q-analogs of covering designs and Steiner systems based on singular linear space

You Gao".*, Gang Wanga, Yinghua Hanb

Abstract: In this paper, q-analogs of covering designs and Steiner systems based on the subspaces of type (m,0) and the subspaces of type $(m_1,0)$ in singular linear space $\mathbb{F}_q^{(n+l)}$ over \mathbb{F}_q are presented, $m_1 < m$. Then the properties about q-analogs of covering designs and Steiner systems are discussed.

Keywords: q-analog, covering designs, Steiner systems, singular linear space.

§1 Introduction

Let \mathbb{F}_q be a finite field with q elements, where q is a power of a prime and $\mathbb{F}_q^{(n)}$ is the n-dimensional row vector space over \mathbb{F}_q , where n is a positive integer. The set of all the subspaces with dimension k of $\mathbb{F}_q^{(n)}$ is called Grassmannian space over \mathbb{F}_q , denoted by $\mathcal{G}_q(n,k)$. For any two subspaces U and V in $\mathcal{G}_q(n,k)$, define the distance function between U and V

$$d(U,V) = 2m - 2\dim(U \cap V).$$

The function above is proved a metric (see [1]), thus $\mathcal{P}_q(n)$ can be regarded as a metric space.

A nonempty collection \mathbb{C} of $\mathcal{G}_q(n,k)$ is called a subspace code $(n,M,d,k)_q$ if the size is M and the minimum distance is d.

Subspace code plays an important role in random network coding (see [2,3]). R.Koetter and F.R.Kschischang^[4,5] defined an operator channel

^a College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China

^b College of Science, Tianjin University of Science & Technology, Tianjin 300222, P.R.China

^{*}Corresponding author.

E-mail addresses: gao...you@263.net.

when they studied random network coding, meanwhile, they showed that the errors and erasures could be corrected by a subspace code $(n, M, d, k)_q$ over the operator channel if the sum of errors and erasures is less than $\frac{d}{2}$. These research results motivate great interests of more and more people in subspace codes (see [3]-[8]).

q-analogs of combinatoric designs are the necessary studied directions to subspace codes. Van lint J.H. and Wilson R.M.^[9] present that various known combinatorial problems such as Sperner's Theorem have q-analogs. Braun M., Kerber A., laue R. and Suzuki H.^[10] studied q-analogs of t-designs. Koetter R. and Kschischang F.R.^[1] demonstrated the application of codes over the Grassmannian to error-correction in random network coding. schwartz M. and Etzion T.^[11] present the codes and anticodes in the Grassman gragh. Etzion T. and Vardy A.^[12] discussed the q-analogs of basic designs based on vector space of domension n. Etzion T.^[13] discussed the covering of subspaces by subspaces about q-covering design $C_q[n,k,r]$.

In this paper, q-analogs of covering designs and Steiner systems based on singular linear space $\mathbb{F}_q^{(n+l)}$ over \mathbb{F}_q are presented. Meanwhile, the properties about q-analogs of covering designs and Steiner systems are discussed.

§2 Preliminaries

Let \mathbb{F}_q be a finite field with q elements, where q is a prime power. $\mathbb{F}_q^{(n+l)}$ is the (n+l)-dimensional row vector space over \mathbb{F}_q , where n and l are two non-negative integers. The set of all $(n+l)\times (n+l)$ nonsingular matrices over \mathbb{F}_q of the form

$$\left(\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right),\,$$

where T_{11} and T_{22} are nonsingular $n \times n$ and $l \times l$ matrices, respectively, forms a group under matrix multiplication, called the singular general linear group of degree n+l over \mathbb{F}_q and denoted by $GL_{n+l,n}(\mathbb{F}_q)$.

We have an action of $GL_{n+l,n}(\mathbb{F}_q)$ on $\mathbb{F}_q^{(n+l)}$ defined as follows:

$$\mathbb{F}_q^{(n+l)} \times GL_{n+l,n}(\mathbb{F}_q) \to \mathbb{F}_q^{(n+l)}$$

$$((x_1,\cdots,x_n,x_{n+1},\cdots,x_{n+l}),T)\mapsto (x_1,\cdots,x_n,\cdots,x_{n+l})T$$

The vector space $\mathbb{F}_q^{(n+l)}$, together with the above group action, is called the (n+l)-dimensional singular linear space over \mathbb{F}_q (see [14]).

Let e_i $(1 \le i \le n+l)$ be the row vector in $\mathbb{F}_q^{(n+l)}$ whose *i*-th coordinate is 1 and all other coordinates are 0. Denote by E the l-dimensional subspace

of $\mathbb{F}_q^{(n+l)}$ generated by $e_{n+1}, e_{n+2}, \cdots, e_{n+l}$. An *m*-dimensional subspace P of $\mathbb{F}_q^{(n+l)}$ is called a subspace of type (m,k) if $\dim(P \cap E) = k$.

Introduce the anzahl formulas (see [14]) and use the Gaussian coefficient [15] for brevity

$$\begin{bmatrix} m_2 \\ m_1 \end{bmatrix}_q = \frac{\prod\limits_{t=m_2-m_1+1}^{m_2} (q^t-1)}{\prod\limits_{t=1}^{m_1} (q^t-1)}.$$

By convenience $\begin{bmatrix} m_2 \\ 0 \end{bmatrix}_q = 1$ and $\begin{bmatrix} m_2 \\ m_1 \end{bmatrix}_q = 0$ whenever $m_1 < 0$ and $m_2 < m_1$.

Denote the set of all the subspaces of type (m,s) in $\mathbb{F}_q^{(n+l)}$ by $\mathcal{M}(m,s;n+l,n)$ and let

$$N(m,s;n+l,n) = |\mathcal{M}(m,s;n+l,n)|.$$

It is verified that $\mathcal{M}(m, s; n + l, n)$ is non-empty if and only if

$$0 \le s \le l \text{ and } 0 \le m - s \le n.$$

Moreover, if $\mathcal{M}(m, s; n + l, n)$ is non-empty, then

$$N(m,s;n+l,n) = q^{(m-s)(l-s)} \begin{bmatrix} n \\ m-s \end{bmatrix}_q \begin{bmatrix} l \\ s \end{bmatrix}_q.$$

Let P be a given subspace of type (m, s) in $\mathbb{F}_q^{(n+l)}$. Denote by $\mathcal{M}(m_1, s_1; m, s; n+l, n)$ the set of all the subspaces of type (m_1, s_1) contained in P. Let

$$N(m_1, s_1; m, s; n + l, n) = |\mathcal{M}(m_1, s_1; m, s; n + l, n)|.$$

It is verified that $\mathcal{M}(m_1, s_1; m, k; n + l, n)$ is non-empty if and only if

$$0 \le s_1 \le k \le l$$
 and $0 \le m_1 - s_1 \le m - s \le n$.

Moreover, if $\mathcal{M}(m_1, s_1; m, s; n + l, n)$ is non-empty, then

$$N(m_1,s_1;m,s;n+l,n) = q^{(m_1-s_1)(s-s_1)} \begin{bmatrix} m-s \\ m_1-s_1 \end{bmatrix}_q \begin{bmatrix} s \\ s_1 \end{bmatrix}_q.$$

Let P a given subspace of type (m_1, s_1) in $\mathbb{F}_q^{(n+l)}$. Denote by $\mathcal{M}'(m_1, s_1; m, s; n+l, n)$ the set of all the subspaces of type (m, s) containing P. Let

$$N'(m_1, s_1; m, s; n+l, n) = |\mathcal{M}'(m_1, s_1; m, s; n+l, n)|.$$

It is verified that $\mathcal{M}'(m_1, s_1; m, s; n + l, n)$ is non-empty if and only if

$$0 \le s_1 \le s \le l \text{ and } 0 \le m_1 - s_1 \le m - s \le n.$$

Moreover, if $\mathcal{M}'(m_1, s_1; m, s; n + l, n)$ is non-empty, then $N'(m_1, s_1; m, s; n + l, n)$

$$=q^{(l-s)(m-s-m_1+s_1)}\begin{bmatrix}n-(m_1-s_1)\\(m-s)-(m_1-s_1)\end{bmatrix}_q\begin{bmatrix}(l-s_1)\\(s-s_1)\end{bmatrix}_q.$$

A Steiner structure $S_q[(m_1,0),(m,0),n+l]$ is a collection \mathbb{S} of elements from $\mathcal{M}(m,0;n+l,n)$ satisfying that each element from $\mathcal{M}(m_1,0;n+l,n)$ is contained in exactly one element of \mathbb{S} .

A q-covering design $C_q[n+l,(m,0),(m_1,0)]$ is a collection $\mathbb S$ of elements from $\mathcal M(m,0;n+l,n)$ satisfying that each element from $\mathcal M(m_1,0;n+l,n)$ is contained in at least one element of $\mathbb S$.

A q-Turán design $T_q[n+l,(m,0),(m_1,0)]$ is a collection \mathbb{S} of elements from $\mathcal{M}(m_1,0;n+l,n)$ satisfying that each element of $\mathcal{M}(m,0;n+l,n)$ contains at least one element from \mathbb{S} .

Let the q-covering number $C_q(n+l,(m,0),(m_1,0))$ be the minimum number of a q-covering design $C_q[n+l,(m,0),(m_1,0)]$ and let the q-Turán number $T_q(n+l,(m,0),(m_1,0))$ be the minimum number of a q-Turán design $T_q[n+l,(m,0),(m_1,0)]$. It is clear that a Steiner structure $S_q[(m_1,0),(m_1,0),(m_1,0)]$, that is,

$$|S_q[(m_1,0),(m,0),n+l]| = C_q(n+l,(m,0),(m_1,0)).$$

§3 q-analogs of covering designs

Definition 3.1 A q-covering design $C_q[n+l,(m,0),(m_1,0)]$ is a collection \mathbb{S} of elements from $\mathcal{M}(m,0;n+l,n)$ satisfying that each element from $\mathcal{M}(m_1,0;n+l,n)$ is contained in at least one element of \mathbb{S} .

Definition 3.2 A q-Turán design $T_q[n+l,(m,0),(m_1,0)]$ is a collection \mathbb{S} of elements from $\mathcal{M}(m_1,0;n+l,n)$ satisfying that each element of $\mathcal{M}(m,0;n+l,n)$ contains at least one element from \mathbb{S} .

Given a set $S \subseteq \mathcal{M}(m,0;n+l,n)$, define the following set S^{\perp} , the orthogonal complement of S:

$$\mathbb{S}^{\perp} = \{ A^{\perp} : A \in \mathbb{S} \},\$$

where $A^{\perp} \in \mathcal{M}(n+l-m,l;n+l,n)$ is the orthogonal complement of the subspace A of type (m,0) in $\mathbb{F}_q^{(n+l)}$.

Theorem 3.1 S is a q-covering design $C_q[n+l,(m,0),(m_1,0)]$ if and only if S^{\perp} is a q-Turán design $T_q[n+l,(n+l-m_1,l),(n+l-m,l)]$.

Proof Let S be a q-covering design $C_q[n+l,(m,0),(m_1,0)]$. By the definition of S^{\perp} , S^{\perp} is a set of elements from $\mathcal{M}(n+l-m,l;n+l,n)$. For each element

$$A \in \mathcal{M}(n+l-m_1,l;n+l,n),$$

 A^{\perp} is a subspace of type $(m_1,0)$ in $\mathbb{F}_q^{(n+l)}$. Since \mathbb{S} is a q-covering design $C_q[n+l,(m,0),(m_1,0)]$, there exist at least one element $B\in\mathbb{S}$ satisfying that

$$A^{\perp} \subset B$$
.

that is,

$$A\supseteq B^{\perp}\in\mathbb{S}^{\perp}.$$

Hence, each element of $\mathcal{M}(n+l-m_1,l;n+l,n)$ contains at least one element from \mathbb{S}^{\perp} . Thus, \mathbb{S}^{\perp} is a q-Turán design

$$T_q[n+l,(n+l-m_1,l),(n+l-m,l)].$$

Similarly, if S is a q-Turán design

$$T_q[n+l,(n+l-m_1,l),(n+l-m,l)],$$

 \mathbb{S}^{\perp} is a q-covering design

$$C_q[n+l,(m,0),(m_1,0)].$$

Corollary 3.1 $C_q(n+l,(m,0),(m_1,0)) = T_q(n+l,(n+l-m_1,l),(n+l-m,l)).$

Theorem 3.2 $C_q(n+l,(m,0),(m_1,0)) \ge \frac{q^{n+l}-q^l}{q^m-1}C_q(n+l-1,(m-1,0),(m_1-1,0)).$

Proof Let \mathbb{S} be a optimal q-covering design $C_q[n+l,(m,0),(m_1,0)]$, that is, the number of subspaces of type (m,0) in the q-covering design $C_q[n+l,(m,0),(m_1,0)]$ is

$$C_q(n+l,(m,0),(m_1,0)).$$

For each subspace of type (m,0) in \mathbb{S} , there are

$$N(1,0;m,0;n+l,n) = \frac{q^m - 1}{q - 1}$$

subspaces of type (1,0) contained in such subspace of type (m,0). The total number of subspaces of type (1,0) in $\mathbb{F}_q^{(n+l)}$ is

$$N(1,0; n+l, n) = \frac{q^{n+l} - q^l}{q-1}.$$

Therefore, there exists a subspace P of type (1,0) in $\mathbb{F}_q^{(n+l)}$ and the subspace P is contained in at most

$$\frac{q^m-1}{q^{n+l}-q^l}C_q(n+l,(m,0),(m_1,0))$$

elements of S. Suppose that the above subspace P is contained in r elements of S. Clearly,

 $r \leq \frac{q^m - 1}{q^{n+l} - q^l} C_q(n + l, (m, 0), (m_1, 0)).$

Let $\mathbb{F}_q^{(n+l)} = P \oplus Q$, where Q is a subspace of type (n+l-1,l) of $\mathbb{F}_q^{(n+l)}$. Define

$$\mathbb{S}' = \{Y \cap Q : Y \in \mathbb{S} \text{ and } P \subseteq Y\},$$

then there are r subspaces of type (m-1,0) in S'.

Let A be a subspace of type $(m_1 - 1, 0)$ of Q, and then $P \oplus A$ is a subspace of type $(m_1, 0)$. Therefore, there is at least one $X \in \mathbb{S}$ satisfying that

$$P \oplus A \subseteq X$$
.

Furthermore,

$$A = (P \oplus A) \cap Q \subseteq X \cap Q.$$

Clearly, $X \cap Q \in \mathbb{S}'$, that is, each subspace of type $(m_1 - 1, 0)$ in $\mathbb{F}_q^{(n+l-1)}$ is contained in at least one subspace from \mathbb{S}' . Thus,

$$\mathbb{S}' = \{Y \cap Q : Y \in \mathbb{S} \text{ and } P \subseteq Y\}$$

is a q-covering design $C_q[n+l-1,(m-1,0),(m_1-1,0)]$, then

$$C_q(n+l-1,(m-1,0),(m_1-1,0)) \le r \le \frac{q^m-1}{q^{n+l}-q^l}C_q(n+l,(m,0),(m_1,0)).$$

the Theorem 3.2 follows immediately. \square

Theorem 3.3
$$C_q(n+l,(m,0),(m_1,0)) \ge q^{m_1 l} \frac{{n \brack m_1}_q}{{m \brack m_1}_q}$$
.

Proof Let S be a q-covering design $C_q[n+l,(m,0),(m_1,0)]$. For a fixed subspace P of type (m,0) of S, there are

$$N(m_1,0;m,0;n+l,n) = \begin{bmatrix} m \\ m_1 \end{bmatrix}_q$$

subspaces of type $(m_1,0)$ which are contained in the fixed subspace P. The total number of subspaces of type $(m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ is

$$N(m_1,0;n+l,n)=q^{m_1l}\begin{bmatrix}n\\m_1\end{bmatrix}_q.$$

Thus

$$|\mathbb{S}| \ge q^{m_1 l} \frac{\left[n \atop m_1 \right]_q}{\left[m \atop m_1 \right]_q}$$

Furthermore, if

$$|\mathbb{S}| = q^{m_1 l} \frac{\begin{bmatrix} n \\ m_1 \end{bmatrix}_q}{\begin{bmatrix} m \\ m_1 \end{bmatrix}_q},$$

each subspace of type $(m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ is exactly contained in one subspace of type (m,0) from \mathbb{S} . If so, \mathbb{S} is called the Steiner structure $S[(m_1,0),(m,0),n+l]$. \square

Theorem 3.4 $C_q(n+l,(m,0),(m_1,0)) \leq C_q(n+l-1,(m-1,0),(m_1,0))$. Proof Let S be a q-covering design $C_q[n+l-1,(m-1,0),(m_1,0)]$, that is,

 $\mathbb{S} = \{ (P : 0) \subset \mathbb{F}_q^{(n+l-1)} : \dim(P : 0) = m-1 \text{ and } \dim((P : 0) \cap E) = 0 \}.$

Construct the following set S' from S:

$$\mathbb{S}' = \{ P' = \begin{pmatrix} P & \vdots & 0 & \vdots & 0 \\ 0 & \vdots & 1 & \vdots & 0 \end{pmatrix} \subset \mathbb{F}_q^{(n+l)} \},$$

where $\dim P' = m$ and $\dim(P' \cap E) = 0$.

Let P_1 be a subspace of type $(m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ and denote also by P_1 a matrix representation of the vector subspace P_1 , i.e.,

$$P_1 = \left(\begin{array}{ccc} R_1 & x_1 & \vdots & 0 \\ R_2 & x_2 & \vdots & 0 \end{array}\right).$$

If $x_1 = x_2 = 0$, then $\begin{pmatrix} R_1 & \vdots & 0 \\ R_2 & \vdots & 0 \end{pmatrix}$ is a subspace of type $(m_1, 0)$ in

 $\mathbb{F}_q^{(n+l-1)}$. Since \mathbb{S} is a q-covering design $C_q[n+l-1,(m-1,0),(m_1,0)]$, there exist at least one subspace $(P \ \vdots \ 0) \in \mathbb{S}$ such that $\begin{pmatrix} R_1 & \vdots \ 0 \\ R_2 & \vdots \ 0 \end{pmatrix} \subset (P \ \vdots \ 0)$.

Define

$$P' = \left(\begin{array}{cc} P & \vdots & 0 & \vdots & 0 \\ 0 & \vdots & 1 & \vdots & 0 \end{array}\right) \in \mathbb{S}'$$

and clearly $P_1 \subset P'$.

If rank $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1$, without loss of generality, let $x_1 = 0$, $x_2 = 1$, then

$$P_1 = \left(\begin{array}{cc} R_1 & 0 & \vdots & 0 \\ R_2 & 1 & \vdots & 0 \end{array}\right),$$

furthermore,

$$P_1 = \left(\begin{array}{ccc} R_1 & 0 & \vdots & 0 \\ 0 & 1 & \vdots & 0 \end{array}\right).$$

Since $(R_1 : 0)$ is a subspace of type $(m_1 - 1, 0)$ in $\mathbb{F}_q^{(n+l-1)}$, there is a subspace R_3 of type $(m_1, 0)$ in $\mathbb{F}_q^{(n+l-1)}$ such that $(R_1 : 0) \subset R_3$. Next, there exist at least one subspace $(P : 0) \in \mathbb{S}$ such that $R_3 \subset (P : 0)$. Define

$$P' = \left(\begin{array}{cc} P & \vdots & 0 & \vdots & 0 \\ 0 & \vdots & 1 & \vdots & 0 \end{array}\right) \in \mathbb{S}'$$

and clearly $P_1 \subset P'$.

Hence S' is a q-covering design $C_q[n+l,(m,0),(m_1,0)]$, i.e.,

$$C_q(n+l,(m,0),(m_1,0)) \leq C_q(n+l-1,(m-1,0),(m_1,0)).$$

Suppose that m = n - t,

$$C_q(n+l,(n-t,0),(m_1,0)) \le C_q(n+l-1,(n-1-t,0),(m_1,0))$$

from Theorem 3.4, that is, the value of $C_q(n+l,(n-t,0),(m_1,0))$ is a non-increasing sequence of positive integers as n increases for any fixed and l, t and m_1 . Hence, there is a constant C_{l,t,m_1} such that

$$C_o(n+l,(n-t,0),(m_1,0)) = C_{l,t,m_1}$$

whenever n is sufficiently large.

Lemma 3.1 $C_q(n+l,(m,0),(1,0)) = |S_q[(1,0),(m,0),n+l]| = \frac{q^l(q^n-1)}{q^m-1}$, whenever m divides n.

Lemma 3.2 If $\delta \geq 0$, then $C_q(n+l+\delta,(m+\delta,0),(m_1,0)) \leq C_q(n+l,(m,0),(m_1,0))$.

Theorem 3.5 If $n \le 2m$, then $C_q(n+l,(m,0),(1,0)) = q^l \lceil \frac{q^n-1}{q^m-1} \rceil$.

Proof By lemma 3.1, $C_q(2(n-m)+l, (n-m, 0), (1, 0))$

$$=\frac{q^l(q^{2(n-m)}-1)}{q^{n-m}-1}=q^l(q^{n-m}+1)=q^l\lceil\frac{q^n-1}{q^m-1}\rceil.$$

By lemma 3.2,

$$C_q(n+l,(m,0),(1,0)) = C_q(2(n-m)+2m-n+l,(n-m+(2m-n),0),(1,0))$$

$$\leq C_q(2(n-m)+l,(n-m,0),(1,0)) = q^l \lceil \frac{q^n-1}{q^m-1} \rceil.$$

Note that

$$C_q(n+l,(m,0),(1,0)) \ge q^l \lceil \frac{q^n-1}{q^m-1} \rceil$$

from Theorem 3.3. From the above two aspects,

$$C_q(n+l,(m,0),(1,0)) = q^l \lceil \frac{q^n-1}{q^m-1} \rceil$$
, if $n \le 2m$. \square

Theorem 3.6
$$T_q(n+l,(m,l),(m_1,l)) \leq {n-m+m_1 \brack m_1-l}_q, \ l \leq m_1 \leq m.$$

Proof Let Q be a subspace of type $(n+l-m+m_1,l)$ in $\mathbb{F}_q^{(n+l)}$ and \mathbb{S} is the set of all the subspaces of type (m_1,l) contained in the subspace Q. From the anzahl formulas,

$$|S| = N(m_1, l; n + l - m + m_1, l; n + l, n) = \begin{bmatrix} n - m + m_1 \\ m_1 - l \end{bmatrix}_a$$

Let P be a subspace of type (m, l). Since

$$\dim Q + \dim P = n + l - m + m_1 + m = n + l + m_1,$$

$$\dim(P \cap Q) \ge m_1.$$

Therefore, the subspace P contains at least one subspace of type (m_1, l) of S. By the definition of q-Turán design, S is a q-Turán design $T_q[n+l,(m,l),(m_1,l)]$, which implies that

$$T_q(n+l,(m,l),(m_1,l)) \leq |\mathbb{S}| = \begin{bmatrix} n-m+m_1 \\ m_1-l \end{bmatrix}$$
. \square

§4 q-analog of Steiner systems

Definition 4.1 A Steiner structure $S_q[(m_1, 0), (m, 0), n+l]$ is a collection S of elements from $\mathcal{M}(m,0;n+l,n)$ satisfying that each element from $\mathcal{M}(m_1, 0; n+l, n)$ is contained in exactly one element of S. The subspaces of type (m,0) in the Steiner structure $S_q[(m_1,0),(m,0),n+l]$ are called blocks.

The total number of blocks in the Steiner structure Lemma 4.1 $S_q[(m_1,0),(m,0),n+l] \text{ is } q^{m_1l} \frac{{n \brack m_1}_q}{{m \brack m}_1}.$

Theorem 4.1 If the Steiner structure $S_a[(m_1,0),(m,0),n+l]$ exists, $m_1 \ge 2$, then the Steiner structure $S_q[(m_1-1,0),(m-1,0),n+l-1]$ exists.

Proof Let S be the Steiner structure $S_q[(m_1,0),(m,0),n+l]$ and denote $\mathbb{F}_a^{(n+l)}$ by the following form:

$$\mathbb{F}_{a}^{(n+l)}=U_{n+l-1}\oplus U_{1},$$

where U_{n+l-1} is the subspace of type (n+l-1,l) of $\mathbb{F}_q^{(n+l)}$ and U_1 is the subspace of type (1,0) of $\mathbb{F}_q^{(n+l)}$. Define the set S':

$$\mathbb{S}' = \{ W \cap U_{n+l-1} | W \in \mathbb{S}, \ U_1 \subseteq W \}.$$

Clearly

$$W \cap U_{n+l-1}$$

of S' are the subspaces of type (m-1,0) of $\mathbb{F}_q^{(n+l-1)}$. For each subspace Y of type $(m_1-1,0)$ of $\mathbb{F}_q^{(n+l-1)}$, $Y \oplus U_1$ is a subspace of type $(m_1,0)$ of $\mathbb{F}_q^{(n+l)}$. Therefore, $Y \oplus U_1$ is exactly contained in one subspace W of type (m,0) of S, that is, Y is exactly contained in one subspace

$$W \cap U_{n+l-1}$$

of S'.

Therefore, S' is the Steiner structure $S_q[(m_1-1,0),(m-1,0),n+l-1]$, $m \geq 2$.

Corollary 4.1 If the Steiner structure $S_q[(m_1,0),(m,0),n+l]$ exists, then $\frac{\left[m-i \atop m_1-i \right]_q}{\left[m-i \atop m_1-i \right]_q}$ $(0 \le i \le m_1-1)$ is integer.

There are at least two trivial Steiner structures $S_q[(m_1,0),(n,0),n+l]$ and $S_a[(m_1, 0),$ $(m_1,0), n+l$.

Theorem 4.2 If $n \leq 2m - m_1$, there only exists the trivial Steiner structure $S_q[(m_1, 0), (n, 0), n + l]$.

Proof Let $\mathbb S$ be the Steiner structure $S_q[(m_1,0),(m,0),n+l],\,n\leq 2m-1$ m_1 and suppose that there are two different subspaces W_1 and W_2 of type (m,0) in S. By the definition of the Steiner structure $S_q[(m_1,0),(m,0),n+l],$

$$\dim(W_1\cap W_2)\leq m_1-1,$$

that is,

$$\dim(W_1 + W_2) = 2m - \dim(W_1 \cap W_2) \ge 2m - m_1 + 1 \ge n + 1 > n,$$

a contradiction to $\mathbb{F}_q^{(n+l)}$

Therefore, $\mathbb S$ is the Steiner structure $S_q[(m_1,0),(n,0),n+l]$, a trivial Steiner structure. \square

Theorem 4.3 If $2m - m_1 < n < 2m$, there only exists the trivial Steiner structure $S_q[(m_1, 0), (m_1, 0), n + l]$.

Proof Let S be the Steiner structure $S_q[(m_1,0),(m,0),n+l]$, $2m-m_1 < n < 2m$. Any subspace of type $(2m-m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ contains at most one subspace of type (m,0) of S. Otherwise, suppose that the subspace of type $(2m-m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ contains at least two different subspaces W_1 and W_2 of type (m,0). By

$$\dim(W_1 + W_2) \le 2m - m_1,$$

 $\dim(W_1 \cap W_2) > m_1.$

a contradiction to the definition of the Steiner structure $S_q[(m_1,0),(m,0),n+l]$.

There are

$$N'(m, 0; 2m - m_1, 0; n + l, n) = q^{ml - m_1 l} \begin{bmatrix} n - m \\ m - m_1 \end{bmatrix}_q$$

subspaces of type $(2m-m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ containing a given subspace of type (m,0) of \mathbb{S} . Note that the total number of subspaces of type $(2m-m_1,0)$ in $\mathbb{F}_q^{(n+l)}$ is

$$N(2m - m_1, 0; n + l, n) = q^{2ml - m_1 l} \begin{bmatrix} n \\ 2m - m_1 \end{bmatrix}_q.$$

Hence,

$$q^{ml-m_1l} \begin{bmatrix} n-m \\ m-m_1 \end{bmatrix}_a \cdot |S|$$

$$=q^{ml-m_1l}\begin{bmatrix}n-m\\m-m_1\end{bmatrix}_q\cdot q^{m_1l}\frac{\begin{bmatrix}n\\m_1\end{bmatrix}_q}{\begin{bmatrix}m\\m_1\end{bmatrix}_q}\leq q^{2ml-m_1l}\begin{bmatrix}n\\2m-m_1\end{bmatrix}_q.$$

Since $2m - m_1 < n < 2m$,

$$\frac{(q^{n-m_1+1}-1)(q^{n-m_1+2}-1)\cdots(q^{2m-m_1}-1)}{(q^{n-m+1}-1)(q^{n-m+2}-1)\cdots(q^m-1)}\cdot\frac{1}{q^{(m-m_1)l}}\leq 1,$$

furthermore,

$$\frac{(q^{n-m_1+1}-1)(q^{n-m_1+2}-1)\cdots(q^{2m-m_1}-1)}{(q^{n-m+1}-1)(q^{n-m+2}-1)\cdots(q^m-1)}\leq 1,$$

that is,

$$m=m_1.$$

Therefore, $\mathbb S$ is the Steiner structure $S_q[(m_1,0),(m_1,0),n+l]$, a trivial Steiner structure. \square

Corollary 4.2 If there exists a nontrivial Steiner structure $S_q[(m_1, 0), (m, 0), n + l], n \ge 2m$.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No.61179026 and the Fundamental Research Funds for the Central Universities under Grant No.SY-1416.

References

- [1] Koetter R., Kschischang F.R. Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory, 2008, 54(8): 3579-3591.
- [2] Ahlswede R., Cai N., Li S.Y.R., Yeung R.W. Network information flow. IEEE Trans. Inf. Theory, 2000, 46(4): 1204-1216.
- [3] Gadouleau M., Yan Z. Packing and covering properties of subspace codes for error control in random linear network coding. IEEE Trans. Inf. Theory, 2010, 56(5): 2097-2108.
- [4] Koetter R., Kschischang F.R. Error correction in random netwok. presented at the 2nd Annual Workshop on Information Theory and Applications, La Jolla, CA, 2007.
- [5] Ho T., Medard M., Koetter R., Karger D., Effros M., Shi J., Leong B. A random linear network coding approach to multicast. IEEE Trans. Inf. Theory, 2006, 52(10): 4413-4430.

- [6] Silva D., Kschischang F.R., Koetter R. rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory, 54(9): 3951-3967.
- [7] Gabidulin E. Bossert M. Codes for network coding. in Proc. IEEE Int. Symp. Information Theory, Toronto, ON, Canada, 2008.
- [8] Gadouleau M., Yan Z. Constant-rank codes. in Proc. IEEE Int. Symp. Information Theory, Toronto, ON, Canada, 2008.
- [9] Van lint J.H., Wilson R.M. A course in combinatorics. Cambridge University Press, 1992.
- [10] Braun M., Kerber A., Laue R. Systematic construction of q-analogs of t- (v,k,λ) -designs. Designs, Codes and Cryptography, 2005, 34(1): 55-70.
- [11] Schwartz M., Etzion T. Codes and anticodes in the Grassmann graph. J. Combin. Theory, ser. A, 2002, 97(1): 27-42.
- [12] Etzion T., Vardy A. On q-analogs for Steiner systems and covering designs. Math. Commum, 2011, 5(2): 161-176.
- [13] Etzion T. Covering of subspaces by subspaces, Designs. Codes and Cryptography, 2012, 72(2): 405-421.
- [14] Wang Kaishun, Guo Jun, Li Fenggao. Singular linear space and its applications. Finite Fields Appl, 2011, 17(5): 395-406.
- [15] Wan Zhexian, Geometry of Classical Groups Over Finite Fields, Science Press, Beijing, China, 2nd edition, 2002.