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Abstract

Let G be a graph with ¢ edges. A graph G* is called an arbi-
trary supersubdivision of G if G* is obtained from G by replacing
every edge e; of G by a complete bipartite graph K3 m,, such a way
that the end vertices of each e; are identified with the two vertices
of the 2-vertices part of Ka,m, after removing the edge e; from G,
where m; of K2,m, may vary arbitrarily for each edge e;, 1 < i < q.
As recognition of cordial graph is an NP-complete, it is interesting
and significant to find the graphs whose arbitrary supersubdivision
graphs are cordial, In this paper, we show that arbitrary supersub-
division of every bipartite graph is cordial. This result is obtained
as a corollary of the general result that “Almost arbitrary supersub-
division of every graph is cordial”, where almost arbitrary supersub-
division is a relaxation of arbitrary supersubdivision graph. Let G
be a graph with edge set E(G) = E1UE; and ExNE; = 6. A
graph G is called an almost arbitrary supersubdivision graph of G if
G is obtained from G by replacing every edge e; € E by a complete
bipartite graph K2 m,; such a way that the end vertices of each e;
are merged with the two vertices of the 2-vertices part of Ko ., after
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removing the edge e; from G, where m; is chosen as an arbitrary
positive integer if e; € E; or else m is chosen as an arbitrary even
positive integer if e; € Ea.

Keywords: Graph labeling, Cordial labeling, Cordial graphs, Ar-
bitrary supersubdivision graphs, Almost arbitrary supersubdivision
graphs.
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1 Introduction

At the smolenice symposium in 1963, Ringel [18] conjectured that Kam+1,
the complete graph on 2m + 1 vertices can be decomposed into 2m + 1
isomorphic copies of a given tree with m edges. In an attempt to solve
Ringel’s conjecture, in 1967 Rosa [19] introduced an hierarchical series of
labeling p, o, B and o-valuations and used these valuations for a cyclic
decomposition of Ka,41 into trees with m edges. Later Golomb [10] called
B-valuation as graceful.

A function f is called a graceful labeling of G with m edges, if f is an
injection from the vertices of G to the set {0,1,2,...,m}, such that when
each edge uv is assigned the label |f(u) — f(v)| then the resulting edge
labels are distinct.

Harmonious labeling was introduced by Graham and Sloane [11] in con-
nection with their study on error correcting code. A function f is called
harmonious labeling of a graph G with m edges, if f is an injection from
the vertices of G to the group of integers modulo m, such that when each
edge uv is assigned the label (f(u)+ f(v)) (mod m) then the resulting edge
labels are distinct.

In 1987, Cehit (4] introduced cordial labeling as a variation of both
graceful and harmonious labeling. Let f be a function from the vertices of
G to {0,1} and for each edge zy assign the label |f(z) — f(y)|. Call f a
cordial labeling of G if the number of vertices labeled 0 and the number
of vertices labeled 1 differ by at most 1 and the number of edges labeled 0
and the number of edges labeled 1 differ by at most 1.

Number of special families of graphs are shown to be cordial, Refer [1-3,
5-8,14-16,20,22-24]. For an exhaustive survey on cordial labeling refer the
excellent survey on Graph Labeling by Gallian {13]. Niall Cairnie and Keith
Edwards [17] have proved the problem of deciding whether or not a graph G
is cordial is an NP-complete. Niall and Keith result motivates to construct
or recognize the cordial graphs in a general approach or algorithmically.

In {21] Sethuraman and Selvaraju have introduced a graph operation
called arbitrary supersubdivision graph. Let G be a graph with g edges. A
graph G* is called an arbitrary supersubdivision of G if G* is obtained from
G by replacing every edge e; of G by a complete bipartite graph Ko 1, such
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a way that the end vertices of each e; are identified with the two vertices of
the 2-vertices part of the K, after removing the edge e; from G, where
m; of Ky, may vary arbitrarily for each edge e;, 1 < i < q. Here we
introduce a relaxation on the arbitrary supersubdivision graph of a graph
called an almost arbitrary supersubdivision.

Let G be a graph with edge set E(G) = Ey UE; and E; N E; = ¢. A
graph G is called an almost arbitrary supersubdivision graph of G if G is
obtained from G by replacing every edge e; € E by a complete bipartite
graph Kj .,,;; such a way that the end vertices of each e; are merged with
the two vertices of the 2-vertices part of Ky ,,, after removing the edge e;
from G, where m; is chosen as an arbitrary positive integer if e; € E; or
else m; is chosen as an arbitrary even positive integer if e; € Es.

In this paper, we show that almost arbitrary supersubdivision of ev-
ery graph is cordial. The proof of our result would naturally imply that
arbitrary supersubdivision of every bipartite graph is cordial. This result
generalizes the results of Vaidya et al. [25,26] that arbitrary supersubdi-
vision of special classes of bipartite graphs, trees, P, x P,, Con ® P, are
cordial. Finally we discuss a related open problem.

Main Result

In this section we prove our main result that almost arbitrary supersub-
division graph of every graph is cordial. First, we give an algorithm to
construct an almost arbitrary supersubdivision graph from a given graph
G.

The following Algorithm 1 that constructs almost arbitrary supersubdi-
vision graph from a given graph G uses the Breadth First Search algorithm
in Step 1. The Breadth First Search algorithm (BFS) is a fundamental
graph algorithm. When the BFS is run on a connected graph G, then it
finds a spanning tree T of G as its output. For more details about the BFS
refer [9,12].

Let G be a connected graph. Run the BFS on G and obtain the BFS
spanning tree T'. A vertex of G is said to lie in a level £ of G if it lies in the
level £ of the BFS spanning tree T of G. An edge of G is called the same
level edge if the end vertices of the edge lie in the same level £. Similarly
an edge of G is called different level edge if the end vertices of the edge lie
in two different levels of G.

Algorithm 1 (Construction of G from a given graph G)

Input. A graph G = (V, E).
Step 1. If G is a connected graph, then run the BFS on G, obtain the BFS
spanning tree T of G and determine all the same level edges and all the
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different level edges of G. Let E; be the set of all different level edges of G
and let E; be the set of all same level edges of G. Then E(G) = E, U E»
and E) N Ey = ¢.

Step 2. Let e = uv be an edge of G, if the edge e € Ej, that is, e is
a different level edge of G, then choose a complete bipartite graph Ko m;
where m is an arbitrary positive integer or else if the edge e € E3, that is,
e is a same level edge of G, then choose a complete bipartite graph K2 m;
where m is an arbitrary even positive integer. Replace the edge e = uv by
a complete bipartite graph K3, in such a way that the end vertices u, v of
e are merged with the two vertices of the 2-vertices part of the Kz, the
graph thus obtained is an almost arbitrary supersubdivision graph of G.
Let G denote the almost arbitrary supersubdivision graph of G obtained
by the above process.

Step 3. If G is not connected, then find all the connected components of
G. Let G4,Ga,...,G, be the connected components of G. Then for each
connected components Gi, 1 < i < t, obtain the supersuhdivision graph
G;, by applying Steps 1 and 2. Then obtain G; = G;UG,U- - UGy, which
is an almost arbitrary supersubdivision graph of G.

Observation 1. If the graph G is bipartite then observe that there does
not exist any same level edge in G with respect to the BFS spanning tree
T of G (otherwise, odd cycle will be induced in G). If the graph G is not a
hipartite then there exists at least one same level edge with respect to the
BFS spanning tree T of G. Thus, if the graph G is bipartite, then the almost
arbitrary supersubdivision graph of G, G constructed by Algorithm 1 is
nothing but the arbitrary supersubdivision graph G* of G.

Remark 1. A vertex u of an arbitrary supersubdivision graph G of a graph
G is called a base verter if u is the vertex of G that appear as a vertex of
the 2-vertices part of the Kgm, which replaces an edge e = uv of G in
obtaining G A vertex w of G is called a non-base vertez if w is not a base
vertex of G. Observe that every non-base vertex of G always lie in the m
vertices part of the K3 ,, which replaces an edge e of G in obtaining G.

Theorem 1.1. Almost arbitrary supersubdivision graph G of any graph G
is cordial.

Proof. Let G be a graph.

Case 1. G is connected.

Let G be a connected graph with V(G) = {v1,v2,...,vp} and

E(G) = {e1,€2,...,eq}. Let E; denote the set of all different level edges of
G and E; denote the set of all same level edges of G. Consider an almost ar-
bitrary supersubdivision graph G of G, constructed by Algorithm 1. Then,
G has p+ S°7., m; vertices and 2 39 _, m; edges, where the p vertices of



G are originally the vertices of G, that is the base vertices of G and the
remaining 37_, m; vertices are the non-base vertices of G. We denote the
set of all base vertices of G by B(G) and we denote the set of all non-base
vertices of G by NB(G).

Step 1. 0-1 labeling of the base vertices of G

For the base vertex v of G considering v as the vertex in G, find the
level of the vertex v with respect to the spanning tree T of G. If the level
of the base vertex v is even then assign the label 0 or else if the level of the
base vertex v is odd then assign the label 1.

Let Bo(G) denote the set of all base vertices of G having the label 0
and let Bl(G) denote the set of all base vertices of G having the label 1.
If |By(G)| > [Bo(G)| then find ry = [B1(G)| | Bo(C)).

If | Bo(G)| > |B1(G)] then find ro = |Bo(G)| - By (G)).
Step 2. 0-1 labeling of non-base vertices of G

Let NB(Gp,) denote the set of all non-hase vertices of G which are
obtained by replacing every edge e; € Ey of G by Kz ,,, that is, e; is a
different level edge of G, where m; is an arbitrary positive integer.

Similarly, let N B(GE,) denote the set all non-base vertices of G which
are obtained by replacing every edge e; € Ey of G by Ko m;, that is, e; is
a same level edge of G, where m; is an arbltrary even posmve mteger

Thus the set of all non-base vertices of G, N B(G’) NB(Gg,) U
NB(GE,). Also note that NB(Gg,)n NB( (Cg,) =

If ro exists, then there exist ro different edges in El having one of the
end vertices labeled with 0.

Observe that in constructing G these 7o edges of G in E; is replaced
by a complete hipartite graph Kj mm,, where m > 1. Thus G always has at
least 7y non-bhase vertices.

If 7, exists, by similar argument, it follows that G always has at least
r1 non-base vertices.

First, we give 0-1 labels to the non-base vertices of NB (GE,) and we
give 0-1 labels to the non-base vertices of NB(G B).

Step 2.1. 0-1 labeling of non-base vertices of NB(G,)

For each j, 1 < j < g3, consider the complete bipartite graph K, ,m;
which is the replacement of the same level edge e¢; € E; in constructing
G. Then by the Algorithm 1, m; is chosen as an arbntrary even positive
integer. For each j, 1 < j < gy, assign the label 0 to —J- vertices of m;-part

in Kom; of N B(G E,) and assign the label 1 to the other —-’- vertices of
mj-part in Ko m; of NB(G’E,)

Consequently M non-base vertices get the label 0 and M
non-base vertices get the label 1.

Step 2.2. 0-1 labeling of the non-base vertices of NB(G E;)
Step 2.2.1. r; exists
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Then assign 1 to the first set of ro non-base vertices in NB(GE,).
Consider all the remaining Y 7., m; — o — NB(ng) non-base ver-

tices in NB(GEg,). Assign 0 to Tieymizro=NB(Cr,) non-base vertices
1 2

in NB(Cp,) and assign 1 to the other [ Tl mizro=NB(Ce,)

vertices in NB (GE,).

Let Vo(G) denote the set of all vertices of G assigned the label 0 and
let V;(G) denote the set of all vertices of G assigned the label 1

From Step 1, Step 2.1 and Step 2.2.1, we observe that, in G
the number of vertices labeled 0 is equal to

1Bo(@)] + [Z?ﬂ m o= NB(Gaz)J 1B

-| non-base

(1)

and the number of vertices labeled 1 is equal to

IBl(é)"" ’Vz:';lmi —rg_NB(GEz)-’ + INB(2éEz)i + 79 (2)

Since |Bo(G)] = |B1(G)| + ro, from (1) and (2) we have
V(&) -1 Vi@ < 1.

Step 2.2.2. r; exists
Then assign 0 to the first set of 7, non-base vertices in N B(GEg,).

Consider all the remaining } {_,m; — 71 — N B(GE,) non-base ver-

Py 9 gty -
tices in NB(Gg,). Assign 0 to I.-z—:is‘ T NB(Ce,) )J non-base vertices

in NB(GE,) and assign 1 to the other [Zg=bm‘_';_NB(é52).|

vertices in N B(G’ E )
From Step 1, Step 2.1 and Step 2.2.2, we observe that, in G,
the number of vertices labeled 0 is equal to

non-base

n 9 =T — . §
|Bo(G)| + [Zz:l m T; NB(GEQ)J + INB(QGEz)l +7 (3)
and the number of vertices labeled 1 is equal to
. ¢ m;—r,— NB(G NB(G
|BI(G)l + [Za—lm 7‘; ( Ezfl + | (2 Ez)l (4)

Since |B1(G)| = |Bo(G)| + r1, from (3) and (4) we have
[ve@1-In@l| <1.
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Step 2.2.3. Neither r¢ nor r; exists )

Then we have |By(G)] = |By(G)]. Assign 0 to [&a"’—;”‘LGEL’J
non-base vertices in N B(C:'El) and assign 1 to the other remaining
I-gqalm—'_de—(é—EQ] non-hase vertices in NB(Gp,).

From Step 1, Step 2.1 and Step 2.2.3, we observe that, in G,
the number of vertices labeled 0 is equal to

. 7 m; - NB(G 2B,
|BO(G)' + [ i=1 . ( EQ)J + INB(;;Ez)l (5)
and the number of vertices labeled 1 is equal to
q - A A
IBl(G)I + [Zi=1 m; QNB(GEQ)] + |NB(2(;E2)] (6)

Since |Bo(G)| = | B1(G)|, from (5) and (6) we have
[ve(@1-1m@)| <1.

By the definition of G observe that each complete bipartite graph Kj p,,
which replaces the edge e; of G can be considered as an edge induced
subgraph of G for 1 <4 < ¢q. Thus, G is an edge disjoint union of complete
bipartite graphs Ky n,'s, 1 <i <gq.

q

Hence, E(G) = | | E(K2,m,)-
i=1
Since E(G) = Ey U E; and E, N E; = ¢, where E, consists of all the
different level edges of G and E, consists of all the same level edges of G.
Thus, we have

q
E(G) =] BE(K2m.)

i=1
q1
= [U E(Ka,m, )} U
i=1

where K3 m,, is the complete bipartite graph which replaces the edge e; € E,
and K3 m; is the complete bipartite graph which replaces the edge e; € By,
and [Ey| = q; and |E;| = g5.

For each 4, 1 < i < ¢y, consider Kj ., which is the complete bipartite
graph replacement of the edge e; € E; in constructing G, then the base

0 E(K2,m_.,- ):l )

j=1
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vertices of K m, are the two vertices of the 2-vertices part of Kj,, always
have different labels. Among the m; non-base vertices of Kz m,, either all
may be labeled with 0 or all may be labeled with 1 or some may be labeled
with 0 and the remaining may be labeled with 1. These labeling situations
are shown in Figure 1. Consequently the two edges incident at every non-
base vertex will have other ends labeled with two different labels 0 and 1.
Thus, the two edges incident at every non-base vertex will have two different
labels 0 and 1. Hence, the complete bipartite graph K2, has exactly m;
edges with label 0 and m; edges with label 1. Therefore, Y m; edges
1

q q
of U E(Ka2,m,) get the label 0 and ) {1, m; edges of U E(Kam;) get the

i=1 i=1
label 1.

(a) (b)

Figure 1: Possible 0-1 labeling of the complete bipartite graph replacement
Ko m, of an edge e; € Ey

For each j, 1 < j < g2, consider Ky m; which is the complete bipartite

graph replacement of the edge e; € E; in constructing G. Then by the
above labeling, the base vertices in Kpm; always have the same labels
either 0 or 1 and among the m; non-base vertices in Ko m;, 22-7- non-base
vertices are labeled as 0 and the remaining m—2-'- non-base vertices are labeled
as 1. These labeling situations are shown in Figure 2.

Suppose both the base vertices of K3 m; have the label 0 then from the
%% non-base vertices of K3 m; having the label 0 will induce the edge label
0 on m; edges of K3 m; and from the %+ non-base vertices of K3, having
the label 1 will induce the edge label 1 on m; edges of K2,m;. Thus the
complete bipartite graph K3 =, contains m; edges having the label 0 and
m; edges having the label 1.

Suppose both the base vertices of K3 m; have the label 1, then from the
'—"21 non-base vertices of Kz, having the label 0 will induce the edge lahel
1'on the m; edges of Ka,m; and from 5 non-base vertices of K3,m; having

the label 1 will induce the edge label 0 on the m; edges of K2 m;. Thus the



complete bipartite graph Ky ,; contains m; edges having the label 0 and
m; edges having the label 1.

Thus, 392, m; edges of U E(K2,m;) gets the label 0 and 3292, m;

i=1

g2
edges of (_| E(Kz,m;) gets the label 1.
i=1

Figure 2: 0-1 labeling of Ky m;, which is the complete bipartite graph
replacement of an edge e; € E,

Let Eo(G) denote the set of all edges of G gets the label 0 and let E, (&)
denote the set of all edges of G gets the label 1.
Then from the above observation, we have

('3 q2
|Eo(G) =) mi+ Y m; (7)
i=1 j=1
. q1 q2
|E((G) =) mi+ ) my (8)
j=1 J=1

From (7) and (8), we have
|Bo(G)| = | Er(C)!.

Hence, G is cordial.
Case 2. G is not connected.

Find all the connected components of G. Let Gy,Gs,...,G; be the
connected components of G. Then by the deﬁnmon of almost arbitrary
supersubdivision of a graph, we can consider G=G,uGu---U G, where
G; is an almost arbitrary supersubdivision graph of G;, for 1 5 i <t Let
Gi = (V;, E;) with |Vi| = p; and |E;| = g; and let o = g1 + g2 + - - - + ¢, and
B=pr+p2+- - +ps.
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For the convenience we order the edges of G as ej,ez,...,€q,, €q,+1,

€q1425 + -1 €q14q21 Eq1+qa+1r Eq1+g2+2s « -1 Eqitaztqar + -2 Cqrtgattae+D
€q1+q2++qe-1+2> +++1 Eqi4qzt-tqer where ep,e3,... 1eqn € E(Gl) and
eq:+qz+-"+q"-1+11 €g1+g2+-tgi-1+2r + 01 Cqitgatdgio1tgs € E(G;) for
2<i<t.

Thus G has B+3_5., m; vertices and 2 Y, m; edges, where m; denotes
the cardinality of m;-part of K3 m, which replaces the edge e; of G in the
construction of G for1<i<a

Let B(G) denote the set of all base vertices of G. Thus G has |B (G’ )=
. Let NB(G) denote the set of all non base vertices of G. Thus |NB(G)| =
D=1 i

Consider G, of G. As G, is connected, assign the label 0 or 1 to the
vertices of G as done in Case 1. Then, we have llVb(Gl)| - VI(G1)|| <1

and | Eo(Gh)| = |E1(C1)l
Therefore G, is cordial.

If [Vo(Gy)| = |Vl(G1)| + 1, then assign 1 to any one of the non-base
vertices in N B( Ggg,l) of G,, where Ey; is the set of all different level
edges of G, and NB(G2E,,) is the set of all non-base vertices obtained
from the K2 m,'s which replace the edges of E2; of G in defining G,.

If [Vi(Gh)| = [Vo(Gh) + 1, then assign O to any one of the non-base
vertices in NB(G2g,,) of 02

For the remaining |V (G2)| — 1 unlabeled vertices of G, assign 0-1 label

as done in Case 1. Then, we have ||Vo(01 U Gy)| - |Vi(G, U Gg)ll <1and

|Eo(G1 U Gs)| = |E (G LGy)l.
If |Vo(G1)| = [Vi(G1)|, then assign 0-1 label to the vertices of G, as

done in Case 1. Then, we have ||V0(G1 UGo)l ~[Vi(C1UGy)l| < 1 and

|Eo(G1UG2)| = |[E1(G1 U Gy)|.

Thus G; U G, is cordial.

Continue this process of 0-1 labeling to the vertices of G; after complet-
ing the 0-1 labeling of Gl U G, u- UG’._I, for3<i<t.

This implies that G=G,UuGyU---U G, is cordial. -

Corollary 1.1. If G is bipartite then arbitrary supersubdivision graph G*
of G is cordial.

Proof. If G is bipartite, then there does not exist any same level edge
in G, then by the construction of G, every edge e; of G is replaced by
K m,, where m; is an a.rbltrary positive integer. Hence almost arbitrary
supersubdivision graph G constructed by Algorithm 1 is nothing but the
arbitrary supersubdivision graph G* of G. It follows from the proof of
Theorem 1.1, G* is cordial. O



Remark 2. Vaidya et al. [25,26] proved that arbitrary supersubdivision
of special classes of bipartite graphs, trees, P,, x P,, Ca, ® P,, are cordial.
Our result generalizes these three results.

Discussion

Here we have shown that if G is a bipartite graph then arbitrary super-
subdivision graph G* of G is cordial. It is interesting to find the graphs
different from bipartite graphs whose arbitrary supersubdivision are also
cordial. Thus, we ask the following question.

“Are there graphs apart from bipartite graphs whose arbitrary super-
subdivision graphs are cordial?”
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