On (r, 2, k)-Regular Fuzzy Graphs

N.R. SANTHIMAHESWARI

Department of Mathematics G. Venkataswamy Naidu College Kovilpatti-628502, Tamil Nadu, India.

> e-mail: nrsmaths@yahoo.com and

C. SEKAR

Department of Mathematics

Aditanar College of Arts and Science

Tiruchendur, Tamil Nadu, India.

e-mail: sekar.acas@gmail.com

Abstract

In this paper, (r, 2, k)- regular fuzzy graphs and totally (r, 2, k)regular fuzzy graphs are defined and (r, 2, k)- regular fuzzy graphs
and totally (r, 2, k)- regular fuzzy graphs are compared through various examples. A necessary and sufficient condition under which they
are equivalent is provided. Also (r, 2, k)-regularity on some fuzzy
graphs whose underlying crisp graphs are a path on four vertices, a
Barbell graph $B_{n,n}(n > 1)$ and a cycle is studied with some specific
membership functions.

Key Words: degree of a vertex, regular fuzzy graphs, total degree, totally regular fuzzy graph, d_2 degree of a vertex in graphs, semiregular graphs, (2,k)-regular fuzzy graphs, totally (2,k)-regular fuzzy graphs.

AMS Subject Code Classification 2010: 05C12, 05C72.

1 Introduction

In 1965, Lofti A.Zadeh[12] introduced the concept of a fuzzy subset of a set as a method for representing the phenomena of uncertainty in real life situation. Azriel Rosenfeld introduced fuzzy graphs in 1975[12]. It has been

growing fast and has numerous applications in various fields. Nagoor Gani and Radha [11] introduced regular fuzzy graphs, total degree and totally regular fuzzy graphs. Alison Northup introduced Semiregular graphs that we call it as (2,k)-regular graphs and studied some properties on (2,k)-regular graphs[2]. N.R. Santhi Maheswari and C. Sekar introduced d_2 of a vertex in graphs[13] and also discussed some properties on d_2 of a vertex in graphs[15] and introduced (r,2,k)-regular graphs and also discussed some properties on (r,2,k)-regular graphs[14]. Also we introduced d_2 degree of a vertex in fuzzy graphs, total d_2 -degree of a vertex in fuzzy graphs, (2,k)-regular fuzzy graphs and totally (2,k)-regular fuzzy graphs.

In this paper, we introduce (r, 2, k)-regular fuzzy graphs and totally (r, 2, k)-regular fuzzy graphs and also discuss some properties on (r, 2, k)-regular fuzzy graphs. We make comparative study between (r, 2, k)-regular fuzzy graphs and totally (r, 2, k)-regular fuzzy graphs. Then we provide a necessary and sufficient condition under which they are equivalent. Also (r, 2, k)-regularity on fuzzy graphs whose underlying crisp graphs are a path on four vertices, a Barbell graph $B_{n,n}(n > 1)$ and a cycle is studied with some specific membership functions.

2 Preliminaries

We present some known definitions and results for a ready reference to go through the work presented in this paper.

Definition 2.1. For a given graph G, the d_2 -degree of a vertex v in G, denoted by $d_2(v)$ means number of vertices at a distance two away from v.

Definition 2.2. A graph G is said to be (2, k)-regular $(d_2$ -regular) if $d_2(v) = k$, for all v in G. We observe that (2, k)-regular graphs and semiregular graphs and d_2 -regular graphs are same.

Definition 2.3. A graph G is said to be (r, 2, k)-regular if d(v) = r and $d_2(v) = k$, for all v in G.

Definition 2.4. A Fuzzy graph denoted by $G:(\sigma,\mu)$ on graph $G^*:(V,E)$. is a pair of functions (σ,μ) where $\sigma:V\to [0,1]$ is a fuzzy subset of a non empty set V and $\mu:V\times V\to [0,1]$ is a symmetric fuzzy relation on σ such that for all u,v in V the relation $\mu(u,v)=\mu(uv)\leq\sigma(u)\wedge\sigma(v)$ is satisfied. A fuzzy graph G is complete if $\mu(u,v)=\mu(uv)=\sigma(u)\wedge\sigma(v)$ for all $u,v\in V$ where uv denotes the edge between u and v. $G^*:(V,E)$ is called the underlying crisp graph of the fuzzy graph $G:(\sigma,\mu)$, where σ and μ are called membership functions.

Definition 2.5. Let $G: (\sigma, \mu)$ be a fuzzy graph. The degree of a vertex u is $d_G(u) = \sum_{u \neq v} \mu(uv)$ for $uv \in E$ and $\mu(uv) = 0$ for uv not in E; this is equivalent to $d_G(u) = \sum_{uv \in E} \mu(uv)$.

Definition 2.6. The strength of connectedness between two vertices u and v is $\mu^{\infty}(u,v) = \sup\{\mu^k(u,v)/k = 1,2,\ldots\}$ where $\mu^k(u,v) = \sup\{\mu(uu_1) \land \mu(u_1u_2) \land \ldots \land \land \mu(u_{k-1}v)/u, u_1, u_2,\ldots, u_{k-1}, v \text{ is a path connecting } u \text{ and } v \text{ of length } k\}.$

Definition 2.7. Let $G:(\sigma,\mu)$ be a fuzzy graph on $G^*:(V,E)$. If d(v)=k for all $v \in V$, then G is said to be regular fuzzy graph of degree k.

Definition 2.8. Let $G: (\sigma, \mu)$ be a fuzzy graph on $G^*: (V, E)$. The total degree of a vertex u is defined as $td(u) = \sum \mu(u, v) + \sigma(u) = d(u) + \sigma(u)$, $uv \in E$. If each vertex of G has the same total degree k, then G is said to be totally regular fuzzy graph of degree k or k-totally regular fuzzy graph.

Definition 2.9. Let $G: (\sigma, \mu)$ be a fuzzy graph. The d_2 -degree of a vertex u in G is $d_2(u) = \sum \mu^2(u, v)$, where $\mu^2(u, v) = \sup\{\mu(u, u_1) \land \mu(u_1, v)\}$. Also $\mu(uv) = 0$, for uv not in E.

Definition 2.10. Let $G:(\sigma,\mu)$ be a fuzzy graph on $G^*:(V,E)$. If $d_2(u)=k$ for all $u \in V$, then G is said to be (2,k)-regular fuzzy graph [15].

Definition 2.11. Let $G: (\sigma, \mu)$ be fuzzy graph on $G^*: (V, E)$. The total d_2 -degree of a vertex $u \in V$ is defined as $td_2(u) = \sum \mu^2(u, v) + \sigma(u) = d_2(u) + \sigma(u)$.

Definition 2.12. If each vertex of G has the same total d_2 -degree k, then G is said to be totally (2, k)-regular fuzzy graph.

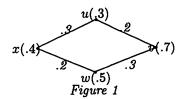
Remark 2.13. Let $G_1: (\sigma_1, \mu_1)$ and $G_2: (\sigma_2, \mu_2)$ denote two fuzzy graphs. Let $G_1^*: (V_1, E_1)$ and $G_2^*: (V_2, E_2)$ be respectively the underlying crisp graphs such that $|V_i| = p_i, i = 1, 2$. Also $d_{G_i}^*(u_i)$ denote degree of u_i in G_i^* .

3 (r, 2, k)-regular fuzzy graphs.

In this section, we introduce (r, 2, k)-regular fuzzy graph and study some properties of (r, 2, k)-regular fuzzy graph through various examples.

Definition 3.1. Let $G:(\sigma,\mu)$ be a fuzzy graph on $G^*:(V,E)$. If d(v)=r and $d_2(v)=k$, for all $v\in V$, then G is said to be (r,2,k)-regular fuzzy graph. That is, G is r-regular and (2,k)-regular fuzzy graph.

Example 3.2. Let $G^*: (V, E)$ where $V = \{u, v, w, x\}$ and $E = \{uv, vw, wx, xu\}$.



Here, d(u) = .5, d(v) = .5, d(w) = .5, d(x) = .5. Each vertex has the same degree .5. So G is a regular fuzzy graphs of degree .5. Also $d_2(u) = .2$, $d_2(v) = .2$, $d_2(w) = .2$, $d_2(x) = .2$. Each vertex has the same d_2 — degree .2. So G is a .5 regular and (2, .2)-regular fuzzy graph. Hence G is a (.5, 2, .2)-regular fuzzy graph.

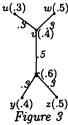
Example 3.3. Non regular which are (2, k)-regular fuzzy graphs.

1.Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is a path on four vertices.

$$x(\underline{.6}) \underline{.5} y(\underline{.7}) \underline{.3} z(\underline{.4}) \underline{.4} w(\underline{.5})$$
Figure 2

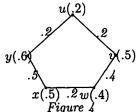
Here, $d_2(x) = .3$, $d_2(y) = .3$, $d_2(z) = .3$, $d_2(w) = .3$. So G is a (2, .3)-regular. But d(x) = .5, d(y) = .8, d(z) = .7, d(w) = .4. All the vertices in G has distinct degree. So G is a non regular and (2, .3)-regular fuzzy graph.

2. Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is a Barbell graph $B_{2,2}$ of order 6.



Here, $d_2(u) = .6$, $d_2(v) = .6$, $d_2(w) = .6$, $d_2(x) = .6$, $d_2(y) = .6$. This graph is a (2, .6)-regular fuzzy graph. But d(u) = .3, d(v) = 1.1, d(w) = .3, d(x) = .1.1, d(y) = .3d(z) = .3. So G is a non regular and (2, .6)-regular fuzzy graph.

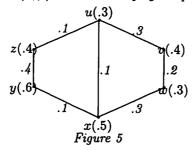
3. Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an odd cycle of length five.



Here, $d_2(u) = .4$, $d_2(v) = .4$, $d_2(w) = .4$, $d_2(x) = .4$, $d_2(y) = .4$. So G is (2, .4)-regular fuzzy graph. But d(u) = .4, d(v) = .6, d(w) = .6, d(x) = .7, d(y) = .7. So G is a non regular (2, .4)-regular fuzzy graph.

Remark 3.4. If $G:(\sigma,\mu)$ is a fuzzy graph such that the underlying crisp graph $G^*:(V,E)$ is a graph with more than two vertices having a pedant edge, then G is always non regular.

Example 3.5. Regular which is not a (2,k)-regular fuzzy graph. Let the fuzzy graph $G: (\sigma, \mu)$ whose underlying crisp is given in figure 5.



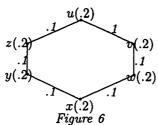
Here, $d_2(u) = .3$, $d_2(v) = .3$, $d_2(w) = .3$, $d_2(x) = .3$, $d_2(y) = .2$, $d_2(z) = .2$ and d(u) = .5, d(v) = .5, d(w) = .5, d(x) = .5, d(y) = .5. $\Rightarrow G$ is a regular fuzzy graph but not a (2, k)-regular fuzzy graph.

4 Totally (r, 2, k)-regular fuzzy graphs.

In this section, we introduce totally (r, 2, k)- regular fuzzy graphs and we make a comparative study between (r, 2, k)-regular fuzzy graphs and totally (r, 2, k)-regular fuzzy graphs. A necessary and sufficient condition under which they are equivalent is provided

Definition 4.1. If each vertex of G has the same total degree r and total d_2 -degree k, then G is said to be totally (r, 2, k)-regular fuzzy graph.

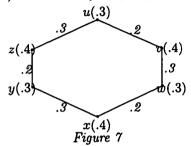
Example 4.2. Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an even cycle of length six.



Here, $d_2(u) = .2$, $d_2(v) = .2$, $d_2(w) = .2$, $d_2(x) = .2$, $d_2(y) = .2$ and d(u) = .2, d(v) = .2, d(w) = .2, d(x) = .2, d(y) = .2. $\Rightarrow G$ is a (.2, 2, .2)-regular fuzzy graph.

Here, $td_2(u) = .4$, $td_2(v) = .4$, $td_2(w) = .4$, $td_2(x) = .4$, $td_2(y) = .4$ and td(u) = .4, td(v) = .4, td(w) = .4, td(x) = .4, td(y) = .4. $\Rightarrow G$ is a totally (.4, 2, .4)-regular fuzzy graph.

Example 4.3. Consider the fuzzy graph $G: (\sigma, \mu)$ such that the underlying crisp graph $G^*: (V, E)$ is an even cycle of length six.



Here, $d_2(u) = .4$, $d_2(v) = .4$, $d_2(w) = .4$, $d_2(x) = .4$, $d_2(y) = .4$, $d_2(z) = .4$, and d(u) = .5, d(v) = .5, d(w) = .5, d(x) = .5, d(y) = .5, $d(z) = .5 \Rightarrow G$ is a (.5, 2, .4)-regular fuzzy graph. Here, $td_2(u) = .7$, $td_2(v) = .8$, $td_2(w) = .7$, $td_2(z) = .8$, $td_2(y) = .7$, $td_2(z) = .8$ and td(u) = .8, td(v) = .9, td(w) = .8, td(x) = .9, td(y) = .8, td(x) = .9 is not a totally (r, 2, k)-regular fuzzy graph.

Theorem 4.4. Let $G:(\sigma,\mu)$ be a fuzzy graph on $G^*:(V,E)$. Then σ is a constant function iff the following conditions are equivalent.

- 1. $G: (\sigma, \mu)$ is a (r, 2, k)-regular fuzzy graph.
- 2. $G:(\sigma,\mu)$ is a totally (r,2,k)-regular fuzzy graph.

Proof. Suppose that σ is a constant function. Let $\sigma(u) = c$, constant for all $u \in V$. Assume that $G: (\sigma, \mu)$ is a (r, 2, k)-regular fuzzy graph. Then d(u) = r and $d_2(u) = k$, for all $u \in V$.

So
$$td(u) = d(u) + \sigma(u)$$
 and $td_2(u) = d_2(u) + \sigma(u)$, for all $u \in V$
 $\Rightarrow td(u) = r + c$ and $td_2(u) = k + c$, for all $u \in V$.

Hence $G:(\sigma,\mu)$ is a totally (r+c,2,k+c)- regular fuzzy graph. Thus $(1)\Rightarrow(2)$ is proved. Now suppose G is a totally (r,2,k)-regular fuzzy

graph.

$$\Rightarrow td_2(u) = k \text{ and } td(u) = r, \text{ for all } u \in V.$$

$$\Rightarrow d_2(u) + \sigma(u) = k \text{ and } d(u) + \sigma(u) = r, \text{ for all } u \in V.$$

$$\Rightarrow d_2(u) + c = k \text{ and } d(u) + \sigma(u) = r, \text{ for all } u \in V.$$

$$\Rightarrow d_2(u) = k - c \text{ and } d(u) = r - c \text{ for all } u \in V.$$

Hence $G:(\sigma,\mu)$ is a (r-c,2,k-c)-regular fuzzy graph. Hence (1) and (2) are equivalent. Conversely assume that (1) and (2) are equivalent. Suppose σ is not a constant function. Then $\sigma(u) \neq \sigma(w)$, for at least one pair $u,w \in V$.

Let $G: (\sigma, \mu)$ be a (r, 2, k)-regular fuzzy graph. Then $d_2(u) = d_2(w) = k$ and d(u) = d(w) = r. So $td_2(u) = d_2(u) + \sigma(u) = k + \sigma(u)$ and $td_2(w) = d_2(w) + \sigma(w) = k + \sigma(w)$ and $td(u) = d(u) + \sigma(u) = r + \sigma(u)$ and $td(w) = d(w) + \sigma(w) = r + \sigma(w)$.

Since $\sigma(u) \neq \sigma(w) \Rightarrow k + \sigma(u) \neq k + \sigma(w)$ and $r + \sigma(u) \neq r + \sigma(w) \Rightarrow td_2(u) \neq td_2(w)$ and $td(u) \neq td(w)$. So $G: (\sigma, \mu)$ is not a totally (r, 2, k)-regular fuzzy graph which is a contradiction to our assumption.

Let $G:(\sigma,\mu)$ be a totally (r,2,k)-regular fuzzy graph. Then $td_2(u)=td_2(w)$ and td(u)=td(w).

$$\Rightarrow d_2(u) + \sigma(u) = d_2(w) + \sigma(w) \text{ and } d(u) + \sigma(u) = d(w) + \sigma(w)$$

$$\Rightarrow d_2(u) - d_2(w) = \sigma(w) - \sigma(u) \neq 0 \text{ and } d(u) - d(w)$$

$$= \sigma(w) - \sigma(u) \neq 0$$

$$\Rightarrow d_2(u) \neq d_2(w) \text{ and } d(u) \neq d(w).$$

So $G:(\sigma,\mu)$ is not a (r,2,k)-regular fuzzy graph which is a contradiction to our assumption. Hence σ is a constant function.

Theorem 4.5. If a fuzzy graph $G: (\sigma, \mu)$ is both (r, 2, k)-regular and totally (r, 2, k)-regular then σ is a constant function.

Proof. Let G be $(r_1,2,k_1)$ -regular and totally $(r_2,2,k_2)$ -regular fuzzy graph. Then $d_2(u)=k_1$ and $td_2(u)=k_2$, $d(u)=r_1$ and $td(u)=r_2$, for all $u\in V$. Now $td_2(u)=k_2$ and $td(u)=r_2$, for all $u\in V$.

$$\Rightarrow d_2(u) + \sigma(u) = k_2 \text{ and } d(u) + \sigma(u) = r_2, \text{ for all } u \in V.$$

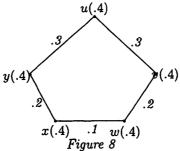
$$\Rightarrow k_1 + \sigma(u) = k_2 \text{ and } r_1 + \sigma(u) = r_2, \text{ for all } u \in V.$$

$$\Rightarrow \sigma(u) = k_2 - k_1 \text{ and } \sigma(u) = r_2 - r_1, \text{ for all } u \in V.$$

Hence σ is a constant function.

Remark 4.6. The converse of the above theorem is not true. Let the following graph G^* : (V,E) where $V = \{u,v,w,x,y\}$ and $E = \{u,v,w,x,y\}$

 $\{uv, vw, wx, xy, yu\}$. Here, $d_2(u) = .4, d_2(v) = .4, d_2(w) = .3, d_2(x) = .4$ $.3, d_2(y) = .4$ and $td_2(u) = .8, td_2(v) = .8, td_2(w) = .7, td_2(x) = .7, td_2(y) = .8, td_2(y$



Here, σ is a constant function but G is neither a (r, 2, k)-regular fuzzy graph nor a totally (r, 2, k)-regular fuzzy graph.

(r, 2, k)- regularity on a Fuzzy graph ob-5 tained from a cycle with some specific membership function.

Theorem 5.1, 5.4, 5.6 and Theorem 5.8 provide (r, 2, k)-regularity on a fuzzy graph $G:(\sigma,\mu)$ such that $G^*:(V,E)$ is a cycle.

Theorem 5.1. Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is a cycle of length ≥ 4 . If μ is a constant function, then $G:(\sigma,\mu)$ is a (r, 2, k)-regular fuzzy graph.

Proof. If μ is a constant function say $\mu(uv) = c$, for $uv \in E$, then d(u) = 2cand $d_2(v)=2c$, for all $v\in V$. Hence $G:(\sigma,\mu)$ is (2c,2,2c)-regular fuzzy graph.

Remark 5.2. Converse of the Theorem 5.1 need not be true. Let $G:(\sigma,\mu)$ be fuzzy graph such that $G^*:(V,E)$ is cycle of length six.

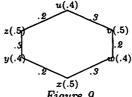
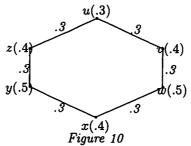


Figure 9

Here, $d_2(u) = .4, d_2(v) = .4, d_2(w) = .4, d_2(x) = .4, d_2(y) = .4d_2(z) = .4$ and d(u) = .5, d(v) = .5, d(w) = .5, d(x) = .5, d(y) = .5, d(z) = .5 and so $G:(\sigma,\mu)$ is a (.5,2,.4)-regular fuzzy graph. But μ is not a constant function.

Remark 5.3. Even if μ is a constant function, then $G:(\sigma,\mu)$ need not be totally (r,2,k)-regular fuzzy graph.

For example, let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an even cycle.



Here, $td_2(u) = .9, td_2(v) = 1, td_2(w) = 1.1, td_2(x) = 1, td_2(y) = 1.1, td_2(z) = 1$ and td(u) = .9, td(v) = 1, td(w) = 1.1, td(x) = 1, td(y) = 1.1, td(z) = 1 and so $G: (\sigma, \mu)$ is not totally (r, 2, k)-regular fuzzy graph. But μ is a constant function.

Theorem 5.4. Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an even cycle. If the alternate edges have the same membership values, then $G:(\sigma,\mu)$ is a (r,2,k)-regular fuzzy graph.

Proof. If the alternate edges have the same membership values, then $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ c_2, & \text{if } i \text{ is even.} \end{cases}$

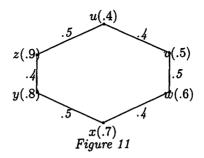
Here, $d(u) = c_1 + c_2$, for all $u \in V$.

If $c_1=c_2$, then μ is a constant function. So G is a $(2c_1,2,2c_1)$ -regular fuzzy graph.

If $c_1 < c_2$, then $d(v) = c_1 + c_2$ and $d_2(v) = 2c_1$, for all $v \in V$. So G is a $(c_1 + c_2, 2, 2c_1)$ -regular fuzzy graph.

If $c_1 > c_2$, then $d(v) = c_1 + c_2$ and $d_2(v) = 2c_2$, for all $v \in V$. So G is a $(c_1 + c_2, 2, 2c_2)$ -regular fuzzy graph.

Remark 5.5. Even if the alternate edges have the same membership values, then $G:(\sigma,\mu)$ need not be totally (r,2,k)-regular fuzzy graph. For example, let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an even cycle.



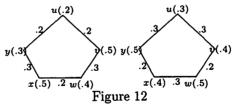
In the Figure 11, $td_2(u) = 1.2$, $td_2(v) = 1.3$, $td_2(w) = 1.4$, $td_2(x) = 1.5$, $td_2(y) = 1.6$, $td_2(z) = 1.7$ and td(u) = 1.3, td(v) = 1.4, td(w) = 1.5, td(x) = 1.6, td(y) = 1.7, td(z) = 1.8 and so G is not a totally (r, 2, k)-regular fuzzy graph.

Remark 5.6. The above theorem 5.4 is not true for the fuzzy graph G: (σ, μ) where G^* : (V, E) is any odd cycle of length ≥ 5 . This result is true only when μ is a constant function.

For, let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an odd cycle of length ≥ 5 .

Let the alternate edges have the same membership values. That is $\mu(e_i) = \left\{ \begin{array}{ll} c_1, & \text{if i is odd} \\ c_2, & \text{if i is even.} \end{array} \right.$ where $c_1 \neq c_2$,

Clearly $d(v_1)=2c_1$ and $d(v_i)=c_1+c_2$, for all $i=2,3,4,\ldots,2n+1$. $d(v_1)\neq d(v_i)$, for all $i=2,3,4,\ldots,2n+1$. So G is non regular graph and $d_2(v)=2c_1$, for all $v\in V$. So G is not a (r,2,k)-regular fuzzy graph. Illustration Let $G:(\sigma,\mu)$ be a fuzzy graph such that $G^*:(V,E)$ is an odd cycle of length =5.



Graphs given in Figure 12 are not (r, 2, k)-regular graphs.

Acknowledgement: The authors are thankful to the anonymous refree for his /her valuable suggestions.

References

[1] Y. Alavi, Gary Chartrand, F. R. K. Chang, Paul Erdos, R. L. Graham and R. Ollermann, Highly Irregular graphs, J. Graph Theory, 11(2) (1987), 235-249.

- [2] Alison Northup, A Study of Semi-regular Graphs, Bachelors thesis, Stetson University (2002).
- [3] G. S.Bloom, J. K. Kennedy and L.V. Quintas, Distance Degree Regular Graphs, The theory and applications of Graphs, Wiley, New York, (1981) 95-108.
- [4] J. A. Bondy and U.S.R .Murty, Graph Theory with Applications.
- [5] P. Bhattachara, Some Remarks on Fuzzy Graphs, Pattern Recognition Lett., 6 (1987), 297-302.
- [6] K. R. Bhutani, On Automorphism of fuzzy Graphs, Pattern Recognition Lett., 12 (1991), 413-420.
- [7] F. Harary, Graph theory, Addition Wesley (1969).
- [8] John N. Mordeson and Premchand S.Nair, Fuzzy graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, (2000).
- [9] A. Nagoor Gani, and M. Basheer Ahamed, Order and Size in Fuzzy Graph, Bulletin of Pure and Applied Sciences, 22E(1) (2003), 145– 148.
- [10] A. Nagoor Gani and S. R. Latha, On Irregular Fuzzy graphs, 6, (2012), 517-523.
- [11] A. Nagoor Gani and K. Radha, On Regular Fuzzy graphs, Journal of Physical Science, 12 (2008), 33-40.
- [12] A. Rosenfeld, Fuzzy Graphs, In:L.A.Zadeh,K.S.Fu, M.Shimura,Eds., Fuzzy Sets and Their Applications, Academic press (1975), 77–95.
- [13] N. R. Santhi Maheswari and C. Sekar, (r,2,r(r-1))-regular graphs, International Journal of Mathematics and soft Computing, 2(2) (2012), 25-33.
- [14] N. R. Santhi Maheswari and C. Sekar (r, 2, (r-1) (r-1))-regular graphs, International Journal of Mathematics and Combinatorics, 4 (2012), 25-33.
- [15] N. R. Santhi Maheswari and C. Sekar, On d₂ of a vertex in Product of Graphs, (ICODIMA 2013), December 3rd, 2013. Periyar Maniammai University, Thanjavur.
- [16] N. R. Santhi Maheswari and C. Sekar, (2, k)-regular fuzzy graphs, Accepted in International Journal of Mathematics and soft Computing for july 2014 issue.