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Abstract: In this paper, g-analogs of covering designs and Steiner systems
based on the subspaces of type (m,0) and the subspaces of type (m;,0)
in singular linear space IF,(,"'H) over F, are presented, m; < m. Then
the properties about g-analogs of covering designs and Steiner systems are
discussed.

Keywords: q-analog, covering designs, Steiner systems, singular linear
space.

§1 Introduction

Let Iy be a finite field with ¢ elements, where ¢ is a power of a prime and
F,‘,"” is the n-dimensional row vector space over [y, where n is a positive
integer. The set of all the subspaces with dimension & of IF',(,") is called

Grassmannian space over F,, denoted by Gq(n, k). For any two subspaces
U and V in G (n, k), define the distance function between U and V'

d(U,V) = 2m - 2dim(U N V).

The function above is proved a metric (see [1]), thus P,(n) can be regarded
as a metric space.

A nonempty collection C of G,(n, k) is called a subspace code (n,M,d, k),
if the size is M and the minimum distance is d.

Subspace code plays an important role in random network coding (see
(2,3]). R.Koetter and F.R.Kschischang!*%! defined an operator channel
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when they studied random network coding, meanwhile, they showed that
the errors and erasures could be corrected by a subspace code (n, M, d, k)q
over the operator channel if the sum of errors and erasures is less than %.
These research results motivate great interests of more and more people in
subspace codes (see [3]-(8]).

g-analogs of combinatoric designs are the necessary studied directions
to subspace codes. Van lint J.H. and Wilson R.M.1 present that various
known combinatorial problems such as Sperner’s Theorem have g-analogs.
Braun M., Kerber A., laue R. and Suzuki H.['9 studied q-analogs of t-
designs. Koetter R. and Kschischang F.R.[l demonstrated the application
of codes over the Grassmannian to error-correction in random network
coding. schwartz M. and Etzion T.[11] present the codes and anticodes in
the Grassman gragh. Etzion T. and Vardy A.'? discussed the g-analogs of
basic designs based on vector space of domension n. Etzion T.[13] discussed
the covering of subspaces by subspaces about g-covering design C, [n,k,7].

In this paper, g-analogs of covering designs and Steiner systems based
on singular linear space IFE,"“) over [, are presented. Meanwhile, the prop-
erties about g-analogs of covering designs and Steiner systems are discussed.

§2 Preliminaries

Let F, be a finite field with g elements, where g is a prime power. lF((,"“)

is the (n + |)—dimensional row vector space over FF,, where n and ! are two
non-negative integers. The set of all (n +!) x (n + ) nonsingular matrices

over [F, of the form
Ty T
0 Tn )’

where Ty; and T, are nonsingular n x n and ! x ! matrices, respectively,
forms a group under matrix multiplication, called the singular general linear
group of degree n + ! over F, and denoted by GLn11,n(F,).

We have an action of GLy4i.,(F,) on IFS,"“) defined as follows:

IF‘(,’H'I) X GLnyin(Fy) — EF((‘n+l)

((-"713 Ty ngly y$u+l)v T) — (xla ey Iyttt ,$.;+1)T~
The vector space E“,(,"+'), together with the above group action, is called the
(n + 1)-dimensional singular linear space over F, (see [14]).
Let e; (1 <1 < n+!) be the row vector in IF.(,”'H) whose i-th coordinate is
1 and all other coordinates are 0. Denote by E the {-dimensional subspace
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of IF',(,"+') generated by €,41,€n42," -, €nt+i. An m-dimensional subspace P
of Fy'*" is called a subspace of type (m, k) if dim(P N E) = k.

Introduce the anzahl formulas (see [14]) and use the Gaussian coefficient /5]
for brevity

m.

l'f (¢t -1)

[mZ] __ t=ma—my+1
Mg -1
t=1

By convenience ["5’]q =1 and [;’::] = 0 whenever m; < 0 and my < m;.
q

Denote the set of all the subspaces of type (m, s) in Ff,"“) by M(m, s;n+
{,n) and let
N(m,s;n +1,n) = |M(m,s;n +,n)|

It is verified that M(m, s;n + I, n) is non-empty if and only if
0<s<land0<m-—-s<n.

Moreover, if M(m, s;n + 1, n) is non-empty, then

N("7'9s;n+l,n)=q(m_3)(l-8)[ n } [l] .
q q

m-—s S

Let P be a given subspace of type (m, s) in I[",(,"+[). Denote by M(m,, sy;

m,s;n + 1, n) the set of all the subspaces of type (m;,s;) contained in P.
Let
N(my,s1;m, 80 4+ 1,n) = [M(my, s;;m, s;n + [, n)|.

It is verified that M(my, sy;m,k;n + 1, n) is non-empty if and only if
0<s;<k<land0<m; —s;<m-s<n.

Moreover, if M(my, s;;m, s;n + [,n) is non-empty, then

N(ml,sl;m,s;n+l,n)=q("‘"'")("’l) [ m_S:I [S] .
my —Sif, Ls1],

Let P a given subspace of type (m1, s1) in ]F,(,"“). Denote by M'(m,, s;;
m, s;n +[,n) the set of all the subspaces of type (m, s) containing P. Let

N'(my,s1sm, sin + L,n) = |M'(my, s15m, sin + 1, n))|.
It is verified that M'(my,sy;m, s;n +1,n) is non-empty if and only if

0<s1<s<land0<m;—-s1<m—-—s<n
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Moreover, if M'(my,s1;m, s;n + l,n) is non-empty, then
N'(my,s;;m,s;n+1,n)

] (i R el R

A Steiner structure Sg[(m4,0), (m,0),n+1] is a collection S of elements
from M(m,0; n +1, n) satisfying that each element from M(m1,0;n+1,7n)
is contained in exactly one element of S.

A g-covering design Cy[n+1, (m,0),(m;,0)] is a collection S of elements
from M(m,0;n +1,n) satisfying that each element from M(m;,0;n+1,n)
is contained in at least one element of S.

A o-Turén design T,[n +{,(m,0), (m;,0)] is a collection S of elements
from M(my,0;n + I, n) satisfying that each element of M(m,0;n +,n)
contains at least one element from S.

Let the g-covering number Cy(n + l,(m,0), (m,,0)) be the minimum
number of a g-covering design Cy[n +1,(m,0), (m;,0)] and let the g-Turdn
number T,(n +1,(m,0), (m,,0)) be the minimum number of a q-Turdn de-
sign Ty[n+1, (m,0), (m1,0)]. Itis clear that a Steiner structure Sy[(m,, 0), (m
,0),n+1] is the smallest g-covering design Cy[n +1, (m,0), (m,,0)], that is,

ISQ[(ml’ 0)1 (m, 0)7" + l” = Cq(n +1, (me), (ml»O))'

83 g-analogs of covering designs

Definition 3.1 A g-covering design Cy(n + {,(m,0),(m,,0)] is a
collection S of elements from M(m,0; n+{,n) satisfying that each element
from M(m1,0;n + I, n) is contained in at least one element of S.

Definition 3.2 A g-Turédn design Ty{n +1,(m,0), (m,,0)] is a collec-
tion S of elements from M(m,,0;n + [,n) satisfying that each element of
M(m,0;n + I, n) contains at least one element from S.

Given a set S C M(m,0;n + l,n), define the following set St the
orthogonal complement of S:

st ={At:Aes},

where AL € M(n + 1 —m,l;n+{,n) is the orthogonal complement of the

subspace 4 of type (m,0) in F&**9.
Theorem 3.1 S is a g-covering design Cy[n +1, (m,0), (m;,0)] if and
only if St is a q-Turdn design Ty[n + I, (n + 1 —my, 1), (n + 1 —m,l)].
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Proof Let S be a g-covering design Cy[n + I, (m,0), (m;,0)]. By the
definition of S , S* is a set of elements from M(n+1—m,l;n+ l,n). For
each element

AeMn+l-my,lin+1n),
Al is a subspace of type (m;,0) in F{**). Since S is a g-covering design
Cy[n +1,(m,0), (m1,0)], there exist at least one element B € § satisfying
that
Al g B, .

that is,
AD Bt est.

Hence, each element of M(n + ! — my,l;n + ,n) contains at least one
element from S*. Thus, S$* is a q-Turén design

Tyn+1,(n+1-my,l),(n+1-m,l)).
Similarly, if S is a g-Turdn design
Tyln+1,(n+1—my, 1), (n+1—m,1),
S* is a g-covering design
Cyln +1,(m,0),(m,,0)]. O

Corollary 3.1 C,(n+1,(m,0),(m1,0)) = Ty(n+l, (n+l—my,1), (n+
1 —m,1)).

Theorem 3.2 Cy(n +1,(m,0),(m1,0)) > L2 =L Cy(n+1~1,(m —
1,0), (m; — 1,0)).

Proof Let S be a optimal g-covering design Cqy[n + I, (m,0), (m4,0)],
that is, the number of subspaces of type (m, 0) in the g-covering design
Cyln +1,(m,0), (m;,0)] is

Cq(n +1, (m, 0)’ (mlﬁ 0))

For each subspace of type (m,0) in S, there are

m_q

N(1,0,m,0;n+1,n) = qq_ 1

subspaces of type (1,0) contained in such subspace of type (m,0). The
total number of subspaces of type (1,0) in F{**! is
!

ntl _
N(1,0;n+1,n) = gq——lq
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Therefore, there exists a subspace P of type (1,0) in ]F'¢(,"+l) and the sub-
space P is contained in at most
gm -1
———an =7 Cq(n +1,(m,0), (m4,0))
elements of S. Suppose that the above subspace P is contained in r elements
of S. Clearly,

qm -1
T S -‘}n—“_—qTCq(n + l, (m,O), (ml, 0)).
Let IFS"“) = P & Q, where Q is a subspace of type (n+1!—1,[) of ]Ff,""'l).
Define
S={YNQ:YeSand PCY},

then there are r subspaces of type (m —1,0) in §'.

Let A be a subspace of type (m; — 1,0) of Q, and then P® A is a
subspace of type (m;,0). Therefore, there is at least one X € S satisfying

that
PopACX.

Furthermore,
A=(PA)NQC XnNQ.

Clearly, X N Q € §/, that is, each subspace of type (m; — 1,0} i
is contained in at least one subspace from §'. Thus,

S'={YNQ:YeSand PCY}

n ]F(('n-{»l—l)

is a g-covering design Cy[n +{ —1,(m - 1,0),(m; — 1,0)], then
m

9 - lqu(n+l, (m,0), (m1,0)).

Cq(n+l—l, (711-1,0), (m1—1,0)) S r _<_ m

the Theorem 3.2 follows immediately. O
(]

Theorem 3.3 C,(n +1,(m,0),(m,;,0)) > q"‘"l—-]-l' .
Proof Let S be a g-covering design Cy[n+1, (m,0), (m,,0)]. For a fixed
subspace P of type (m,0) of S, there are
N(my,0;m,0;n+1,n) = [ m ]
my q
subspaces of type (m;,0) which are contained in the fixed subspace P. The
total number of subspaces of type (m;,0) in IFf,"'H) is

N(mi,0n +1,n) = g™ [ " } .
my q
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Thus

(],

ISI 2 qm;l

m

=],
Furthermore, if

n
— myl [m\]q
IS| = g™ +—+,
my q

each subspace of type (m,0) in IF((,"“) is exactly contained in one subspace
of type (m,0) from S. If so, S is called the Steiner structure S[(m;,0), (m,0

pn+l. O
Theorem 3.4 Cy(n+l,(m,0), (m1,0)) < Cy(n+l-1, (m-1,0),(m;,0)).
Proof Let S be a g-covering design Cy[n + [ — 1, (m — 1,0), (m;,0)],
that is,
S={(P:0) cF*=Y:dim(P:0)=m—1and dim((P : 0) N E) = 0}.

Construct the following set S’ from S:

SI={P'=(P O fO)CF((]n-H)},
0 :1 :0

where dimP’ = m and dim(P' N E) = 0.
Let P, be a subspace of type (m,0) in ]F‘.(,"+') and denote also by P; a
matrix representation of the vector subspace P, i.e.,

P1= R1 I .0 )
Ry zs .0

If 1y = a9 = 0, then ( By 0

Ry, :0
F =D Since Sis a q-covering design Cy[n+{-1, (m—1,0), (my, 0)], there
R :0
R, :0

P = P 0 0 cs
0 :1 :0
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and clearly P, C P'.

If rank il ) = 1, without loss of generality, let z; =0, £z = 1, then
2

P1= R[ 0 0 ’
R, 1 :0

Pl_ Rl 0 0 )
0 1 :0

Since (R; : 0) is a subspace of type (m1 — 1,0) in IF.(,"“'I), there is a
subspace Rz of type (m;,0) in ]F.(,"“—l) such that (R; : 0) C Rs. Next,
there exist at least one subspace (P : 0) € S such that R; C (P : 0). Define

p=Ff 00 ey
0 :1 :0
and clearly P, C P'.

Hence §' is a g-covering design C,[n + 1, (m,0),(m;,0)], i.e.,

furthermore,

Cqy(n+1,(m,0),(m,0)) < Co(n+1-1,(m - 1,0),(m,,0)). O
Suppose that m = n —t,
Cy(n+1,(n—1,0),(m,0)) < Cy(n+1—1,(n~1-t,0),(m,0))

from Theorem 3.4, that is, the value of Cy(n+1, (n—t,0), (m;,0)) is a non-
increasing sequence of positive integers as n increases for any fixed and [, ¢
and m,. Hence, there is a constant Cj ¢ m, such that

Cq(n + l7 (n —t, 0)1 (ml’o)) = Cl.t,ml

whenever n is sufficiently large.

Lemma31  Cy(n +1,(m,0),(1,0) = [S[(1,0),(m,0),n + | =
9'—@_;112, whenever m divides n.

Lemma 3.2 If§ > 0, then Cy(n+1+46,(m+4,0),(m,0)) < Co(n +
l.{m,0), (m,,0)).

Theorem 3.5 If n < 2m, then Cy(n +1{,(m,0),(1,0)) = q'[-g,',l,%’l .
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Proof By lemma 3.1,
Co(2(n —m) +1,(n —m,0),(1,0))

_ ql(q2(n-m) _ 1) _
- qn—m — 1 -

1 n-m _arg -1
q9(q +1)—qfq-——,,._11-

By lemma 3.2,
Cq(n+l,(m,0),(1,0)) = Cy(2(n—m)+2m—n+l, (n—m+(2m—n),0),(1,0))

< Cy(2(n—m)+l, (n—m,0),(1,0)) = ¢' [_;Im - 11]‘
Note that n_ 1
Cq(n + l, (m,0)1 (190)) > qlrgm _ 1.|

from Theorem 3.3. From the above two aspects,

Co(n +1,(m,0),(1,0)) = q’[;’mzll], ifn<2m. O

Theorem 3.6 T, (n +1, (m,1), (my,1)) < ["‘m"ff?"‘]q» I<my <m.

Proof Let Q be a subspace of type (n+1—m+m,,1) in ]F((,"“) and S
is the set of all the subspaces of type (mj,!) contained in the subspace Q.
From the anzahl formulas,

|S|=N(ml,l;n+l—m+m1,l;n+l,n)= [n—m+m1J .
m]-—l q

Let P be a subspace of type (m,!). Since
dim@Q +dimP=n+l-m+m+m=n+!+m,

dim(P N Q) > m,.

Therefore, the subspace P contains at least one subspace of type (my,0)
of S. By the definition of g-Turdn design, S is a g-Turén design Ty[n +
l,(m,l), (m1,!)], which implies that

Ty(n +1, (m,1), (m1,1)) < |S| = ["-m+m1] -
q

mi -1
84 qg-analog of Steiner systems
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Definition 4.1 A Steiner structure S;[(m;,0), (m,0),n+1] is a collec-
tion S of elements from M(m, 0;n + 1, n) satisfying that each element from
M(my,0;n +1,n) is contained in exactly one element of S. The subspaces
of type (m,0) in the Steiner structure S;[(m;,0),(m,0),n + ] are called

blocks.
Lemma 4.1 The total number of blocks in the Steiner structure

S,[(my,0), (m,0),n + {] is g™ e,
q[(m1,0),(m,0),n + 1] is ¢ I_xT:
Theorem 4.1 If the Steiner structure S;[(m;,0), (m,0),n+1] exists,
my > 2, then the Steiner structure Sg[(m; —1,0),(m—1,0),n+~ 1] exists.
Proof Let S be the Steiner structure Sg[(m,,0), (m, 0), n+l] and denote
F**) by the following form:

Ff,"“) = Up41-1 0 Un,

where Uy, 41— is the subspace of type (n +{ —1,1) of lF,(,"“) and U, is the
subspace of type (1,0) of F**). Define the set S':

S = (WU, |WES, Uy CW}.

Clearly
wn Un+l-—1

of §' are the subspaces of type (m — 1,0) of F{rHoD,

For each subspace Y of type (m;—1,0) of II",(,"+I_1), Y ®U, is a subspace
of type (my,0) of FS**. Therefore, Y @ U, is exactly contained in one
subspace W of type (m,0) of S, that is, Y is exactly contained in one

subspace
wn Un+l—l

of §'.

Therefore, S’ is the Steiner structure S,[(m1 —1,0),(m—1,0),n+1-1],
m>2 0

Cc[)rollary 4.1 If the Steiner structure S,((m,,0), (m,0), n+[] exists,

i) . o
then +——=% (0 < i < m; — 1) is integer.
m (0<i<m —1) g

There are at least two trivial Steiner structures Sg[(my,0), (n,0),n +1]
and S4[(m,,0),
(ml,O), n-+ l]

Theorem 4.2 If n < 2m — m,, there only exists the trivial Steiner
structure Sy[(m1.0), (n,0),n +1].

Proof Let S be the Steiner structure S{(m1,0),(m,0),n+1),n < 2m—
my and suppose that there are two different subspaces Wi and W; of type
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(m,0) in S. By the definition of the Steiner structure S,[(my,0), (m,0),n+

],
dim(Wy N W) <m; —1,

that is,

dlm(W] +W2) =2m—dim(Wan2) 22m-my+12>2n+1>n,
a contradiction to F&**!)

Therefore, S is the Steiner structure S,[(m1,0), (n,0),n + I}, a trivial
Steiner structure. O

Theorem 4.3  If 2m — m; < n < 2m, there only exists the trivial
Steiner structure Sg[(m,0), (m;,0),n + ).

Proof Let S be the Steiner structure Sg[(my,0), (m,0), n+l], 2m—m; <
n < 2m. Any subspace of type (2m —m,,0) in ng""'l) contains at most one
subspace of type (m, 0) of S. Otherwise, suppose that the subspace of type
(2m —my,0) in FS**Y contains at least two different subspaces W; and W,
of type (m,0). By

dim(W; + W) < 2m — m,,

dim(Wy N Wy) > my,
a contradiction to the definition of the Steiner structure Sy[(m,,0), (m,0), n+
).
There are

N'(m,0;2m — my,0;n + I, n) = g™—m! { n-—m ]
m—-m q

subspaces of type (2m—-m;,0) in ]F'f,"+l) containing a given subspace of type
(m,0) of S. Note that the total number of subspaces of type (2m — m,,0)
in F"*Y s

N(2m—m1,0;n+l,n)=q2'"'-mr'[ n ] :
2m‘—'ml q

Hence,
qml—m,l [ n—-m ]q . IS|

m—m,
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Since 2m — m; < n < 2m,

(qn-m1+l _ 1)(qn—m1+2 — 1) e (q2m—m| - 1) . 1 <1
(qn—-m+l — 1)(q"""+2 —1)--- (g™ - 1) q(m—ml)l =4

furthermore,

(qn—m,+l _ 1)(qn—-m\+2 - 1) e (q2m—m1 - 1)

<1
(qn—m+l — 1)(qn—m+2 - 1) <o (g™ — 1) !

that is,
m=m.

Therefore, S is the Steiner structure Sq[(my,0), (my,0),n + 1], a trivial

Steiner structure. O
Corollary 4.2 If there exists a nontrivial Steiner structure Sa{(m4,0), (

m,0),n +1], n > 2m.
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