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Abstract

Eternal domination of a graph requires the positioning of guards
to protect against an infinitely long sequence of attacks where, in
response to an attack, each guard can either remain in place or move
to a neighbouring vertex, while keeping the graph dominated. This
paper investigates the m-eternal domination numbers for 5 x n grid
graphs. The values, previously known for 1 < n < 5, are determined
for 6 < n < 12, and lower and upper bounds derived for n > 12.

1 Introduction

A dominating set for a graph can be thought of as a positioning of guards
on vertices so that every vertex can be monitored from a distance of at most
one. The smallest size of such a set for a graph is the graph’s domination
number. An eternal dominating family for a graph can bhe thought of as
a collection of such sets of positions resulting from having to move guards
to respond to an arbitrary infinitely long sequence of individual attacks at
various vertices. As a result of an attack, a neighbouring guard moves to
the point of the attack, and each of the remaining guards can either remain
in place or move to a neighbouring vertex to keep the graph dominated.
The domination number for the family where the sets have the smallest

JCMCC 97 (2016), pp. 83-102



such number is the eternal domination number. This has been referred to
as the “all guards move model” or “eternal m-security” [11] and as “m-
eternal domination” [8]. The m-eternal domination number for members
of the family of 5 x n grid graphs is the focus of this paper.

The domination numbers for m x n grid graphs are known for all val-
ues of m and n. The first results from Jacobson and Kinch [10] appeared
thirty years ago and the latest results by Gongalves, Pinlou, Rao, and
Thomassé [9] appeared three years ago. The m-eternal domination num-
bers for all n are known for 2xn grid graphs (see Goldwasser, Klostermeyer,
and Mynhardt [8]) and 4 x n grid graphs (see Beaton, Finbow, and Mac-
Donald [2]). The m-eternal domination numbers for 3 x n grid graphs have
been investigated (see Goldwasser et al. (8] and Finbow, Messinger, and van
Bommel [6]); however, the values for 5 x n grid graphs are largely unknown.

The organization of the paper is as follows. Formal definitions are pro-
vided in the next section. Previous work on the domination number of the
5 x n grid graph by Chang and Clark [4], along with several statements
giving restrictions on the domination sets, are outlined in Section 3. Ex-
tensions of these statements that prove useful in establishing the bounds
of the m-eternal domination number are presented in Section 4. A lower
hound is proven in Section 5, exact values for 1 < n < 12 are provided in
Section 6, and Section 7 derives an upper bound for all n. Finally, Section 8
summarizes the results.

2 Definitions

A dominating set of a graph G = (V, E) is a subset D C V whose closed
neighbourhood is V; that is, for every vertex u € (V — D) there exists v € D
adjacent to u. Each vertex v € D is called a guard and, for each vertex
in the closed neighbourhood of v, we say v defends z, and z is defended if
there exists such a v, otherwise z is undefended. The domination number
v(G) of a graph G is the cardinality of a smallest dominating set.

Let D,(G) be the set of all dominating sets of G which have cardinality g.
Let D, D' € Dy(G). We will say D transforms to D' if D = {v1,v2,...v4},
D' = {uy,uz,...uq} and u; € N[v;] fori = 1,2,...q. Such a transformation
can be described as a move, or the movement of each guard from its position
in D to its corresponding (adjacent or identical) position in D'.

In the “eternal domination game” a defender is given g guards to protect
the graph from an infinite series of attacks on single vertices made by an
attacker. An m-eternal dominating family of G is a subset £ C IDy(G) for
some q so that for every D € £ and every possible attack v € V(G), there
is a dominating set D’ € £ so that v € D' and D transforms to D'. The
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transformation to D protects the graph in response to the attack. When
the value of ¢ in the above definition is known we will refer to this family
as an m-eternal dominating family with g guards. A set D € Dy(G) is an
m-eternal dominating set if it is a member of some m-eternal dominating
family. Note that the set of all m-eternal dominating sets for some g is an
m-eternal dominating family. The m-eternal domination number v°(G) of
a graph G is the minimum cardinality of the dominating sets that constitute
an m-eternal dominating family for G.

The m x n grid graph is denoted P, O P, as it is the Cartesian product
of two path graphs P,, and P,. The Cartesian product of graphs G and
H is denoted by GO H. The vertex set of GOH is V(GDH) = {(»,v)|u €
V(G),v € V(H)}, and two vertices (u,v) and (u/,v’) are adjacent if and
only if u = «’ and vv’ € E(H) or v = v/ and wu’ € E(G). The vertices of
P (respectively P,) are labeled in their usual ordering uy,us, ... um (resp.
V1,V2,... ’Un).

The following definition borrowed from Chang and Clark [4] defines s;
to be the number of guards in column j.

Definition 1. Let C; = {(1,5),(2,7),...,(n,j)} denote the vertices in
column j of P,OP,. A sequence (s1,52,...,Sn) of non-negative integers is
called a dominating sequence for P; 0P, if there is a dominating set S
for P,OP, such that s; = [SNCj| for j=1,2,...,n.

In this paper, we discuss the m-eternal domination numbers of m x n
grid graphs with m = 5. Each copy of P;, corresponding to a vertex of
P,, is referred to as a column. We refer to each of the columns as the first
column, second column, third column, etc. and as column 1, column 2,
column 3, etc. starting from one the columns corresponding to a leaf of
Py, and proceeding consecutively. We refer to specific vertices using pairs
consisting of the row and column number; for example, the bottom vertex
of column 2 is referred to as vertex (5, 2).

In constructing m-eternal dominating families we make use of the sym-
metries of the 5 x n grid graph. Given a dominating set D € Dy(Ps0P,), a
vertical reflection of D (about the horizontal line of symmetry) is denoted
D,, while a horizontal reflection (about the vertical line of symmetry) is de-
noted Dy. A rotation of a dominating set D by 180° (which is the same as
both the vertical reflection of D}, and the horizonal reflection of D,) is de-
noted D,. When we wish to discuss an arbitrary symmetry of a dominating
set D, we denote it D;.

For example, in the m-eternal dominating family for P; 0 P illustrated
in Figure 1, there are six dominating sets, or one set A and its horizontal
reflection A, (A, = A and A, = A,), and another set and its three symme-
tries. A vertex containing a guard is denoted by a bullet. Each vertex not
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Figure 1: An m-eternal dominating family for Ps0Ps with 9 guards.

containing a guard is labeled with the name of a set to which to transform
in order to protect against an attack on that vertex. In this example, any of
the sets can transform to any of the other sets; thus the protection against
an attack on vertex (3,4) of set A by transformation to A could also be
accomplished by a transformation to B or B,.

Three fundamental theorems are used throughout this paper. Their
proofs are obvious from the definitions, and all appear in some form in
previous works (see for example [6, 7, 12]).

Theorem 2. Given dominating sets D, E € Dy(Prn0P,) and any arbitrary
symmetry s resulting from a reflection or rotation, D transforms to E if
and only if D, transforms to E,.

Theorem 3. For any G, v(G) < vR(G).
Theorem 4. If Y (Pn0OP,) =j and X (PnOP,) =k, then

'Yrc:.'o(.PmDan-q) SJ+k.

86



n | v(Ps0PF,) n | Y(PsOPF,) n | y(PsOPR,)
1 2 6 8 11 14
2 3 7 9 12 16
3 4 8 11 13 17
4 6 9 12 14 18
5 7 10 13 15 19

Table 1: y(PsaP,) for n < 15.

3 Previous Results

We use the formula for the domination number of Ps0 P, graphs given by
Chang and Clark [4]:

|82£8] ifn=23,7

Yok = { [&2£8] otherwise for n > 1.

Domination numbers of P50 P, for n < 15 are listed in Table 1. In Table 2,
we list the previously known m-eternal domination numbers for Psa P,
graphs, along with a reference to the source of each result.

n | ¥y (Ps0P,) | Reference
1 3 [7]
2 4 8]
3 5 (8]
4 6 2]
5 7 3]

Table 2: Known values for y3°(Ps 0 P,) and their references.

The following statements, due to Chang and Clark [4], used to establish
some restrictions on the domination number, assume that (s;, s,...,,) is
a dominating sequence for P;O P,.

S5. If (s1,82,...,8,) is a dominating sequence, then so is the reversed
sequence (Sn,Sn—1,...,81). (The horizontal reflection of a dominating set
is a dominating set.)

S6. 0 < s; < 5. (Each column contains between 0 and 5 guards, inclusive.)
S7. 2{=1 s¢ 2 Y(PsOP;_y) forj = 2.
S8. 3o ; st 2 Y(Ps0Pa_j) forj <nm.
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S9. Z{m- st = ¥Y(PsOPj_i—y) for j =21+ 2.
S10. s; =0 = s, = 5. (No guards in column 1 implies five in 2).

S11. 5, =0 = sj_1+sj41 25 for2<j<n-1 (If a column contains
no guard then the adjacent columns contain a total of at least five guards.)

S12. sy > 1 and s > 1 = 81+ 52 = 3. (The first two columns cannot
each contain ezactly one guard.)

S13. s; > 1 foreach k £j<k+4 = Zf:'_:,‘: 8; > 6. (Five adjacent

columns cannot each contain exactly one guard.)

S14. s; > 1 for each j,1 < j <6 = zg=1 s; > 8. (If each of the first
siz columns contain at least one guard, then the first siz columns contain
at least eight guards.)

S15. If for some j, 2<j<n-—1,s; =0, and for alli < j, s; 2 1, then

§Si> ’Y(P5E1Pj_1)+4 ifj=4,8
~ | v(PsaPj_1)+3 otherwise.

i=1

S16. Ifn =5 and s, > 3 then ?=1 s; > 7. (If there are three or more

guards in column 1, then there are more than seven guards in the Ps0Ps.)

S17. Ifn =9 and s; > 3 then E?=1 s; > 12. (If there are three or more
guards in column 1, then there are more than twelve guards in the Ps0Py.)

The following lemma, due to Chang and Clark [4], is also helpful.

Lemma 18. [{/ Let S be a dominating set for PsO P, and assume that
each of columns i, i+1, i+2, i+3 contains exactly one element of S. Then
2<1i, i+3 <n-—1, and there are only the two possible configurations for
S in columns i, i +1, i +2, and i + 3 shown in Figure 2. It follows that the
guards indicated by circles in the columns i — 1 and i + 4 must lie in S.

i-1 i 1 42 i3 i =1 i i+l 42 i3 4
o L L] o
L] *

] o (-} (-]
. L]

L] © -} L ]

Figure 2: P;0 P, with one guard in four adjacent columns.
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4 Preliminary Results

The following statements used to establish some additional restrictions on
the domination number assume that (s1,82,...,8,) is a dominating se-
quence for Ps0P,.

519. 51 =1 = 3 > 2. (If column 1 contains one guard, then column 2
contains at least two.)

Proof. The one guard in column 1 defends at most three of the vertices in
that column, leaving two vertices to be defended by guards in column 2, so
s3 > 1, and s; + s2 > 3 by S12. O

820. s+, <2 = s =2 and s3 > 3. (If the first two columns
contain at most two guards, then column 1 contains two guards and column
3 contains at least three guards.)

Proof. If s; = 0, then s; = 5 by S10. If s; = 1, then s, > 2 by S19.
Thus sq + s2 < 2 implies s; = 2 and s, = 0, and s; + s3 > 5 by S11, so
83 2> 3. O

S21. If for some j,2>j>n—3,s; =0, and for all i > j, s; > 1, then
n .

R lw J 43
Ny 5
t=j—1

Proof. By S15 and S5, we have

n Y(PsOPn_j)+4 = [6 "’5' +6_|+4 ifj=n-3orn-7

> )
Y(PsOPn_;)+3= lﬂL—;)—+8J +3 otherwise

SLEREL ;

Lemma 22. Let S be a dominating set for PsOP,, n > 3, and assume that
the first three columns contain at most three guards. Then there are three
guards in the first two columns and at least siz in the first four columns,
and there are only the two possible configurations for S in the first three
columns as shown in Figure 3. It follows that the guards indicated by circles
in the figure must lie in S.



1 2 3 4 1 2 3
[ .
-]
L] ] L]
o
[} L]

Figure 3: P50 P, with fewer than four guards in the first three columns.

Proof. If s; = 0, then s, = 5 by S10. If s; = 1, then s; > 2 by 519, so
s2 = 2, s3 = 0, and column 4 would require at least three guards to have all
vertices in column 3 dominated. The only possible configuration of these
guards is shown on the left of Figure 3. If s = 0, then sy +s3 25 by
S11. Finally, if s; = 2 and s; = 1, then s3 = 0 and column 4 would require
at least four guards to have all vertices in column 3 dominated. The only
possible configuration of these guards is shown on the right of Figure 3. O

Lemma 23. Let S be a dominating set for PsOP,, n > 4, and assume
that the first four columns contain at most four guards. Then there are
three guards in the first two columns, one in column 3, zero in column 4,
and at least four in column 5, giving at least eight in the first five columns.
Furthermore, the only possible configuration for the four guards is as shown
in Figure 4.

1 2 3 4 S
[ ] o
-]

L] [ ]
]
L] -]

Figure 4: P50 P, with fewer than five guards in the first four columns.

Proof. If sy + s3 < 2, then s3 > 3 by 820. If s; + s = 4, then at least
one vertex in column 3 is undefended. Thus s; + s = 3, Lemma 22 implies
s3 = 1, only one vertex in column 4 is defended, and column 5 would
need four guards to defend the others. Exhaustive search reveals the only
possible configuration of the guards is shown in Figure 4. O
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5 A Lower Bound

A lower bound on the m-eternal domination number for the P;a P, family
of graphs can be established by examining the size of the dominating sets
containing a guard at vertex (3, 2); that is, those elements in the m-eternal
dominating sets which result after an attack on that vertex. We define a
notation for these sets and examine some of their general properties.

Definition 24. Let v*(Ps;0P,) be the minimum size of a dominating set
of the 5 x n grid graph containing a guard at vertex (3, 2).

Lemma 25. In any dominating set for Ps0P,, n > 3, with a guard at
vertez (3,2):

1. the first two columns contain at least three guards,

2. if the first two columns contain ezactly three guards, then column 1
contains two guards and column 2 the other,

3. if the first three columns contain ezactly three guards, then column
4 contains at least four guards and the first four columns contain at
least seven guards, and

4. if the first four columns each contain at least one guard, then the first
four columns contain at least siz guards.

Proof. A guard at vertex (3,2) defends the middle vertex of column 1 and
the middle three vertices in column 2. To defend the top two vertices of
column 1 requires either one guard at one of these vertices in column 1 or
at least two guards placed elsewhere in the first two columns. The same
is true for the bottom two vertices in column 1. If there are exactly three
guards in the first two columns, then two must be located on vertices in
column 1. If there are exactly three guards in the first three columns, then
two must be located on vertices in column 1, and these three only defend
one vertex in column three, thus four guards are required in column four. If
the first four columns contain at most five guards and each column contains
at least one guard, then columns 3 and 4 each contain one guard, and at
least one vertex in column 3 is undefended. ]

Lemma 26. v*(P;0F;) > 9.

Proof. Consider any dominating set for Ps 0 Pg with a guard at vertex (3, 2).
By Lemma 25 (1.), there are at least three guards in the first two columns.
If the last three columns contain at most three guards, then by Lemma 22,
the last four columns contain at least six guards. If the last three columns
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contain four guards, then by S20, the last two columns contain at least
three guards, and column 4 contains at most one guard. If the first two
columns contain three guards, then Lemma 25 (2.) shows only one guard
is in column 2, and two additional guards are needed to defend column
three. If the first two columns contain four guards, then at most three are
in column 2, so at least one vertex of column 3 is undefended. Finally, if
the last three columns contain five guards, then the last two columns have
at least two guards, so column 4 has at most three guards, thus at least
one vertex in column 3 in undefended. O

Lemma 27. y*(Ps0P;) > 10.

Proof. Consider any dominating set for Ps 0 P; with a guard at vertex (3, 2).
By Lemma 25, there are at least three guards in the first two columns and, if
exactly three, then two are in column 1. If the last four columns contain at
most four guards, then by Lemma 23, the last five columns contain at least
eight guards. If the last four column contain five guards, then by Lemma 22,
the last three columns contain at least four guards, so column 4 contains
at most one guard. If the first two columns contain three guards, then two
guards are needed to defend column 3, and if the first two columns contain
four guards, then at most three are in column 2, so at least one vertex of
column 3 is undefended. Finally, if the last four columns contain six guards,
at least three are in the last three columns by S20, so at most three are in
column 4, thus at least one vertex in column 3 is undefended. O

Lemma 28.
’)'*(P5C1P2) =3, 7‘(P5DP3) = 5, 7‘(P5DP4) = 6,
vY(PsoPs) =17, ~(Ps0Fs)=9, <" (Ps0P;)=10.

Proof. We establish sufficiency with Figure 5. Necessity is given by the
domination number for v*(Ps0P), v*(PsOP,), and v*(Ps0P;). Next,
for v*(Ps0 P3), with a guard at (3,2), we have necessity as unique guards
are needed to defend (1,1), (2,3), (4,1), and (5, 3). Finally, for v*(Ps 0 Ps)
and v*(Ps; 0 P;), necessity is given by Lemmas 26 and 27, respectively. O

Lemma 29. If (s1,S82,...,5n) is a dominating sequence for Ps x P, such
that s; > 1 for all i and (3,2) contains a guard, then for n > 6,

ZS,‘ 2 l6n+10J )
i=1 5
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L) L] L] [ ] L] L] L]
L] [ ] [ ] ® L ] [ ] L]
L] L ] [ [ ] [ ] [ ] [ ]
1 2 3 4 5 ] 1 2 3 4 5 6 7
L [ [ . . L
L] [ L ] L ] [ [ ] [ ]
[ L] [ ) L [ ] L]

Figure 5: Dominating sets of Ps0P,, 2 <n < 7, with a guard at (3,2).

Proof. We use repeatedly in this proof the fact that ifsizlfork<i<l
and m =1 — k + 1, then the number of terms in Z,_ & 54, is divisible by 5,

then by S13 we have
zsz > ( —k+ 1) . (1)

i=k
Let n =5¢ +r, 0 < r < 4. We consider two cases.

r = 0: By (1), Lemma 25 (4.), and S14,

4

n n—6 n
Yosi= s+ si+ Y 52646 (n
t=1

i=1 i=5 i=n—-5

10)-}-8: l.Gn;-lOJ.

T # 0: By (1), Lemma 25 (4.), and S12,

n 4 n—r—1 n—2
Zsi=Zsi+ Z s+ z si+ Z 8;
i=1 i=1 i=5 t=n—r i=n—1
> 646 n—r->5 +r_1+3=6n—'r+10= 6n + 10 .
5 5 5
a
3 forn=2
Theorem 30. v*(Ps0P,) > 7 forn=>5

|21 |  otherwise.
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Proof. For n < 7 the theorem follows from Lemma 28. Thus, we may
assume n > 8. We proceed by induction, letting n > 8 and assuming the
theorem holds for 2 < k < n.

If s; > 1for 1 <4< n, then by Lemma 29, the result holds. So we
can assume s; = O for at least one i. Let j := max{i|s; = 0}. We verify
the bound for each value of j. For 3 > j > n — 3, we apply S21 and
find Y0, 8= S0 2 s+ S0, 8 27" (PsOPs) + [ﬂ"—gﬁj +3. We
also note by Lemma 28 that y*(Ps0P,) = 7= | 22¢2| and so we can also
assume by induction that y*(Ps0F,) 2 |_§-"—;2J for 3 < k < n, which is
sufficient to verify most cases.

j = 1: By S10, s = 5. Thus, by S8,

n n
Zsi=52+Zs,~

=1 =3
> 5+ v(Ps0P,_3)
6('n—3)+6J _ l6n+13J S {6n+10J

>5
z +l 5 5 5

j = 2: By the definition of v*(P;0 F,), s2 # 0.

j=3: By S21,
Z" 6(n -3
si=sl+|._(ut8.J+3
¢ 5
=1
214 |HEBE] g |t10)

j =4: By S12 and S21,

R

>34 lﬁ(n 54)-}-8J +3= lﬁn-5|-14j > lGn-SI-IOJ'

j =5: There are two subcases:

s3 = 0: We first show the first four columns cannot be defended with
six guards. We proceed by contradiction. By S20, the first
two columns have at least three guards. Since columns 3 and 5



have no guards, column 4 has at least two guards. If the first two
columns have exactly three guards, then column 2 has one guard,
so column 4 contains four guards. If the first two columns have
exactly four guards, then column 4 has two guards. Column 2
has at most three guards, and if it has exactly three, then they
must be in the top three vertices (up to symmetry). But then
the two guards in column 4 must be in the bottom two vertices
to defend column 3, but then at least one vertex in column 4
is undefended. Thus, the first four columns have at least seven

guards, so
n
Zs, Zs, +Zs,
i=1 i=6
>74 [6(n-55)+6J _ lﬁn-;—llJ > lGn;—lOJ .

s3 > 1: By Lemma 25 (1.),

Zs,>Zst+s +[ & 55)+8J+3

MJH

>
LS

> [6n+ IOJ .
= 5

7 = 8: There are two subcases:

n = 10: Suppose the grid can be defended with thirteen guards. By
Lemma 27, the first seven columns contain at least ten guards
and by S12, the last two columns contain at least three guards.
Thus, the first seven columns contain ten guards and the last two
guards contain three guards. By Lemma 26, the first six columns
contain at least nine guards, so column 7 contains at most one
guard. Column 9 contains at most two guards, so column 7
contains at least three guards, which is a contradiction. Thus,
the grid requires at least 14 guards.

n # 10: By Lemma 28,

3 s>y (PsaPs) + lﬁ(—"fMJ +3

i=l 5
- [G(n—58)+8J vse lsn;mJ'
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n—4 n
Sa-Sar 3
i= i=n-3

’7' P5|:1P,,_5) +v(Ps0P)+3
[Gn 5)+10J L343 [6n+10J.

v

5

j=n—1: By S11 and 87,

n n-3

Zsi=zsi+3n—2+3n

i=1 i=1
> 4" (Ps0Pu-4)+5

> [6(n—54)+9J 5= lsn-;-lOJ-

j =n: By S10, s,.1 = 5. Thus by 87,

n n—2
E §; = Z 8i + Sn—1
i=1 i=1

> 7" (PsOPp.3)+5
> {G(n —53) +9J +5> [611-5!- 1OJ .

Otherwise:

5

5 [6(j—§)+10J+l6(n—5j)+8J+3

3] +e- 257

ZSi >y (PsOPj_3) + {MJ +3

=1

The result in Theorem 30 leads directly to our lower bound.

|&8t8] forn=2o0r5

Corollary 31. YR (Ps0F,) > { lsn-si-IOJ

otherwise.
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Proof. Let £ be an m-eternal dominating family of P;0 P, and consider
each D € £ required to protect a graph in response to an attack on vertex
(3,2). The result follows. ]

The lower bound is not tight, as can be shown for n = 9.
Lemma 32. y2(Ps0B,) > 13.

Proof. Let £ be an m-eternal dominating family of P; 0 Py which uses twelve
guards, and consider a D € & resulting after an attack on vertex (3,2).
Exhaustive search reveals there are only three possible configurations of
twelve guards which dominate the Ps0 P, grid with a guard located at
vertex (3,2). Two are illustrated in Figure 6, the third is the vertical
reflection of grid A.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
. . . ° .
.
A . . B o|e .
. .
. . . . .

Figure 6: The dominating sets for Ps0 Py with a guard in vertex (3,2).

Both grid A and its vertical reflection can be forced to transform to
the configuration of grid B by an attack, targeting vertex (5,6) in grid
A and the corresponding vertex (1,6) of its reflection. The response to
either of these attacks is the grid which is the horizontal reflection of grid
B. From this point a sequence of attacks cannot be defended. The first
attack is on vertex (1,7) of grid B. The response to this attack leads to the
transformation to one of the four configurations illustrated in Figure 7.

The next attack is on vertex (3,5). Grid C is unable to defend this
attack. Grids D and E are forced to move to the configuration shown as
grid Y in Figure 8, grid F is forced to transform to either the vertical
reflection of grid Y or to grid Z in Figure 8.

Grid Y and Z cannot recover from attacks on vertices (1,3) and (5, 3),
respectively. O

6 M-eternal domination numbers for n < 12

Table 3 lists the m-eternal domination numbers for Ps0P, for 1 < n < 12,
repeating those for n < 5 from Table 2.



1 2 4 s 9 1 4 6 7 8 9
[ ]

[ ] L ] L] [ ] .
C . El|e .
L J L

L] L L] [ ]
L ] [

el e L] [ ] L ]
Dle F . .
L ] L]

L [ ] [ ] [ ]

Figure 7: Dominating sets after attacking (1,7) of grid B in Figure 6.

Figure 8: Dominating sets after attacking (3,5) of grids in Figure 7.

n | Y®(Ps0P,) n | Y2 (Ps0PF,) n | 7R(P;0PF,)
1 3 5 7 9 13
2 4 6 9 10 14
3 5 7 10 11 15
4 6 8 11 12 16

Table 3: Y (Ps0P,) for 1 <n <12

98




[ forn=9,10

o0 —

Theorem 33. 72 (Fs0 Pn) { |&242|  otherwise for 1 < n < 12.

Proof. The values for 1 < n < 5 are equivalent to those from the references
shown in Table 2 [2, 3, 7, 8]. Necessity for » = 9 is given by Lemma 32. Ne-
cessity for n = 6,7,8,10,11,12 is given by the lower bound in Corollary 31.
We establish sufficiency for n = 6 in Figure 1, and for n = 7,8, 11,12 with
Figures 9 to 11. Sufficiency for n = 9,10 can be established by combining
smaller sets as per Theorem 4, using copies of the m-eternal dominating
sets for Ps0 P, and P;0P;. O

7 An Upper Bound

In order to derive an upper bound, we observe from the values in Table 3
that for 2 < n < 11, 4(Ps0P,) < |#3#4]. Combining smaller sets as
per Theorem 4 as shown in Table 4 derives upper bounds which, combined
with the lower bounds defined in Corollary 31, gives the intervals for the
m-eternal dominating numbers for the grids shown in the table. The value
YR (Ps0P2) =16 = 4—(-;3)- extends the range for our upper bound for the
m-eternal domination number.

Theorem 34. Forn > 2, y*(Ps0P,) < l4—";#J-
8 Conclusion

We have proven bounds for the m-eternal domination number of 5 x n grid
graphs, n > 2, as

[6"+9J ms:(PsnPn)s[

We have already established the lower bound is not tight, and the same is
true for the upper bound, as shown by the cases where n = 5,8,11, and 12.
Further investigation is warranted.
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n | Combine | Y2 (Ps0F,) n | Combine | yX(Ps0F,)
13 5+8 [17..18] 19 7+12 ~ [24.-26]
14 7+7 [18..20] 20 8+12 [26..27]
15 7+8 [20..21] 21 9+12 [27..29]
16 848 (21..22] 22 | 10412 (28..30]
17 5412 [22..23] 23 1 11+12 [29..31]
18 6+12 [23..25] 241 12+12 [30..32]

Table 4: Intervals for v°(PsOP,) for 13 <n < 24.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
o |C|Cu|le|C|Chl® Cyl e |Cu|A|C | 0 |Cy Cr| @ |Cu|A| ® |CRICY
c.| clc | Blc.|cn]C c.lclce|c]en]C C.| ¢ [Cr| BlCu[Ch] o
AlBlele|Cle|e|B| Ble|elch|c|C|e]e] ClB|A[CL[e]|e[A|B
clc.lea| Bl cle.le. clc.cal e |Ccle-fe. o [C.|Ch|B] o [C-]C.
e |CulC e |Cy|Cr] @ Cn] e |]C|A|Cy] @ |C ChL|Cu| @ |A|Cu|Cr| @

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epl o {G|Cu|C | o |CrlAv B,|By| ¢ |By| ¢ |Du{Br|By By| ® |An|Ch| @ | A |Ch|Av
ChICh|Fu] @ |C|Cu|C | @ e [By|Byr|Dy|Dr|Bu| @ | @ CriCh|Br|Ch| ® [Dn]| o | @
Ale |[EfjCle | F|Cx| o |Ch B|Dy|Dr|D+s| @ |Br|Cr|Du|Cr C|l e |Ay| @ | A|AL|ICH] A |Cn
Fu|Fy|Chr| @ |Cuv| C |Cu]Aw By| ® |Du|Cr|Gu| @ |By|By Br|Br|Ch| A|An| o | F |A,
Cn| ® [Gu] C |Cu| ® [Ch] @ Dy| ® |By|By| @ [Br|Cr| ® Cri ® [Ap[ ® [Ch]l A |Ch| @
Byl e |G|By| ® |Du|Br| @ Epn| @ JAR|Ev] o | A|EL] @ Ful AlAp] o [Fu] A Ap| @
Cn|Bu| ® |Duv| G |Bu|Br|Fy Ap|Cni{Br|En| ¢ {Ev|Br| A oo |F,|AjAp] @ |Fu|Fy
D| o |EL|Cy|Bo|Br| o | @ |CL| E| o |En]l o | A}AR|ER| @ |Ex F| A|Ap| C |Fp| o |Du]| A |An
By|Br|Du| ® |Cu|Fu{Bu|Bv By |Br|ER| A |Ev| ® |Cu|Ay FylFole |A|Ap|Fu| e | e
Chp| @ |By|By|Do]| ® [Ch| @ En| @ |JAp| @ |[Ey| A|ER| @ o | AJAp|Fu) o | A ARy

GVA 'EhGuAAh.

o |By|Gu| A| 0| 0 |Gu|Gy

G| A|An A|An| D | A jAn

Gu| B AlGy|Gu| @] e

o | A|Gy|E,| o | A|ARIGw

Figure 10: An m-eternal dominating family for Ps0 FPg with 11 guards.
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1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 868 7 8 9 10 11 12
Fnj @ [Ap|Fr| o [BylAL|Fhl e |A\]l E Fpl e |H|Dyl C | o [Dy]|FL|AL] o [FL]A,
Apl ® |Bu|Bu|Ap|Fr| o |By| E]A,] o Dp|DplC | o |H|Fy|C| o |AylG|C | e
AlBy|BRl E] o [FL 1B G e | E |Bu[BY Al o |Fp|Fh] o [Du[F] o [Gu|DH[Fr] @ [Fr
s [o |E[By|H, [ e [E[B,]B,] » |4} Gu|Gn|Dy| o [ c|F,IDR]AL] e D, ]A,
E |Ap|Hp| @ |AR|By] 0 |AL| E| o |F), Dp| e |Gu|Fp|Dp| o | C |Dy| o [Au]|Dy] @
En| o [Anlav[Er] e JaL ] T [ER] e | E Br| o |By|Br]| o |B,]B, [F,[B.] o [F,]B.
Av|AviEp| @ JAplALIEL] o | E |Ay]E, Byl e |C|Br|H|By| o ]| o |By|Gr|C | e
Bl e lH,| E |Av|Hp[ e [CTa| E e | o B| C [Br|Fui o D fF [T DB [F,] o [Fs
EplAv] o [ o [Ex[ALJAV] o |EL[AL[AY o |By[D ] c[B.[ e |B.[B. c|B.|B.
E|e |Ep| T Av] o [ERJARIAL] o |E) Dp|By| o |Fp|Bu| o | C|By| 0 |By|By| o
Du| o | E|Fr[Dp[ e TE]F, DR e [E Drle |G IEsJ e TA[C D[ o [ A D, ]Cy
E |Fr|By] o | E|F,.|Dy] o E |Gr|Dp G|lB|e |CylCuy|Dy| o | A]lCy|Cy| e ]| »
Cle|JIE|e DBl e D, E[e ] C| o |Ex|EL| A |Dr|E,] o |DJ]D T ET A]E,
Ep|Fp| B | e |Ey|Fp|Dr| o |EY|G,|Dy BDr|Cyp oo (BIC] T ]| e]C]Cy
Dy| e |E)|FnlDr]| ¢ |EL|Fy|Dr] o |E) Ep|l o | BIDrCy| A] o |F,|Cu|Dr|ER] o
Dp|Du| @ | F |Dy|Dy| o [Fy|Dy|Dy] o Dr|Dy| o |Fp[Dy| ¢ |Ax|Du| o | B |D,|D,
o |F.|Dy Do} o 17 [D4|D] e |G- |D) o |Dy[DrlCy]a o D BTALID, e | @
D| e [cul Fl o [Dal 7T o [DLFL|FR] ® D|Cy A |Fal e |D-]A]Cu] o |D[F 1B A,
Dy|Fp|Fri e |Dy| FlFr| o |[D| F| P Dy| o [Cy|AR|Gu] @ |Dy| J |AR]| o |Du|Dw
Fl e |Dy| F|Fr| e |Dy| FlGpl e |D, AhoD.,D,.oDvD,.oDvD,.AhQ
Ep|Alo | JI|ER| Bl o |Ar|EL| B o Crie|Glch|C| e [CulCh] o |Gh|CH] o
s |AlEL]| B| o [Ar]EL[ BT e A ]E, AR A A A A A EE
E|B|BplelAafCc,lelc|Aa]le|B|B E| o |Fp|Fp| o |GplCrl @ | o |Fr] o] e]c,
Ep|Ale | BlEL[A o[ B]E,| AT crlcrl|Cyv] o | clerleu|crfc | cley]c,
e|Blex[alelBlE,[ 7] e]AalE, Cpl o |Guv|Crlocu ][ e TcTc | o |G ]c,] e
o |Ar|Ap| e |FpriCh| o |Fy|DylAL] o Ar| o JA,|Ar| o |CrlAy]|B] @ |Br[AL] @
Ap|Ar{Fa|Chl o [Fy|Fy|Ch] o [Fy]Fy An|Ch| C [Ar|a,]By] o el ] B, ] B,
F[Cp| o | ¢ |Ap|Fnl J | o |A,lF,|Fy]cy, Flo JAp| e | o |Dylap| e [Glapl o] e |4,
Fp|Fp|Ds|Cp|Fu| ¢ |[Dr|Cr|Fp] o] e Ar|Cr|CuvlALlAr]By| o [Chlan] € 1B, By,
¢ JAp|Ar| @ JARICL(Fy| o [Dr|Ar|Fy A;,oA,-A,‘ochA,.B,-oBhAho
Cul Al e | FlGulon]| o |FulGplAay] o GulAv| o |Ar|Gu|Aav|an] o [Gu|Br]a,] o
o | AlGhlch] o |Fu]Grlch] o |AnlGh o {Dy[Gulav] o [ e |G l0u[AL] @ [GolGu
Glcp|Ch| F | e [Gu| I o |Gh]|Fu|Fr]Ch GlAav]An] ¢ [Au|ER]AR]AL] o 4] E JAL]AL
Gpl o [DrlcplF o D Jc 7ol e | o Gu[Bu] o [Ay[Gy]|Gu] e [AL]a ]G0 e | o
o [Ax[Hp]| o JALlch ] A e [D ] aTcG, ® {Av]Gu{An] o Ay|Aan]Gu] o [A]AL ]G,
EplHy| @ | F |Hy|By | o |Fp|HulAR] o Hp| Af o JARHL] AJApL] o [AL]H,[A,]
o [HolEW[By] o [T {#u[BL] « [AL]ER e[ BlHA AT e T o [Hp[HA 4] » |B,[H,,
H|By (B E| e [Dc|By] e [A,] E ] |B, Hl Aap| o [ A|EL|al ATEAL[ 0 a4,
Hy| o |Dy|By|Hy|AL] @ By |Hyl|Ap|AR HpiBy| ® A|HplHplo ] o A |Hp|Byr| o
Drj o |Hy| F{ e |Bp|Hy|Ap] o |By] o S|AHp[AR| e |A (AL HL A o [A,[H,
o |B|D|e|D [ B]DTe DB Ep| o | D]|EL|I ] AT e o] AT [Cy
D |Fr|Bv|B|D| o |Dy| B |By|Fy|D), GrlJu|o|e|D|C|Ju]e|Cy]C| A
JBleje|C|Chle]|C|c,|e]e]B Jje |Bp|lEp|AlBL e JA|DI|E,J 0| A] e
Dy|Fu] B | B|Dy| o |D [ B|B,| F [D, Go| D] e JauT7. I DlCo] @ [7x]| C |Cu|Cy
o | B|Dy| e |Dr| B|Dy| ¢ |Dyr| B o Enl o |Gu|lEBrl o |A ]I e {A]G,[e[A
(a) Pso Py with 15 guards. (b) Pso P12 with 16 guards.

Figure 11: M-eternal dominating families for Ps 0 Py; and Ps0 Pys.
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