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Abstract: Under the conditions looser than previous works, this paper shows
that the n-dimensional folded hypercube networks have a cycle with length at
least 2" — 2|F,] when the number of faulty vertices and non-critical edges is at
most 2n — 4, where |F,| is the number of faulty vertices. Meanwhile, this paper
proves that F Q, contains a fault-free cycle with length at least 2" —2|F, |, under the
constraints that (1) The number of both faulty nodes and faulty edges is no more
than 27 — 3 and there is at least one faulty edge; (2) every node in FQ, is incident
to at least two fault-free links whose other end nodes are fault-free. These results
have improved the present results with further theoretical evidence of the fact that
FQy has excellent node-fault-tolerance and edge-fault-tolerance when used as a
topology of large scale computer networks.
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1 Introduction

Fault tolerance is the most important factor to be considered in computer net-
work design and management. Good quality of hardware system helps to prevent
failures, but network topology is also of great significance in preventing network
crash when fault happens. So it is vital to choose the topologies having high fault
tolerance for computer networks, particularly for those complex large scale com-
puter network systems. Since faults may happen on both vertices and edges in
a network, apart from faulty node, faulty edges also need to be considered. An
edge uv is said faulty if the communication link between the end nodes u and v is
broken. Note that # and v may neither be faulty. Usually, two models are used for
fault-tolerance analysis. One is standard fault model in which the distribution of
faulty edges and faulty vertices is not restricted. The other is the conditional fault
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model in which each fault-free vertex must be incident to at least two fault-free
edges( [1], (2], [3],[4), [5], [6)).

The n-dimensional hypercube (or n-cube, denoted by Q,) consists of 2" nodes
that are labeled with 2" binary numbers from 0 to 2" — 1, which is one of the most
well-known interconnection network architectures yet developed for multiproces-
sor system and large computation in industrial ([7]). To improve the performance
of Q,, many variants of Q, have been proposed. Folded hypercube, denoted by
FQ,, is one of the most popular variants. FQ, can be constructed by adding one
edge to every pair of the farthest nodes of Q,, i.e., two nodes with all bits dif-
ferent (or, complementary addresses). It has been shown that FQ, has improved
performance over a regular hypercube in many measurements ([8],[91.[10],{11],
(12)).

Previous researches on the fault-tolerant embedding problems for the Q, have
been fruitful. Let F, be the set of fault vertices. Fu ([13]) considers the case of
faulty vertices, and shows that there exists a cycle of length at least 2" — 2|F,|
if |Fy] < 2n — 4 in Q,. Taking into account the existence of both faulty vertices
and faulty edges, Sengupta ([14]) shows that Q, contains a cycle of length at
least 2" — 2|F,| when the number of faulty edges is at most # — 2 and the number
of faulty nodes is at least one. Hsieh ([15]) extends the results by proving that
there is a cycle of length at least 2" — 2|F,| in Q, if the number of faulty edges
is no more than n — 2 and the number of both fauity vertices and faulty edges is
no more than 2n — 4. Hsieh ([16]) discusses the path embedding and shows that
there exists a path of length at least 2" — 2|F,| — 1 joining any fault-free nodes
U= Uty - Up, v=viva--- vy only if 32, u; and 31, v; have different parity in
Q, when the number of faulty vertices and faulty edges is most n — 2.

Many efforts have been made on exploring the features of folded hypercube
FQ,. [17] investigates the 1-vertex-fault-tolerant cycles embedding into FQ,, and
shows that FQ, contains a fault-free cycle of every even length from 4 to 2" — 2,
and also contains a fault-free cycle of every odd length fromn+ 1 to 2" - 1 if
is even. By restricting the forbidden faulty set (resp. forbidden faulty edge set) to
the sets of neighbors (resp. neighboring edges)of any spanning subgraph with no
more than g-vertices in the faulty networks, g—extra connectivity (resp. g—extra
edge connectivity) of FQ, obtained attention [12], and showed that the 3-extra
connectivity (resp. 3-extra edge connectivity) of FQ, is 4n — 5 for n > 6 (resp.
4n —1 for n > 5) . [18] has proved that there exists a cycle with length at least
2" —2|F,| when the faulty edges is most n— 1 and the number of faulty vertices and
faulty edges is most 2n — 4. In the conditional fault model, [19] further shows that
FQ, has a cycle with length at least 2" — 2|F,| under the constraints that (1) the
number of faulty vertices and faulty edges is most 2n—4 and (2) every node in FQ,
is incident to at least two fault-free links, that is, the conditional fault-tolerance.

This paper aims to further explore the node-fault-tolerance and edge-fault-
tolerance of FQ, by cycle embedding. In this paper, the fault-tolerant model is
generalized so that the two types of faulty edges, denoted by F. and fe, can be
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distinguished, where F, is the set of faulty edges with at least one faulty end, and
Jfe is the set of faulty edges whose both ends are fault-free. An edge in FQ, is said
to be critical if it is either fault-free or in F,, otherwise, it is called non-critical.
Note that all the edges in f, are non-critical. Some preliminary discussion for Q,
can be found in [20], which has proved that Q, contains a cycle of length at least
2" =2|F\|if|f.| < 2n- S and |f,| +|F,| € 2n — 4 in which any vertex is incident to
at least two critical edges.

It is shown in this paper that when |f,| + |F,| < 2n — 4, FQ, contains a fault-
free cycle of length at least 2" — 2|F,| in which any node is incident to at least
three critical edges. This paper also shows that FQ, contains a fault-free cycles
with length at least 2" — 2|F,|, under the constraints that (1) |F,| + |FF.| < 2n -3,
|FF,| 2 1, where FF, = f, U F, and (2) every node in FQ, is incident to at least
two fault-free links, which improves the results in [19]. The results obtained in
this paper provide further theoretical evidence for the fact that FQ, has excellent
node-fault-tolerance and edge-fault-tolerance when used as a topology of large
scale computer networks. Compared to previous works, the contributions of this
work are: It considers larger set FQ, rather than Q,; It uses the generalized fault
model, which distinguishes the two types of faulty edges, rather than using the
conditional fault model in which each node is incident to at least two fault-free
links; It has more relaxed condition since it does not require |f,| < 2n -5 in FQ,
(this inequality is required in Q,).

The rest of this paper is organized as follows. In the next section, necessary
definitions and notations used in our discussion are introduced. In section 3, Cycle
construction are presented. Finally, some concluding remarks are given in section
4.

2 Preliminaries

A network is usually modeled by a connected graph G = (V, E), where V de-
notes the set of processors and E denotes the set of communication links between
the processors. In this paper the terms of networks and graphs, nodes and ver-
tices, links and edges are used interchangeably. Two vertices x and y are adjacent
if xy € E. A path P[x,y] = xwywz---wyy is a sequence of distinct vertices in
which any two consecutive vertices are adjacent. The length of a path, denoted
by |P], is the number of edges on the path. A path xw,w; - - - wyy forms a cycle
if x = y and k > 2. A path (respectively, a cycle) is called a Hamilton path (re-
spectively, a Hamilton cycle) if it passes each vertex of G exactly once. A graph
G=(XUVYE)isbipartiteif XN Y=0and EC{uv: ueX, veY). Xand Y is
called its bipartition.

A network is faulty if it contains faulty elements, otherwise, it is fault-free.
A path (cycle) is said to be faulty if it contains faulty elements, otherwise, it is
fault-free.
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An n-cube Q, is a graph with vertex set V(Q,) = (xjx2++- X, : x; € {0, 1}, fori =
1,2,...,n}, with two vertices x = x;x2--- X, and y = y;y2 - - - y, being adjacent if
and only if they differ in exactly one bit, that is, Z;;, |x; = yil = 1. Each node can
be labeled with a unique n-bit binary string x; xg ++ xp to indicate its address. Let

xX=x1xp: XX, ifxy€ Eandy = x1x2- - %+ - Xn, where %; = 1-x;, then the
edge xy is called an i-dimensional edge, and denoted by y = x'. An i-partition on
Q. splits the n-cube along a dimension i for some i € {1,2,--- ,n}intotwo (n— 1)-

cubes O and Q! |, where V(Q? ) = (xixz-+ X, 1 %, =0, x;=0,1, for1 <
(¢1)<n}andV(Q“,)-{x1x2 “Xp: x.-l x,—O 1, fort <j(#i)<n}

Suppose x = X X3 - - X, and y = y;y2 - - + Y are two bit strings of length n. The
Hamming distance between x and y is deﬁned as H(x,y) = X, lxi — yil which is
the number of the different bits in the corresponding strings of x and y. Let x and
y be two vertices of graph G, the distance between x and y is denoted by dg(x, y)
(d(x,y) if no confusion). It is the length of the shortest (x, y)-path in G. By the
definition of Hamming distance, it is obviously that H(x,y) = dg (x, ).

Let x = x1 X - - - X, be a node in Q,,. x is called to be even (or odd) if 3., x; is
even (or odd).

Folded hypercube FQ, = (V, E) has the same vertex set as O, that is, V(FQ;) =
{x1xz---xn = x; € (0,1}, for 1 < i < n}. Two vertices x(= x1x2--- X,) and y are
connected by an edge of E if and only if y satisfies one of the following two con-
ditions:

G y= X =x1X X1 XiXis1-. - Xp, 1 <P S 01

(i) y=X=XiX2--- Xp

Hypercube Q,, is a subgraph of folded hypercube FQ,, obtained by removing
all edges of xx. These removed edges are called compliment edges of FQ,. The
first kind of edges are called the edges of Q. For the sake of convenience, denote
E; = {x¥}(i=1,2,...,n), and E, = {xX).

Obviously, folded hypercube FQ, has 2" vertices and each vertex is incident
to (n + 1) edges and FQ,, — E; is isomorphic to Q,.

To analyze FQ,, it is essential to decompose FQ, into lower dimensional
graphs. Similar to i-partition of Q,, FQ, can be split along some dimension i for
i €{l1,2,---,n} into two (n — 1)-cubes Q‘° and Q" . For convenience, denote
FQ, = Q:?_ & Q" . In fact, E;UE, consnsts of all edges between Q° | and Q! |.

Define the set of faulty elements F in FQ, as F, U f, that is, F consists of
all the faulty nodes and non-critical edges in FQ,. Note that F does not mclude
F, (the set of faulty edges incident to the faulty nodes). Suppose that Q"_l
Q;'_ are (n— 1)-cube derived after executing an i-partition on FQ,, that is, F Q,, =
Q,"?_ ¥ Q! ,. Denote F = V(Q“’ JNF, Fl = V(@I )NF,. Snmlarly, o=
E(Qn-l)nf,andf, E(Q" )N feLet FP=Fuf%and F' = F, U f,'.Fora
node x, let F, * [x] be the set of faulty nodes that are adjacent to x and in the same
(n — 1)-cube as x, and let £, * [x] be the set of non-critical edges that are incident
to x and belong to the same (n — 1)-cube where vertex x belongs to.
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From the definition, it is easy to prove the following lemma.

Lemmal. If|F,| =0, then |F,| =

Proof: If |F,| = 0, then the ends of a faulty edge will be fault-free. Therefore
|Fel = 0.

A vertex in FQ, is said to be 2-critical if it is incident to exactly two critical
edges. Note that each 2-critical vertex in FQ, is fault-free. A vertex in FQ, is
said to be 3-critical if it is incident to exactly three critical edges (i.e., it is incident
to exactly n — 2 non-critical edges).

As the basis of the analysis, we need to establish the following lemma.

Lemma 2. Let FQ,(n = 5) be an n-dimensional folded hypercube with
IFy|20and 1 < |f.| £ 2n -4, and each vertex in FQ, — F, — f. is incident to at
least three critical edges. Then FQ,(n 2 5) can be partitioned into g° | and Q! |
for some 1 < i < n such that
DIE;VE)N fo| =1, and
2) each vertex in Q0 | (respectively, Q'! ) is incident to at least two critical edges
in QP (respectlvely, (8 1

Proof If each vertex is incident to at least four critical edges, then the result
is true. Assume that FQ, contains at least one 3-critical vertex. Because |f,| <
2n — 4, then there are at most two 3-critical vertices in FQ,. Two cases need to be
considered.

Case 1. There is exactly one 3-critical vertex, say . Then uu' € E; N f, for
some i(1 < i < n).Let FQ, = Q9 YOI after executing i—partition on FQ,.
Without loss of generality, let u € Qf? 1 If uii € f,, then u is still 3-critical vertex
in Q’° If uii is fault-free, then u is 2-critical vertex in Q‘° 1» Since no matter for
what i i, after i~partition, ui is always between Q% and Q"

Case 2. There are exactly two 3-critical vemces, say u and v. Consider the
following scenarios.

Case 2.1. d(u,v) 2 2. Then all edges incident to u and v are distinct.

When ui, v ¢ f,, suppose uu®, uu,--- ,uu'=? and wi, ywi2,-..  yyi=2 be
non-critical edges. If (ij, iz, -+ ,in-2}N{j1, j2,**+ , jn-2} = 0, then (n—2)+(n-2) <
n, that is, n < 4, which contradicts to n 2 5. This implies that there exists some
dimension i such that uu' and w are ‘non- critical edges. We execute i-partition
FQn = 00,10l |, then uu' and v/ are edges between O and Q! , which
means that 4 and v are incident to at least two critical edges in theu' (n — 1)-cube.

When ut, vv € E; N f,, select an edge such that uw’ € f,. We partition FQ, =
Qﬁ_ ) Q;. 1» then u is a 3-critical vertex in (# — 1)-cube, and v is incident to at
least two critical edges in (n — 1)-cube.

When uiz € f, and vi ¢ f. (similarly for uit ¢ f., vi € f,), select w € E;N f,
(or uw/ € E; N f,). Partition FQ, = QY , W) O, (or F@, = @7, W 0/!). Then
u and v are incident to at least two critical vertices.

Case 2.2. d(u,v) = 1.

Case 2.2.1. uv ¢ f,.
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If uv € E; for some i(l < i < n),sincen>5,then(n-2)+(n-2)2n-1,
which means that there exists some j such that uu/, v/ € f,. We partition FQ, =
Q,IB Ne Q:'_l , then u and v are 2-critical vertices in their (n — 1)-cube.

If uv € E_, since n 2 5, we have (n — 2) + (n — 2) > n, then there exists
some j such that uu/, v’ € f,. We partition FQ, = Q,’Xl 0} Qj"'_l, then u and v are
2-critical vertices in their respective (n — 1)-cubes.

Case 2.2.2. uv € f,.

If uv € E; N f,, after i-partition FQ, = Q¥ | | Q! |, then u and v are incident
to at least two critical edges in their respective (n — 1)-cubes. .

Ifuv € E.Nf,, suppose uu’ € EiNf.. Execute i-partition on FQ, = Q,’X W Q;’,l_l ,
then u and v are incident to at least two critical edges in their respective (n — 1)-
cubes.

The proof of lemma 2 has been completed.

Some previous results obtained by related works will also be used. They are
listed below.

Lemma 3 [21]. Let u and v be two nodes in Qn(n 2 1) such that d(u,v) = L.
Then there exists paths of length [, [ +2,1+4,--- ,L, where L = 2" - 1 if [ is odd,
and L = 2" - 2 if l is even.

Lemma 4 [20]. Let Qn(n = 3) be an n—cube with |f;| + |Fy| < 2n — 4 and
I£.] < 2n -5 in which any node is incident to at least two critical edges. Then Q,
contains a fault-free cycle of length at least 2" — 2|F,|.

Lemma 5 [22]. Let x,x’,y,y be four distinct vertices of Q. If both H(x, x")
and H(y, y’) are odd, then there exist two vertex-disjoint paths P[x, x'] and P[y, y']
such that V(Q,) = V(P[x,x']) U V(P[y,y']).

Lemma 6 [23]. If Q,(n > 3) has at most 2n — 5 fault edges and each vertex
is incident to at least two fault-free edges, then for any two vertices # and v with
different parity, there exists a fault-free Hamilton path between u and v.

Lemma 7 [16]. Let Q,(n 2 3) be an n—cube with |F,| +|F,| < n—2. Then for
any arbitrary fault-free nodes u and v with different parity, Q,, contains a fault-free
path P[u, v] with length at least 2" — 2{F,| - 1.

In the conditional fault tolerant model, the following lemmas are useful. F,
and FF, denote the set of faulty nodes and set of faulty links in networks respec-
tively.

Lemma 8[18). FQ, - F,—-FF, for n > 3 contains a fault-free cycle of length
at least 2" = 2F, if |F,| + |FF.|<2n—4and |FF,|<n-1.

Lemma 9 [20]. FQ, - F, - FF, for n > 3 contains a fault-free cycle of length
at least 2" = 2F, if (1) |Fy| + |FF.| < 2n -4 and |FF,| 2 n and (2) every node in
FQ, is incident to at least two fault-free links.

On lower bound of longest fault-free cycle in Q,, Du et al. [24] obtained the
result summarized in Lemma 10.

Lemma 10 [24). Q,, - F, — FF, for n > 3 contains a fault-free cycle of length
at least 2" — 2F, if (1) |Fy| + |FF,| < 2n -4 and |FF,| < 2n -5 and (2) every node
in Q, is incident to at least two fault-free links.



Lemma 11 [2]. Q,+(n > 3) with |FF,| < 2n-3, in which each node is incident
to at least two fault-free links, contains fault-free cycles of every length from 4 to
2" when n and k have the same parity.

Because FQ, = Q. when k = 1, the following corollary can be directly
derived.

Lemma 12 FQ, for n > 3, in which each node is incident to at least two
fault-free links, contains a fault-free cycle of every length from 4 to 2* when
IFF,|<2n-3.

3 The Cycle Embedding

To show the fault tolerance of FQ,, it is essential to prove that FQ, is excellent
in keeping as many nodes connected as possible when faults happen. This section
will prove that, under certain conditions which are looser than before, FQ, is able
to keep almost all nodes connected except a very small number of nodes in case
of faults happening.

Theorem 1. Let FQ,(n > 5) be an n-dimensional folded hypercube with
|fel +|F\| £ 2n -4, and |f.| > 1 in which any node is incident to at least three
critical edges. Then FQ, contains a fault-free cycle of length at least 2" — 2|F,|.

Proof: By lemma 2, FQ, can be partitioned into two (n — 1)-dimensional
hypercubes such that |(E; U E;) N f,| = 1, and each vertex in Qf?l (respectively,

Q! )isincident to at least two critical edges in 0% | (respectively, Q' |). Without
loss of generality, assume that |FO] >| F!|. Hence, 2|F!| < |F°| + |F!| < 2n -5,
which implies that |F!| < n — 3. Consider all different cases as following.

Case 1. |F% =2n-5.

Clearly, (E;UE)N fo| 2 1, IF'| = 0,and 0 < |f9] < 2n - 5. Let wi' € f,,
where u € Q9 |, u € Q! . Note that both u, u' are fault-free, besides uw', there
exist at most n — 3 fault edges incident to u in Q;?_l, thatis, |f, * [u]l <n-3.

Case 1.1. f? is not a subset of f,  [u].

If |f2] 2 |F. * [u]] + 2, there exist two non-critical edges /;, /, € = forlu).
Note that |[FO - {I;, b}l = |[F% -2 =2n~7 <2n— 6, and |[f° — (I, b)| < 2n - 7.
Then QP | - (F° — {1, 1)) contains a cycle of Cy of length at least 271 — 2|FO| by
lemma 4. According to whether Cy contains I, l, or not, we have the following
scenarios.

Case 1.1.1. ] and I, are not in Co. Since {I;,h} ¢ f? and |[F| = 2n - 5, we
have |[F?| < 2n—7. Moreover, because [(E;UE)N | > 1, and !9291 2 21'—7'5—22"'3 >2
for n 2 5, there is an edge ugvg € Cp such that ugu, and vov}) are fault-free. Since
IF'| = 0, |F}] = |f!] = 0. By lemma 1, |F,| = 0. Consequently 0! | is fault-free.
By lemma 3, there exists a fault-free Hamilton path P[u}, v}] of length 2*~! — 1
connecting uf, and v}, in Q! . Then (Co — ugvo) ® uoul, @ Plug, vi] @ vivo forms a
fault-free cycle of length (2%-! — 2|F9[) -142+2™ =1)=2"-2|F,|in FQ,.
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Figure 1: An illustration of Case 1.1.2 in the proof of Theorem 1.

Figure 2: An illustration of Case 1.1.3 in the proof of Theoreml.

(In this paper, the symbol @ is used to represent the path-conjunction operation to
connect paths or edges.)

Case 1.1.2. l; and /; are in Co. Let lj = ugvp and I = uvy. Since I, 1l ¢
f. * [u], four edges uoui), vov, uiu}, and viv} are fault-free (because IF% =2n-5
and us' € f, ). Because |[F!| = 0, by lemma 5, there exist two paths P;[uf, vi]
and Py[u,vi] such that V(QP ) = V(Py[u},vj]) U P2[u{,v{]. For convenience,
suppose nodes uy, vo, 4], andv; occur in Co clockwise. Then we partition Co into
four sections Cyp = ugvp U Ci[vo, u1] U uyvy U Ca[vy, up] where Cy[vo, u1] and
Cs[v1, ug) are the sections of cycle Cp from vg to u; and from v, to up clockwise,
respectively. Then ugu}® P [u), vi] @ vivo @ Ci [vo, 1] @ uru| © Palus}, vilevivie
Cz[v1, o] forms a cycle of length (27! = 2|F9) =2+ 4 + (2" -2) = 2" - 2|F0| =
2" = 2|F,|in FQ,.

Case 1.1.3. {; or [, but not both is in Cy, say [; is in Cp. Let I; = ugvo. Since
i ¢ f. * [u], uoul and vov} are fault-free, and |F 1| = 0. There exists a Hamilton
path Pu},vi]in Q! 1. Then (Co~ugvo)®uou @ Plul), vi1@vivo forms a fault-free
cycle of length 2*~' = 2|F%) = 1 + 2+ ("' = 1) = 2" = 2|F\| in FQ,.

Case 1.2. f2 ¢ f, = [u].

Because f, * [u] C f°, we have f2 = f. * [u] and |l = fe * [u]l < n -3.

Case 1.2.1. FO is not a subset of F, » [u]. There exists a fault node d €
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Figure 4: An illustration of Case 1.2.1.2 in the proof of Theoreml.

F) = F, +[u). Because |F® — {d}| = |F*| -1 =2n—6and |f) < n-3 <2n-7
for n > 5, by lemma 4, Q;?_ 1= (F° - {d}) contains a cycle Cyp of length at least
2" —2()F9| - 1) = 2! = 2|F9| + 2. According to whether C, contains node d or
not, we have the following scenarios.

Case 1.2.1.1. Node d is not in Co. Because [(E; UE.) N f.| 2 1, and [ >

n-] _ n=-1_. - .
ZTARNE 2 22 5 2 for n 2 5, there exists an edge ugvo € Cp such

that upu) and vovj) are fault-free. Because Q;',‘_l is fault-free, then by lemma 3,
it contains a fault-free Hamilton path Plu, v§] with length 27! — 1. Therefore,
(Co — ugvo) ® uouy ® Pluj), vi)) ® viyvo forms a cycle with length 271 — 2|F9| + 2 —
142+ -1)=2" —2|F3|+2> 2" =2|F,|in FQ,.

Case 1.2.1.2. Node d is in Cy. Let up and vy are two nodes adjacent to d in
Co. Since Q!! | is fault-free, by lemma 3, it contains a path Pluf), vi] of length
2" - 1. Therefore (Co — uod — dvo) @ uou}y ® Plu}, vi] @ vivg is a cycle of length
@1 =2IF +2)~2+2+ (2" -2) =2" - 2|F,|in FQ,.

Case 1.2.2. F) C F, » [u]. By the assumption that £ C £, * [u] and FO C F, »
[u], F* = (FQU£?) € (Fyx[u]Uf. * [u]) holds. However, F,*[u]Uf, * [u]  FOUf?
also holds. This leads to |[FO| = 2n—5 = [(F, *[u]U f, * [u]| < n- 1, which implies
that n < 4, contradictington > 5.

Case 2. |FO| = |f%) = 2n-6.
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Because |f.] € 2n—4 and [(E;VE)NS,| 2 1, then Ifell < (2n-4)-1-(2n-6) =1
and |F}] < 2n-4)-(2n-6)—1-1=0.Let uu' be the non-critical edge between
Q® and Q' . Bylemma4, Q° contains acycle Co of length 2"~ ~2|FY). Select
ugvo € Co such that ugu}) and vov}, are fault-free. Since |f;| < 1 and |F}] = 0, by
lemma 6, Q! | contains a fault-free Hamilton path P[ui, vi]. Then (Co — uovo) ®
ug®P(u, vi Jvivo is a cycle of length (2" =2|F))-1+2+(2""' -1) = 2"-2IF\|
in FQ,.

Case3.|F <2n-6and|f° <2n-17.

By lemma 4, @ | contains a cycle Co with length 271 _2|F9|. Because |[F°| 2
|FY| and [(E; U E;) N f.| = 1, we have that 2|F!| | F°| + |F'| < 2n - 5. Thus
IF'| € n - 3. Select ugvg € Cp such that uy, vo,uouf,,andvovf, are fault-free. By
lemma 7, Q! — F! contains a path P[uf, v;] with length at least 21 2 2IF) - 1.
Therefore, (Co — ugvo) @ uou, ® Plul), vj] ® vhvo forms a cycle of length at least
@t - 2|F3|) —1+2+@Q = 2|F3| —1)=2"-2jF,|in FQ,.

The above cases have covered all situation so have proved the theorem.

Corollary. Let FQu(n > 5) be an n—dimensional folded hypercube with
|£:] < 2n -4 and |F,| +|f.] < 2n—4 in which each node is incident to at least three
critical edges. Then FQ, contains a fault-free cycle of length at least 2" — 2|F,|.

Proof: If |f,| = 0, then |F,| < 2n — 4. Since V(Q,) = V(FQ,), by lemma 4, On
contains a fault-free cycle of length at least 2" - 2|F,|, which means the corollary
is true. If | f,] # O, the theorem above guarantees the corollary. The proof has been
completed.

A node is called k-free if it incident to exact k fault-free links in a faulty net-
work.

As the second major topic of this paper, we now present a result to improve
the results shown in Lemma 8 and Lemma 9. We will prove that the lower
bound of longest fault-free cycle in FQ, is 2" — 2F, on the constrains that (1)
|F,} +|FF,| < 2n -3 and |FF,| > 1 and (2) every node in FQ, is incident to at
least two fault-free links. Before the analysis, the following lemmas need to be
established.

Lemma 13. If |F,| + |FF.| < 2n -3, then there exists at most two 2-free nodes
in FQ,(n = 3).

Proof: Assume that FQ, contains at least three 2-free nodes. The least total
number of faulty elementsis (n — 1)+ (n-1)+(n-1)-2=3n-5> 2n-3,
which contradicts to the condition |F,| + |FF.| < 2n — 3. Thus, FQ, contains at
most two 2-free nodes.

Lemma 14. If |F,| + |FF.| £ 2n -3 and FQ,(n > 3) contains exact two 2-free
nodes u, v, then d(u,v) = 1 and uv € FF,.
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Proof: If d(u,v) > 1, then the least number of total fault links is (» — 1) +
(n-1)=2n-2>2n-3.If uv ¢ FF,, then the least number of fault elements is
(n-1)+(n—1)=2n-2 > 2n - 3. It is contradict to the assumption.

Theorem 2. There exists a fault-free cycle of length at least 2" — 2F, in FQ,
forn 2 3if (1) |F\| + |FF.| < 2n — 3 and |FF,| > 1 and (2) every node is incident
to at least two fault-free links whose other end nodes are fault-free.

Proof: When |F,| + |FF,| < 2n — 4, Lemma 8 and Lemma 9 guarantee the
theorem to be true.

When |F,| = 0, [FF,| = 2n — 3, Lemma 12 implies the truth of the theorem.
So we need only to discuss the case of |F,| + |FF,| = 2n -3 and |F,| > 1 and
1 < |FF,] < 2n - 4. For the sack of clearance, we consider the following three
cases according to the number of 2-free nodes.

Case 1. FQ, contains no 2-free nodes. That is, every node in FQ, is incident
to at least three fault links. In this case, we choose some j € {1,2,---,n} U{ c}
such that E; N FF, # @ (0 denotes the empty set). FQ, — E ; is isomorphic to Oy,
and in the subgraph Q,, there are at most (2n ~4) — 1 = 2n - 5 fault links, and the
total number of fault elements is at most (2n — 3) = 1 = 2n — 4. Since every node
in FQ, — E; is incident to at least two fault-free links, by Lemma 10, there exists
a fault-free cycle of length at least 2" —2|F,| in the subgraph FQ, — E ;. Therefore,
FQ, - F, — FF, contains a fault-free cycle of length at least 2" - 2|F,|.

Case 2. There is a unique 2-free node u in FQ,, then very node of FQ, - u
is incident to at least three fault-free links. In this case, the number of faulty links
incident to u is n — 1. We can choose some j € (1,2,---,n} U{ ¢} such that uu/
(or uu) is faulty. Then FQ, — E j is isomorphic to Q,. With the same argument as
Case 1, FQ, - F, - FF, contains a fault-free cycle of length at least 2" — 2|F,|.

Case 3. There are two 2-free nodes # and v in FQ,. By Lemma 14, uv € FF,.
Letuv € Ej, then FQ, — E; contains at most 2n—4—1 = 2n-5 faulty links, and at
most 2n — 3 — 1 = 2n — 4 faulty elements. By Lemma 10, there exists a fault-free
cycle with length of 2" - 2|F,|in FQ, - E ;- Hence the theorem is true.

4 Conclusion

Network topology is an important issue in the design of computer networks
since it is crucial to many key properties such as the efficiency and fault toler-
ance. Every component in a computer network may have reliability problems,
so it is important to consider the fault tolerance properties of networks. In this
paper, we focus on the cycle embedding in the n-dimensional folded hypercube
networks FQ, (which is an important network topology for parallel processing
computer systems) with node-fault-tolerance and edge-fault-tolerance. Using the
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efficient fault-tolerance properties of Q,, based on the partition of n-dimensional
folded hypercube networks FQ, into two (n — 1)-dimensional hypercubes Qn-1, it
is proved that when |f.| + |F,| < 2n — 4, FQ, contains a fault-free cycle of length
at least 2" — 2|F,| in which any node is incident to at least three critical edges.
Meanwhile, FQ, contains a fault-free cycles with length at least 2" — 2|F,|, under
the constraints that (1) The number of both faulty nodes and faulty edges is no
more than 2n — 3 and there is at least one faulty edge; (2) every node in FQ, is
incident to at least two fault-free links.

These properties imply that the reliability, efficiency and fault tolerance of
FQ, are better than hypercube Q,. The mathematical proof in this paper theo-
retically shows that interconnection networks modeled by folded hypercube are
extremely robust, which makes the folded hypercube an excellent choice of net-
work topology for parallel processing computer systems.

Our future work will be focusing on the longest cycle embedding in enhanced
hypercube Q,x when there are many faulty edges and faulty vertices occur simul-
taneously. The folded hypercube FQ, is a special type of Qnx (1 < k < n-1)
when k = 1. Some researches have had preliminary results on the fault tolerance
properties of Q,. For instance, (2] shows that Q.4 (1 < k < n— 1) contains a
fault-free cycle of every even length from 4 to 2" when n(2 3) and & have the same
parity, and a fault-free cycle of every odd length from n — k + 2 to 2" — 1 when
n(= 2) and k have the different parity, and each vertex of Qpx (1 <k < n-1)
is incident to at least two fault-free edges. [27] shows that @, — F, contains a
fault-free cycle of every even length from 4 to 2" — 4 where n(n 2 3) and k have
the same parity, and contains a fault-free cycle of every even length from 4 to
2" — 4, simultaneously, contains a cycle of every odd length from n — k + 2 to
2" -~ 3 where n(2 3) and k have the different parity when |F,| = 2. Furthermore,
when |F,| = f, < n — 2, there exists the longest fault-free cycle, which is of even
length 2" — 2, whether n(n > 3) and k have the same parity or not; and there
exists the longest fault-free cycle, which is of odd length 2" = 2f, + 1in Qpx — F,
where n(> 3) and k have the different parity. [28] proves that @, — Fy contains a
fault-free cycle of length at least 2" — 2|F,| if |[F,| + | fe| < 2n — 4 and each node in
Qi — F, is incident with at least two fault-free edges. It is natural to extend the
excellent fault tolerance results of this paper to the wider range of networks QO «-
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