if there
is a neighbor not in the dominating set.

Proposition 1 In the one-guard moves eviction model, if k < |V(G)|
guards can defend an arbitrarily long sequence of attacks in G, then so
can k + 1 guards.

Proof: Initially place k guards on the k vertices of an eternal dominating set
in the eviction model, and place the (k + 1)-st guard anywhere. Suppose
vertex v is attacked. If the vertices holding the other k& guards form an
eternal dominating set in the eviction model, then move the guard at v
arbitrarily. Otherwise, either the guard at v can be moved to a vertex in
an eternal dominating set of size k in the eviction model, or the (k + 1)-st
guard is on the vertex to which v should move. In the former case move the
guard at v to maintain the eternal dominating set in the eviction model,
and in the latter case move the guard at v arbitrarily (if the guard can move
at all) as the eternal dominating set in the eviction model is guaranteed to
be maintained. O

We shall also consider an “all-guards move” model of the eviction prob-
lem. This model requires that an attacked vertex be unoccupied after the
attack is handled, until the next attack occurs. For example, suppose there
is an edge uv with guards at u and v. If u is attacked, we do not allow the
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guard at v to move to u in response to the attack at u. In other words,
if 4 has a guard and is attacked, then the guard at « must leave and no
guard can return to u until the next attack occurs (or later). An eternal
dominating set in this model is defined as in the “one guard moves model”,
except that any guard on an unattacked vertex in the dominating set is
allowed to move to a neighbor when there is an attack (so long as no guard
moves to the attacked vertex). The size of a smallest eternal dominating
set in the all-guards move eviction model for G is denoted e2°(G).

Some simple examples may help to develop a feel for these problems. It
is clear that e**(K,) = e (K,) = 1. We have e®(K;,m) = (K} m) = m.
On the other hand, e*(Cs) = 3, and eX(Cs) = 2. Similarly, e®(P;) = 3
and eX(Ps) = 2.

1.3 Previous Results

A neo-colonization is a partition {V1, V5,..., V;} of the vertex set of a graph
G such that each G[V}] is a connected graph. A part V; is assigned a weight
w(Vi) = 1 if it induces a clique and w(V;) = 1 + 7.(G[V;]) otherwise. The
parameter 6.(G) is used to denote the minimum total weight of any neo-
colonization of G and is called the cligue-connected cover number of G.
Goddard et al. [4] defined this parameter and proved that y°(G) < 0.(G).

Theorem 2 (8] For any tree T, 6.(T) = v (T).

It is easy to see that Y°(G) < 7.(G) + 1.

The next theorem describes the fundamental inequality chain for the
traditional eternal domination problems. Each of the inequalities have been
shown to be sharp for certain graphs.

Theorem 3 (3, 4] Let G be a graph. Then ¥(G) < ¥2(G) < B(G) <
1°(G) < 6(G).

2 One Guard Moves

Let G and H be graphs. The wreath product (or lexicographic product) of
G and H is the graph G wr H with vertex set V(G wr H) = V(G) x V(H),
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and edge set
E(Gwr H) = {(g,h)(¢',h) : 99’ € E(G), or g =g’ and hi' € E(H)}.

Informally, G wr H is the graph obtained by replacing each vertex of G
with a copy of H and adding all possible edges between copies of H that
replaced adjacent vertices of G. Note that any subgraph induced by a set
of |V(G)] vertices, one from each copy of H, is isomorphic to G.

Proposition 4 Let G be a graph. For any integer n > 2 we have

Y(G) = v(G wr K,,) = (G wr Ky,).

Proof: Let D be a dominating set of G. For any vertex z € K., the set
D' = {(d,z) : d € D} is a dominating set of G wr K,,. If one guard is placed
on each copy of K, corresponding to a vertex in D, the guard can always
relocate, when necessary, to remain within that clique. The set of guards
therefore always forms a dominating set. O

Because the configuration of guards must always form a dominating set,
e®(G) > v(G) for any graph G. Proposition 4 provides infinitely many ex-
amples where equality occurs.

We consider the following decision problem:

EVICTION
INSTANCE: A graph G and an integer k > 0.
QUESTION: Is e*®(G) < k?

It is not clear that EVICTION belongs to NP, as it is not clear how
to confirm in polynomial time that a given initial configuration of guards
can defend all possible sequences of attacks. We describe a straightforward
algorithm that decides whether a given configuration of k guards “works”
(or whether there exists a configuration of k guards that “works”) in time
exponential in k. Given G, construct an arc-colored digraph D as follows.
The vertex set of D is the set of k-vertex dominating sets of G. The set of
colors is V(G). There is an arc from X to Y of color v when X —Y = {v},
and v is adjacent in G to the unique vertex w € Y — X. Now, delete
any vertex X which is not the origin of an arc colored z for some z € X.
Repeat this step until no further vertices can be deleted. Call the resulting
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digraph D'. The vertices of D’ are the guard configurations from which
any sequence of attacks can be defended.

Corollary 5 EVICTION is NP-hard, even when the input is restricted to
interval graphs.

Proof: The transformation is from the NP-complete problem of deciding
whether a given interval graph has a dominating set of size at most the
given integer k [2]. Suppose an interval graph G and an integer k are given.
The transformed instance of EVICTION is G wr K, and the same integer
k. The result now follows from Proposition 4 on noting that G wr K, is an
interval graph (make a second copy of each interval). O

Corollary 6 EVICTION is NP-hard, even when the input is restricted to
chordal graphs.

Corollary 5 motivates searching for bounds on €. The following general
upper bound holds for all graphs.

Theorem 7 Let G be a graph. Then e®(G) < 6(G).

Proof: We will maintain the invariant that there is a partition into 0(G)
cliques with exactly one guard on each of them. Let C be a minimum clique
covering of G. For each clique ¢ € C, place a guard on some vertex of c.
Hence the invariant holds initially.

Suppose the guard located in c is located on a vertex that is attacked.
Assume that the guard can move, otherwise the guard trivially remains in
its clique and the invariant holds. If ¢ has at least two vertices, relocate
the guard to another vertex of ¢, and the invariant holds. Otherwise, ¢ has
exactly one vertex. Relocate the guard to any available adjacent vertex, say
z, belonging to a clique ¢’ € C. Since C is a minimum clique covering, ¢’
has at least two vertices. The invariant now holds for the revised minimum
clique covering C' = (C — {¢,c'}) U{c+z,¢ —z}. O

There are many examples where the bound in Theorem 7 is not sharp
(see Theorem 11). The example on the smallest number of vertices is K;—e.
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3 Independence Number

In this section, we explore the relationship between e>(G) and the inde-
pendence number of G. A general lower bound that holds for triangle-free
graphs is shown first. As stated above, it is known that 7*(G) > B(G),
see [4].

Theorem 8 Let G be a triangle-free graph. Then e®(G) > B(G).

Proof: Let I be a maximum independent set of G. Let D be an eternal
dominating set in the eviction model D. Place guards on the vertices of D.
We show that it is possible to force a guard to be located on every vertex
of I, from which the result follows.

Suppose there is no guard on v € I. Since the configuration of guards
forms a dominating set, there is a guard on a neighbor u of v. Note that
u g I. Attack u. Since G is triangle-free, the guard on u must either move
to v, or to a vertex non-adjacent to v. In the latter case, there must be
a guard on a neighbor of v and fewer neighbors of v must hold a guard.
Repeating the procedure, since v must be dominated, eventually a guard
must be located on v. O

Proposition 9 ¢®(C;) = 1, e*(Cs) = 2, and for k > 3, e°(Cor41) =
k+1.

Proof: Tt is easy to see that e®(C3) = 1, and €*°(Cs) = 2. Let k > 3 and
consider Cor41. By Theorems 7 and 8, k < e® < k + 1. We show that k&
guards do not suffice. ‘

Suppose Cakq41 is the cycle vq,vs,...,v2k41,v1. Following the proof of
Theorem 8, it can be assumed that the k guards are located on the vertices
in {vy,vs,...,v2k-1}. First attack the guard at vs. If he relocates to vy,
then attacking the guard at v; necessarily results in a configuration that
is not a dominating set; hence, to maintain a dominating set, he must
relocate to v,. Now attack the guard at vs. To maintain a dominating
set, he must relocate to v4. For the same reason, attacking the guard at
vy forces him to move to vg. Continuing in this way, attacking the guard
at vor_1 necessarily forces a configuration that is not a dominating set. It
follows that e* =k +1. O

It follows that odd cycles with at least seven vertices are examples of
graphs where equality holds in Theorem 7 and inequality holds in Theorem
8.
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We now use Proposition 9 to construct connected triangle-free graphs
with § > > > f such that the differences § — e, e — B are any two non-
negative integer a and b, respectively. Suppose a and b are given. Begin
with a path P on 2b + 2a vertices, 2b copies of C; and 2a copies of Cs.
For i = 1,2,...,2b, add an edge joining the i-th vertex of P to a vertex
in the i-th copy of C7. For j = 1,2,...,2a, identify a vertex of the j-th
copy of Cs with vertex 2b+ j of P. Call the resulting graph H, ;. The
clique covering number §(Ha ) = 4-2b+ 2 - 2a + a, as there are a cliques
of size two that cover one vertex from each Cs. The independence number
B(Hap) = 3-2b+b+2-2a. We claim that e®(H, ;) = 4-2b+2-2a. There must
be four guards on the subgraph induced by a C; and its unique neighbor on
P, otherwise attacking the guards on the Cy as in the proof of Proposition
9 leads to a configuration that is not a dominating set. Furthermore, since
any such subgraph can be covered by four cliques of size two, the guards
can never be evicted out of the subgraph. Hence 4.2b guards are necessary
and sufficient to protect the subgraph induced by the first 2b vertices of P
and the C7's and can do so without a guard ever being forced to leave it.
In a similar way, two guards are necessary and sufficient to protect each Cj
and can do so without ever being forced to leave it. Thus e® = 4-2b+2-2a.
We now have § — e® = a and e® — 8 = b, as desired.

We now show that equality holds in Theorem 8 for all bipartite graphs.
Lemma 10 Let G be a bipartite graph. Then e™(G) < B(G).

Proof: We will maintain the invariant that there is a maximum matching
with a guard on some end of each of its edges, and a guard on each vertex
not incident with an edge in the matching. Such a configuration of guards
is easily seen to form a dominating set. By Konig’s Theorem, any such
configuration has 8 guards.

Let M be a maximum matching. A minimum vertex cover C (of size
|M]) can be chosen so that each edge in M has exactly one end in C. Let
W be the set of vertices of G which are not an end of an edge in M. Since
W is a subset of V — C, and the complement of a minimum vertex cover
is an independent set, the set W is independent. The neighborhood of any
vertex in W is a subset of C.

Place a guard on each vertex of C U W, so that the invariant holds
initially. If a guard in C is evicted, he relocates to the other end of the
edge in M, and the invariant still holds. Suppose that a guard on w € W is
evicted and relocates to ¢ € C. For this to be possible, the guard initially
on ¢ must have been evicted and moved to ¢’ such that cc’ € M. Replace M
by the maximum matching M — c¢’ 4+ cw, and the invariant holds. Finally,
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if a guard on an end of an edge in M which is not in C is evicted, then
he relocates to the other end of the edge in the matching and the invariant
holds again. O

The following is obtained by combining Theorem 8 and Lemma 10.
Theorem 11 Let G be a bipartite graph. Then e®(G) = B(G).

We now show that equality holds in Theorem 8 for many non-bipartite
graphs. Let G(n,k) be the graph with vertex set equal to the set of all
k-subsets of an n-set in which two vertices are adjacent if and only if their
intersection is nonempty So G(n, k) is the complement of a Kneser graph
and is sometimes called a Johnson graph. Johnson graphs were used in (5]
to show that the eternal domination number may be much larger than the
independence number of a graph. It is known that B(G(n,k)) = | %], see
for example [5]. We refer to the elements of the n-set as symbols and use
the integers 1,2,...,n to represent these symbols.

Theorem 12 For all n > k > 1, e®(G(n, k)) = B(G(n, k)).

Proof: By definition of adjacency in G(n, k), a vertex X is dominated if
and only if there is a guard on a vertex Y such that X nY # 0. We will
say that a guard covers a symbol u if it is located on vertex Y such that

ueY.

Suppose that there are fewer than 8 = | 2| guards. Then the maximum
number of symbols covered is k- (|2] —1) < n — k. Hence there is a set
X of k symbols that are not covered. This vertex is not dominated by the
configuration of guards.

Now suppose there are 8 guards. We will maintain the invariant that
there are at most k& — 1 symbols that are not covered. For any such
configuration, the vertices that hold the guards form a dominating set.
This holds for the initial placement of guards on the vertices {1,2,...,k},
{(k+1,k+2,...,2k},..., {(|}]-Dk+1,(| 2] -1)k+2,...,[£]k}. Suppose
it holds for the current configuration, and that the guard at {z1,z2,...,Zx}
is attacked. This guard has a move to a vertex that covers all currently
uncovered symbols, at least one of z1,z2,...,Zk, and possibly some other
symbols. The invariant holds after this move is made. O

A graph with 8 = 1 is a complete graph and has e = 1. The graphs

with 8 = 2 can also be eternally dominated by a small number of guards.
A dominating vertez in a graph G with n vertices is a vertex of degree n—1.
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Theorem 13 Let G be a graph with 8(G) = 2. If G has two dominating
vertices, then e®(G) = 1. Otherwise, e®(G) = 2.

Proof: If G has dominating vertices z and y, then a single guard can relocate
back and forth between them and maintain a dominating set.

Finally, suppose G has at most one dominating vertex. Then G is
the complement of a triangle-free graph with at most one isolated vertex.
Initially locate the guards on any dominating set of size two, say {u,v}.
Suppose the guard on u is attacked. If v has a non-neighbor w # u, then
whether or not « and v are adjacent, the guard at u guard can relocate to
w and the resulting configuration is a dominating set. If no such vertex
w exists, the guard at u can relocate to any vertex z and the resulting
configuration of guards is a dominating set. O

A graph G is a split graph if V(G) can be partitioned into I and C,
where I is an independent set and the subgraph induced by C is a clique.
There can be more than one such partition. When G is a split graph and J
is a maximum independent set, every vertex in C has at least one neighbor
in I (otherwise I is not maximum).

Theorem 14 Let G be a connected split graph. Then e™(G) < B(G).

Proof: Let I be a maximum independent set of G. Then each vertex in
C has at least one neighbor in I. Initially, place one guard on each vertex
of I. This is a dominating set. When a guard is evicted from a vertex
in I to a neighboring vertex in C, the resulting configuration remains a
dominating set because a guard in C dominates all vertices of C. If a
guard in C is evicted, he relocates to his initial position in I, and the
resulting configuration remains a dominating set. O

3.1 The case =3

In the following, we show in several steps that any graph with independence
number three has an eternal dominating set in the eviction model with at
most five vertices. This is perhaps the main result of the paper and is
motivated by results in [7] which, among other things, shows that any
graph G with independence number three has v°(G) < 6; this bound is
sharp as shown in (5]. The first few results eliminate some easy cases and
provide a bit of structure with which to work.
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Lemma 15 Let G be a graph with 8 = 3. If G is disconnected or has a
cut vertez, then e®(G) < 3.

Proof: If G is disconnected, then it consists of at most three connected
components, at most one of which has B = 2 (the others having 8 = 1).
The result then follows from Theorem 13 and the fact that e®(K,) = 1.

Suppose that G is connected and has a cut-vertex, z. Since 8 = 3, the
graph G — z has at most three components. If it has exactly three, then
z must be adjacent to all the vertices in at least one of the components,
else 8 > 3. Then each component is complete (and z union one of the
components is complete) and in this case, G can be guarded by three guards.
Suppose, then, that G — z has two components, C; and C,. Since 8 = 3,
either C, or C; is complete, or both are complete.

Suppose C; and C; are both complete. Then each has at least two
vertices, otherwise 3(G) < 3. Let C be guarded by one guard who is never
forced to leave it. If the subgraph induced by V(C2)U{z} is complete (and
thus can be guarded by one guard), then either 8(G) < 3 (if z is adjacent
to all vertices in Cy) or else the subgraph induced by V(C2) U {z} can
be guarded by a guard who moves back and forth between two vertices in
Cs,. If the subgraph induced by V(C;) U {z} is not complete, then Cy can
be guarded by one guard that moves between vertices in Cp. Vertex z is
guarded by a guard initially on z and which moves to a vertex in C; or C;
when evicted (and then back to z when evicted again).

Suppose that C; is complete and C; is not complete. Then C; has at
least three vertices. Let us first assume that = is not adjacent to all the
vertices in C;. If C; has at least two vertices, it can be guarded by a
single guard who is never forced to leave it, while the subgraph induced by
V(C2)U{z} can be guarded by two guards who are never forced to leave it.
Suppose, then, that C; has only one vertex. If C; has at least four vertices,
then it can be guarded by two guards who are never forced to leave it, while
a third guard moves back and forth between the vertex in Cy and z. The
last case is when Cy = K, 3. Then G has only five vertices, and can be
guarded by three guards.

On the other hand, if z is adjacent to all the vertices in C, then combine
z and C} into a single clique and protect that clique with one guard that
never leaves. The B(C;) = 2 and can be guarded with two guards by
Theorem 13. O

Lemma 16 Let G be a 2-connected graph with 8 = 3. Then either G has
disjoint independent sets Iy and I such that |I; U I| =5, or G is a split
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graph.

Proof: If no such independent sets exist, then the vertices not in the inde-
pendent set of size three must induce a clique. O

Corollary 17 Let G be a 2-connected graph with 8 = 3. If G does not have
disjoint independent sets I, and Iy such that |, UL,| = 5, then e (G)<3.

Proof: By Lemma 16, G is a split graph with 8 = 3. The statement follows
from Theorem 14. O

By the above results, it remains to consider 2-connected graphs which
have disjoint independent sets of size 2 and 3, respectively. We define a
dominating configuration to be a set of five vertices which is a dominating
set and contains either an independent set of size three, or two disjoint inde-
pendent sets of size two. Since a dominating configuration is a dominating
set, guards placed on the vertices of such a set can defend any single attack.
If this can always be done so that the resulting set of guards’ locations is
a dominating configuration, then we have an eternal dominating set in the
eviction model. We next examine situations where this is not possible, and
obtain structural information which will be useful in obtaining a strategy
for defending G.

Lemma 18 Let G be a 2-connected graph with 8 = 3. Suppose guards
are located at the vertices of a dominating configuration. If any guard is
attacked, then he can relocate so that the resulting set of guards’ locations
is a dominating set.

Suppose guards are located at the vertices of a dominating configuration,
D, and that the guard at v is attacked. Note that D — {v} contains an
independent set I of size two. If v has an external private neighbor w and
the guard at v relocates to w, then J U {w} is a maximum independent set
and (D — {v}) U {w} is dominating. Otherwise, v has no external private
neighbors and no matter where the guard at v relocates (or if he can not
move), the resulting set of guards’ locations is a dominating set. O

Lemma 19 Let G be a 2-connected graph with 8 = 3. Suppose guards are
located at the vertices of a dominating configuration, D = {a,b,¢c,d, g}, but
when the guard at g is attacked it is not possible to maintain a dominating
configuration. Then
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(i) g has a neighbor w € D;

(ii) the subgraph induced by D—{g} must have an independent set {a, b}
disjoint from an edge cd;

(iii) g has no external private neighbors;

(iv) every vertez in N(g) — D is adjacent to both c and d;

(v) one of a and b is adjacent to both ¢ and d; without loss of generality,
ac,ad € E.

(vi) the graph H = G— ({c,d}UN|g]) has independence number at most

two.

Proof: Since it is not possible to maintain a dominating configuration, it
must be that the guard at g can move when evicted. Hence g has a neighbor
w not in the set of vertices occupied by the other guards. This proves (i).

The subgraph induced by D — {g} must have an independent set of size
two that is disjoint from another edge, otherwise we have a dominating
configuration no matter to which vertex the guard at g relocates. Without
loss of generality the vertices a and b are nonadjacent, and the vertices ¢
and d are adjacent. Statement (ii) follows.

To see (iii), note that the vertices @, b and any private neighbor of g
would form an independent set of size three. Since 8 = 3, it would be pos-
sible to maintain a dominating configuration, contrary to our hypothesis.

From (iii), we know that g has no external private neighbors. Further-
more, if g has a neighbor w ¢ D which is not adjacent to c, say, then w and
c are an independent set of size two and a dominating configuration can be
obtained by moving a guard from g to w. Hence (iv) is proved.

Since {a,b,c,d} contains no independent set of size three, there must
be at least two edges with one end in {a, b} and the other end in {c,d}. If
neither a nor b is adjacent to both c and d, then we can assume ac,bd € E.
But then (D — {g}) U {w} is a dominating configuration with independent
sets {a,d}, {b,c}. Statement (v) follows.

Finally, since, for any independent set X in H = G — ({c,d} U N(g}),
the set X U {g} is independent in G (as all neighbors of g are not in H, by
the definition of H), we have B(H) < 2. This proves (vi). O
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We now use the structural information given above to describe a strat-
egy for defending graphs G where a dominating configuration can not be
maintained. Since there is perfect information, and G is known in advance,
it can be assumed that this is known.

Lemma 20 Let G and D be as in Lemma 19. If g is adjacent to both a
and b, then e®(G) < 5.

Proof: Let H = G — ({¢,d} U N[g]). By Lemma 19 (vi), B(H) < 2. By our
hypothesis, DNV (H) = 0.

If H is connected and has at least two vertices, then by Theorem 13, it
can be defended by either one or two guards who are never forced to move
to a vertex in G — H (only one guard is needed when H has two vertices).
These guards, together with a guard on g who will move back and forth
between g and b, and a guard on ¢ that will move back and forth between
c and d, are an eternal dominating set in the eviction model.

Suppose H has only one vertex, z. Since G is 2-connected, z has at
least two neighbors. If z is adjacent to both ¢ and d, then guards placed
on g and c as above suffice to defend G. If z is not adjacent to both ¢
and d, then place a guard on z, a guard on c and a guard on g. If z has
a neighbor z ¢ {b,c,d} then G is defended if the guard on z moves back
and forth to z, the guard on ¢ moves back and forth to d, and the guard
on g moves back and forth to b. Otherwise, since z has degree at least two,
zb € E(G). Moving the guard on z back and forth to b, the guard on ¢
back and forth to d, and the guard on g back and forth to w (from Lemma
19 (i)) successfully defends G.

Finally, suppose H is disconnected. Then it consists of two disjoint
cliques, one or both of which might have only one vertex. If both have at
least two vertices, then placing one guard on each of them, plus a guard
that moves between ¢ and d, and a guard that moves between a and g,
defends G. The case where only one of the cliques is a singleton can be
handled by placing a guard on the other clique, and then proceeding as
above when H was a singleton.

Hence assume that the two disjoint cliques of H each consist of single
vertices, say 21 and 2. Since G is 2-connected, each vertex has degree at
least two.

If at least one of 2; and 2, are adjacent to ¢ and d, then we are done
as above. Thus it remains to consider the situation where neither of these
vertices is adjacent to both ¢ and d. By definition of H, neither of them is
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adjacent to g. Observe that if w is the only neighbor of g not in {a,b,¢,d},
then G has eight vertices and one can verify that five guards suffice. Oth-
erwise, let w’ # w be another neighbor of g. The vertex w’ has the same
adjacency properties of w in terms of being adjacent to g,c, and d.

If 21, say, has a neighbor w; & {b,c,d}, then G can be defended similarly
to when H was a singleton. Hence assume both 2) and 22 are adjacent to
b, and one of ¢ and d.

Suppose first that both 2z; and z; are only adjacent to b and c. Observe
that ww' must be an edge; otherwise {w,w’, 21, z2} is an independent set of
size four. For the same reason, N(g) — {a, b, ¢, d} must induce a clique. Our
strategy is as follows. One guard moves back and forth along gw, one guard
moves back and forth along ad, one guard moves back and forth along bz3,
and one guard moves back and forth along cz;.

Suppose both z; and 2z, are adjacent to b, z; is adjacent to ¢ (and not
d), and 25 is adjacent to d (and not ¢). The same strategy as immediately
above defends G. O

Lemma 21 Let G and D be as in Lemma 19. If g is adjacent to ezactly
one of a and b, then e*(G) < 5.

Proof: As before, let H = G—({c,d}UN|g]). By Lemma 19 (vi), B(H) < 2.

We first consider the situation where g is adjacent to b and not a. In
this situation, a € V(H) and b ¢ V(H). The argument is almost exactly
the same as in the proof of Lemma 20. In fact, it is a bit simpler. If H
consists of just the vertex a, then it is protected by the guard moving back
and forth between c and d. And if H consists of two disjoint cliques, either
one of the cliques is just a or at least one of the cliques contains at least
two vertices.

We now consider the situation where g is adjacent to @ and not b. In
this situation b € V(H) and a ¢ V(H) . The argument is as in the proof
of Lemma 20 if H is connected and has at least two vertices. If H is
disconnected then it has exactly two components, each of which is a clique.
If both of these have at least two vertices the argument is also as before.
We must therefore consider the situations where H consists of: (i) only
the vertex b; (ii) a clique of size at least two not containing b and another
component consisting of the vertex b. (ii) a clique of size at least two
containing b and another component consisting of a vertex z; (iv) non-
adjacent vertices b and 2. These are considered in turn.
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Suppose H consists only of the vertex b. If b is adjacent to a vertex
w € N(g9) — D (from Lemma 19 (i)), then G is defended by three guards
moving back and forth between b and w, c and d, and g and a, respectively.
If b is not adjacent to any such w, then since G is 2-connected it must be
adjacent to ¢ and d; by hypothesis b is not adjacent to a or z. The graph
G is then defended by two guards moving back and forth between ¢ and d,
and g and a, respectively.

Suppose H consists of a clique of size at least two not containing b and
another component consisting of the vertex b. A single guard can defend
the clique of size at least two not containing b without ever leaving it, and
the rest of G can be defended as when H consists of only b.

Suppose H consists of a clique of size at least two containing b and
another component consisting of a vertex z. A single guard can defend
the clique of size at least two containing b without ever leaving it. If z
is adjacent to both ¢ and d, then G is defended by two more guards, one
moving between c and d, and the other moving between ¢ and a. Hence
assume 2 is adjacent to at most one of ¢ and d. Since G is 2-connected,
the vertex z has degree at least two and is therefore adjacent to a vertex
w € N(g)— D (recall that at least one such w exists), or to a. In the former
situation, G is defended by three more guards moving between ¢ and d, g
and a, and z and w, respectively. In the latter situation it is defended by
guards moving between ¢ and d, g and w, and z and a, respectively.

Suppose H consists of non-adjacent vertices b and z. In each situation
that follows, we will assume the existence of a guard moving back and
forth between ¢ and d. The possible neighbors of b are c,d and vertices
w € N(g) — {a,c,d}. The possible neighbors of z are c,d and vertices
in N(g) (including @). Since the guard at g can not relocate so that the
vertices holding guards form a dominating configuration, for every vertex
w € N(g) — {a,c,d} either bw € E or zw € E(G).

Consider the scenario where b is adjacent to ¢ and d. Then b is guarded.
If z is also adjacent to ¢ and d, then G is defended by the guard moving
between ¢ and d and a guard moving between g and a. If z is adjacent
to a, then G is guarded by the guard moving between ¢ and d and guards
moving between g and w € N(g) — {a,¢,d}, and z and a, respectively. And
if z is adjacent to w € N(g) — {a,c,d}, then G is defended by the guard
moving between ¢ and d and guards moving between z and w, and ¢ and
a, respectively.

It remains to consider the scenario where b is adjacent to at most one of
c and d. Hence it is adjacent to at least one vertex w € N (9) — {a,c,d}. If
z is adjacent to both ¢ and d, then G is guarded as when H consists only of
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b. If z is adjacent to a, then either G has at most seven vertices and we are
done as before, or there exists a vertex w' € N(g) — {a,¢,d}. In the latter
situation, G is defended by the guard moving between ¢ and d and guards
moving between g and w’, z and a, and b and w, respectively. If z is not
adjacent to a, then it has at least one neighbor in N(g) — {a,c,d}. If wis
the only vertex in N(g) — {a,c,d}, then G has at most seven vertices and
we are done as before. Otherwise, since every vertex in N(g) — {a,c,d} is
adjacent to b or z and both of these vertices have a neighbor in this set, there
exist different vertices z,z’ € N(g) — {a,¢c,d} such that bz, zz’ € E(G) and
G is defended by the guard moving between ¢ and d, and guards moving
between g and a, b and z, and z and z’, respectively. O

Lemma 22 Let G and D be as in Lemma 19. If g is independent of a and
b, then e®(G) < 5.

Proof: As before, let H = G—({c,d}UN|g]). By Lemma 19 (vi), 8(H) < 2.
In the situations that follow, there is a guard that moves back and forth
between ¢ and d. Note that a,b € V(H).

First suppose H is connected. Since a,b € V(H) and ab ¢ E, the graph
H has at least three vertices. If H has at least four vertices, then all vertices
in the subgraph H can be defended by two guards who are never forced to
move to a vertex not in V(H). If H has three vertices, then it is a path
on three vertices with ends ¢ and b, say a, f,b. The vertex a is defended
by the guard moving between ¢ and d. Put a guard on b. When evicted, it
moves back and forth on the edge bf.

Now suppose H is disconnected. Then it consists of two disjoint cliques,
one or hoth of which might have only one vertex. Note that a and b are in
different cliques, say L, and L, respectively.

If Ly has at least two vertices, then a guard initially located on b can
defend L, without ever leaving it. If L, also has at least two vertices then
one guard initially on a can defend it. Otherwise, V(L,) = {a}, which is
defended by the guard moving between ¢ and d.

Hence assume Ly has only one vertex, b. If b is adjacent to ¢ and d,
then L, is defended by the guard moving between ¢ and d. Since L, can
be defended as above, we may further assume bd ¢ E(G). Since G is 2-
connected, N(b)—{c} # 0. Hence b is adjacent to a vertex w € N(g)—{c,d}.
If there exists a vertex w’ € N(g)\{c, d, w}, then G is defended by the guard
moving between ¢ and d, and guards moving between b and w, and g and
w’, respectively. Otherwise, G has only six vertices and, as before, it can
be seen directly that e < 5. O
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Combining the results above yields the following theorem.

Theorem 23 Let graph G have B(G) = 3. Then e®(G) < 5.

4 All-Guards Move

4.1 Bounds
Obviously e®m(G) < e®(G), for all graphs G.
Theorem 24 Let G be a connected graph. Then e®m(G) < B(G).

Proof: Let I be a maximum independent set of G. Let D denote the
configuration of guards in G, initially D = I. Suppose an attack occurs at
vertex v € D. If v has an external private neighbor u, then move the guard
from v to u and observe the new configuration of guards is a maximum
independent set (and thus a dominating set). So let us assume v has no
external private neighbor. Let w be a neighbor of v. Move the guard from
v to w; this configuration of guards is still a dominating set. Upon the next
attack, move the guard from w back to v. Thus there is at most one guard
outside a maximum independent set at any one time and the configuration
of guards is a dominating set at all times. O

4.2 Trees

We describe a partitioning scheme for trees that will determine €. This
scheme is inspired by the neo-colonization concept devised in [4] for the
m-eternal domination number (see Section 1.3).

Let T be a tree. A stem of a tree T is a vertex of degree at least two
that is adjacent to a leaf. We shall assume that stems have degree greater
than one, otherwise T is a K;. A vertex of T that is not a leaf is called an
internal vertex.

A tree is a star if it is isomorphic to K ,,m > 0. The center vertex of
a star with m > 1 is the vertex of degree m.

We partition the internal vertices of T into loners, weak stems and strong
stems depending on whether they are adjacent to zero, exactly one or at
least two leaves.
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We give two simple examples to illustrate some of the nuances of the
problem: consider the tree T, consisting of two Kj,2’s with their center
vertices joined to a common vertex v. Note that this graph can be protected
with four guards and no guard ever needs to occupy v. As another example,
it is easy to see that e (Ps) = 2.

A star partitioning P is a partitioning of the vertex set of a tree T
into parts that each induce a star, and such that no two K, parts are
adjacent. It is easy to see that every tree has a star partitioning. We begin
by establishing some properties of star partitionings.

Proposition 25 Let T be a tree with at least two vertices. Then T has a
star partitioning P such that (i) each weak stem of T and its adjacent leaf
form a Ky part of P, and (i) any K, part is adjacent to at least two parts
that are not K, ’s.

Proof: If statement (4) is false, then some leaf ¢ adjacent to a weak stem w
is a Ky part. By the definition, {w} is not a part. If w is the center vertex
of a non-trivial star, then £ can be absorbed into that star. Otherwise, P
can be reconfigured so that it has the same number of parts and {w, £} is
a part. Statement (ii) follows from (i) and the definition. O

Call a star partitioning of T special if it satisfies the conditions in Propo-
sition 25. We assign a star S in a special star partitioning weight k — 1,
where & is the number of vertices of S. For a special star partitioning P of
a tree T, define wt(P), the weight of P, to be the sum of the weights of the
stars in P.

Corollary 26 Let P be a special star partitioning of a tree T with at least
two vertices. Then no leaf of T is a part in P.

Proposition 27 Let P be a special star partitioning of a tree T with at
least two vertices. Then T has an m-eternal dominating set in the eviction
model with size wt(P).

Proof: Define D C V(T) inductively as follows. Let To = T, Py = P,
and Dy = 0. Suppose D;, P; and T; have been defined, that T; contains
at least two vertices, that D; dominates V(T) — V(T3), and that P; is a
special star partitioning of T;. If V(T;) = @, then set D = D;. Otherwise,
define D;y1, T4y and Tiyy as follows. Let S; be a star in P; that contains
a stem adjacent to an end of a longest path in Ti. Then S; contains a leaf

266



¢; of T;. Let L; be the set of leaves of S;. Let Diyy = D; U (L; — {&}).
By choice of S;, at most one K) part of P; is adjacent to a vertex of
S;. Let R; be any such part; V(R;) is either empty or a singleton. Let
Tim1 =T, - (V(S.) U V(R,)) If V(R,) =, set Pw=PF - {V(S,)}, and
if V(R;) # 0, then set P,y = P; — {V(S;),V(R:)}. By choice of S; and
Corollary 26, we have that T;;, is a tree with at least two vertices, that
D; 1 dominates V(T')—V(Ti;1), and that P, is a special star partitioning
of Ti+1 .

By construction, the set D is a dominating set of T containing wt(P)
vertices. We now show it is an eternal dominating set in the eviction model.
Place guards on all vertices of D. Recall that attacks occur only at vertices
with guards. We will maintain the invariant that guards will rerain within
their respective stars (from the partitioning P) at all times; hence no attack
will ever occur at a vertex which forms a K part.

Since guards remain on their original stars, each vertex in a non-trivial
star from P will be protected at all times. Suppose there is an attack at a
vertex v € D that is protecting a vertex w such that w is a K part. Since
the guard at v moves to another vertex in its star, it will not protect w.
However, as w is adjacent to another star $ of size at least two, a guard
in § can move (if necessary) to a vertex within S that is adjacent to w.
This may cause a “ripple effect” since this move may leave another K;
part unprotected, but we can address that in a similar fashion (relocating
a guard within star ') and since T is a tree, this sequence of guard moves
will terminate with every vertex protected, since a K, part can not be a
leaf of T. O

Let s(T") denote the minimum weight of any special star partitioning of

Proposition 28 For any tree T with at least two vertices, s(T) = e (T).

Proof: We have s(T) > eX(T) by Proposition 27. We must show that
s(T) < eX(T). The proof is by induction on the number of vertices of 7.
When T has two vertices, the proposition is trivial. Suppose T has more
than two vertices. If T has a weak stem w with adjacent leaf u such that
T — {u,w} is connected, then any m-eternal dominating set must keep a
guard on w or u at all times. Since {u,v} must be a K, part (of weight
one) in any minimum-weight special star partitioning, the result follows by
induction. Suppose there is no such weak stem. Then there is a strong
stem v with adjacent leaves vy,v,... v, k > 2. Then, in any m-eternal
dominating set, there must be at least k guards on these k +1 vertices at all
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times. The result follows by induction on observing that if v has a non-leaf
neighbor z that is a loner, then z is either in a K3 or a K part in any
minimum-weight star partitioning. O

This result tells us, for example, that e®m(P,) = [1‘—}1] , as every third
vertex in a path can be a K part.

5 Questions for Future Research

We state some questions in this section. Question 1 concerns bounds on e*
and Question 2 asks for characterizations. Question 1(i) seems the most
fundamental.

Question 1 (i) Is e®(G) < ¥°(G) for all graphs G?
(i) Is there a constant ¢ such that e®(G) < cB(G), for all graphs G?

Question 2 (i) Can we characterize the graphs with ™ equal to y?
(ii) Can we characterize the graphs with e™ less than or equal to 57
(i1i) Can we describe additional graphs with e less than or equal to 67

Recall that the upper domination number of G, denoted I'(G) is the size
of a largest minimal dominating set.

Question 3 Is there a constant c -(possibly ¢ = 1) such that e*(G) <
cI(G) for all connected graphs G?

Question 4 (i) Can the graphs with 3% equal to v be characterized?
(i3) Can the graphs with €30 equal to f be characterized?
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