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Abstract

Gionfriddo and Lindner detailed the idea of the metamorphosis of 2-
fold triple systems with no repeated triples into 2-fold 4-cycle systems
of all orders where each system exists in [3]. In this paper, this concept
is expanded to address all orders n such that n = 5,8, or 11 (mod 12).
When n = 11 (mod 12), a maximum packing of 2K, with triples has a
metamorphosis into a maximum packing of 2K, with 4-cycles, with the
leave of a double edge being preserved throughout the metamorphosis.
For n = 5 or 8 (mod 12), a maximum packing of 2K,, with triples has a
metamorphosis into a a 2-fold 4-cycle system of order n, except for when
n =5 or 8, when no such metamorphosis is possible.

1 Introduction

A )-fold k-cycle system of order n is a pair (X, C), where C is a collection of
edge disjoint k-cycles which partitions the edge set of AK, with vertex set X
(AKp denotes the graph on n vertices in which each pair of vertices is joined
by exactly A edges). It is well-known that the spectrum for 2-fold 3-cycle (or
triple) systems is the set of all n =0 or 1 (mod 3) and the spectrum for 2-fold
4-cycle systems, i.e. the values of n for which such a system exists, is the set of
all n=0o0r 1 (mod 4) (see [6]). A hinge is the multigraph comprised of 2 edge
disjoint 3-cycles with exactly 2 vertices in common (see Figure 1 below); the
two edges joining the common vertices are naturally called the double edge of
the hinge. A mazimum packing of a graph G with a subgraph C is an ordered
triple (V(G), T, L), where T is a collection of copies of C whose edges partition
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E(G)\ L. Note that if L is empty, G is AKn, and C is a 3-cycle, this would
correspond to a A-fold triple system. Thus, a maximum packing of a graph G
with C is simply a collection of edge-disjoint copies of C' that cover as many
edges of G as possible. The uncovered edges L are called the leave of the packing.

Figure 1:

The following notation will be used throughout. Figure 1 above is a hinge,
h, and will be denoted by h =< z,z,y,w >, < z,zZ,w,y >, < 2z, T,§,W >,
or < z,z,w,y >. A double edge between vertices z and y will be denoted by
< z,y >. Triples will be denoted by any cyclic shift of (z,y, z), 4-cycles by any
cyclic shift of (z,y, z,w), and single edges by (z,y) or (y,T).

Let G be a graph and suppose H is a set of hinges. For a hinge h =<
,z,y,w >, let AR) = {(z,2,),(z,7,w)}. Define A(H) = | ) A(h). Sim-

heH

ilarly, let O(h) = {(z,y,2,w)}, let D(h) = {< z,z >}, and define O(H) =
U O(h), D(H) = U D(h). Suppose (V(G), A(H), L) is a maximum pack-
heH he€H
ing of G with triples and (V{(G),0O(H)uD*, L9) is a maximum packing of G with
4-cycles, where either the edges in D(H) or D(H)UL? can be partitioned into
the set D*, each element of which induces a 4-cycle. Further suppose LAcILP
or LB C L2. Then we will call (V(G), H,L?, D*, L°) a metamorphosis of G.

In [3], Gionfriddo and Lindner proved the following, which connects the
aforementioned systems through the use of hinges.

Theorem 1.1. 2K, has a metamorphosis (X, H,0, D*,0) from a 2-fold triple
system to a 2-fold 4-cycle system for alln=0,1,4, or 9 (mod 12) except n = 4.

When n = 2 (mod 3), there exists a maximum packing of 2K, with triples
with only a double edge in the leave L2 (see {7]). When n = 0 or 1 (mod 4),
the goal is to form a metamorphosis in which these 2 edges are used in 4-cycles;
otherwise, they form LP. Let G\ H denote the graph (V(G), E(G)\ E'), where
V' C V(G) and (V', E') is isomorphic to H. Call (V’,E’) the hole and say
the hole is on V' and the size of the hole is [V’|. Let @ be a set of integers
and let H(Q) be a partition of Q into pairwise disjoint sets, also called holes.
A quasigroup with holes H(Q) is a quasigroup (@Q,0) in which for each h € H,
(h, o) is a subquasigroup of (Q,0). For the purposes of this work, each (h,o) can
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be thought of as a set of “forbidden” products in (@, 0). The following theorem
is used to find our desired result for n = 5,8, or 11 (mod 12).

Theorem 1.2. Let ng,ny,...,nm_1 be positive integers, z = z ng,
0gi<m
00= {001,003, ...,00;}, B; = Zn, X Z3 x {i}, and A; =O0UB; for 0 < i < m.

Let C; = 2Ky n,,....n._, With vertez set U Zn, x {j} x {i} for0< 5 <3.

0gi<m
Then there ezists a metamorphosis (X, H,L®,D*,L°) of 2K;43, with vertez
set X= |J Aiif
0<i<m

(i) there exists a metamorphosis (Ao, Ho, L?, D, Lo) of 2K 43n,,

(ii) there exists a metamorphosis (A;, H;,0,D}, L;) of 2K 13n, \ 2K (where
the hole is on O0) for 0 < i < m,

(iii) there exists a commutative quasigroup (Q,0) of order z with holes of sizes
ng,ny,..., and Ny,_1, and

(iv) if E* = ( U E(C,-)) U ( U L,-), then there ezists a set C of 4-

0<i<3 0<i<m
cycles which partitions E* \ L°, where LB = 0 or LA C LP.

Proof. Using (Q, o), create another set of hinges, H*, as follows: let p = (u, 3, z),
v = (v,4,y), o = (uow,i+1,t), and vp = (vou,i+2,t). Then H* =
{< mvprvp > v € Z,_,v € Z,,,x # y,i € Z3}. Note that D(H*) =

U Ee). LetH:H*U( U H,-) andD*=CU( U D;). O
0

0<i«3 0<i<m <i<m

It is nice that in the situation where L2 # 0, either L2 is “used up” in the
metamorphosis or “preserved” as LU. For the purposes of this work, ng = n; =
-=nm_1 =n,and n = 2 or n = 4. This means that the notation can be
simplified a bit, but more importantly, it means that we will always be able to
decompose 2K, ,...,n into 4-cycles, due to a theorem of Dominique Sotteau ([9]).
It also means that the quasigroups we need will always exist (except possibly
for small cases). These theorems will be used in the constructions throughout
this work, so they are presented here.

Theorem 1.3. Necessary and sufficient conditions for the complete bipartite
graph K., , to be partitioned into (2k)-cycles are:

(i) m and n are even
(it) k<m and k < n, and

(iit) 2k|imn.
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Theorem 1.4. There exists a commutative quasigroup (Q, ©) with holes of size
2if|Q| =0 (mod 2) and |Q| > 4.

Theorem 1.5. There erists a commutative quasigroup (Q, o) with holes of size

4if|Q| =0 (mod 4) and |Q| > 8.

The quasigroups referred to in Theorem 1.4 can be constructed using pairwise-
balanced designs, as in [7]. Theorem 1.5 can be proved in a similar fashion, and
[1) ensures that all the necessary designs (with appropriate block sizes) exist.

2 Case: n =11 (mod 12)

If n = 12k + 11, we can write n = 5 + 3(m)(2), where m is odd. Let us begin
finding our necessary ingredients with n = 11 case.

Lemma 2.1. There ezists a metamorphosis of 2K;;.

Proof. Let the vertex set V = {001,002} U ({0,1,2} x {0,1,2}). Let the set of
hinges be H = {< (4,1), (1, 2), 001,002 >, < (%,1), (4,0), 001,002 >,

< (z) 2)) (1., 0)1 001,002 >, < (l»i), (21i)a (0,1' + 1)1 (0)" - 1) >,

< (1,4),(0,4), (2,i+1),(2,i-1) >, < (2,4),(0,9), (1,5+1),(1,i-1) >:3=10,1,2},
where all calculations are reduced modulo 3. Then (V,A(H), L) is maximum
packing of 2K, with triples with leave L = {< 00y, 002 >}.

The set of 4-cycles O(H) that we get from these hinges should be obvious,
and so they will not be listed in any construction that follows. The double edges
stripped from the hinges form 2 copies of the cartesian product of a 3-cycle with
itself; the remaining 4-cycles are just D* = {((3,7), (4,7 +1),(¢ + 1,5 + 1), (¢ +
1,5)) : i,j € Za}. Now, we have a maximum packing of 2K1; with 4-cycles
(V,OQ(H)u D*,L) and (V,H,L,D*, L) is a metamorphosis of 2K1;. a

Lemma 2.2. There ezists a metamorphosis of 2K1; \ 2K.

Proof. We will be decomposing 2K, with vertex set V = {00,002, 003, 004, 005 }
U {1,2,3,4,5,6} minus 2K5 on the vertex set {001,002, 003,004,005} (call this
a hole of size 5).

Let H = {< 1,3, 001,002 >, < 2,6,003,002 >,< 4,5,001,002 >,
< 1,6,00;,005 >, < 2,5,00;,005 >, < 3,4,001,005 >, < 1, 5,002,003 >,
< 2,4,009,003 >, < 3,6,009,003 >, < 1,2,003,004 >, < 3,5,003,004 >,
< 476)0031004 >, < 1,4,@4,@5 >, < 2a3'°°43m5 >, < 5,6,004,%5 >}'

Now, let D*={(2,3,6,5), (2,3,5,6), (2,5,3,6), (1,2,4,5), (1,2,4,5),
(1,3,4,6),(1,3,4,6)} and L = {< 1,4 >}. Thus (V,H,0,D", L) is a metamor-
phOSiS of 2K11 \2K5 o

With the above example in hand, we can proceed to the 12n + 11 > 23
Construction.

Theorem 2.3. There ezists a metamorphosis of 2K12,4+11 for alln > 0.
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Proof. Write 12n + 11 = 3(4n + 2) + 5. Since the n = 0 case is handled in
Lemma 2.1, 12n + 11 > 23, and thus 4n + 2 > 6 (in light of Theorem 1.4, this
is important). Let OO= {001, 002,003,004,005} and Q = {1,2,3,...,4n + 2}.
Let H(Q) = {ho,h1,...,h2n}, where h; = {2 + 1,2 + 2}. Let (Q,0) be a
commutative quasigroup of order 4n +2 with holes H(Q) and set V =00U(Q x
{1,2,3}).

Proceed as in Theorem 1.2 by letting B; = h; x {1,2,3} for 0 < i < 2n.
Let L® = Ly = {< 001,00, >} and let L; = {< (2i + 1,1),(2 + 2,1) >}
for 0 < i < 2n. Thus (Ao, Ho, Lo, D, Lo) is a metamorphosis of 2K,; and
(Ai,H;,0, D}, L;) is a metamorphosis of 2K); \ 2K for 0 < i < 2n. Cover the
leaves and the double edges remaining from our hinges as follows:

1. We have 2K2, .2 on Q x {2} and Q x {3}. We can apply the result of
Sotteau repeatedly to partition the remaining edges into 4-cycles and put
them in C.

2. We have 2K4,42 with < (1,1),(2,1) > removed on Qx{1}. For0< i< mn,
on {(4i—1,1), (44,1), (4i+1,1), (4i+2,1)}, we have {((4i—1,1), (43, 1), (4i+
1,1),(44,1),(4i+2,1))} € C. We now have 2 copies of the complete (n+1)-
partite graph with one partite set having size 2 and the rest having size
4 remaining, so we can, again, apply the result of Sotteau and place the
4-cycles in C.

(V,H, Lo, D*, Lo) is a metamorphosis of 2K;2,411, as desired. ()

3 Case: n=5 (mod 12)

We begin this section by showing the nonexistence for n = 5.
Lemma 3.1. There does not ezist a metamorphosis of 2Ks.

Proof. If there were to be a suitable packing with triples (and thus a packing
with hinges), then we would have to be able to use the double edges from our
hinges (along with the leave) to create two 4-cycles. Thus we would have a
repeated 4-cycle. Let = be the vertex that does not appear in this 4-cycle. Our
3 hinges can cover at most 6 edges incident with z, but dag, () = 8. D

Before we can proceed to the 12n + 5 Construction, we must first produce a
metamorphosis of 2K7; this is because no quasigroup of order 4 with holes of
size 2 exists, which would be required for the application of Theorem 1.2.

Lemma 3.2. There exists a metamorphosis of 2K,;.

Proof. Let V. = ({1,2,3,4} x{ 1,2,3,4}) U {c0}. Our leave will be L =<
(4,4),00 >.

Let H = {< (1,1),(1,2),(1,4),00 >,< (2,1),(2,2),(2,4), 00 >,
<(3,1),(3,2),(3,4),00 >,< (4,1),(4,2), (4,4),00 >,
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(2,3),00,(2,1),(2,2) >,
(4,3),00,(4,1),(4,2) >,
(3,4),00,(1,4),(2,4) >,

< (1,8),00,(1,1),(1,2
<(3,3),00,(3,1),(3,2
4),00

< (1,4),(2,4), (4,

<

<

<
< (1,3).(1,4),(1,1),(1,2) >, < (2,3),(2,4),(2,1),(2,2) >,
<(3,3),(3,4),(3,1),(3,2) >,< (4,3),(4,4),(4,1),(4,2) >,
< (3,4),(4,4),(1,4),(2,4) >, < (3,3),(4,3),(1,3),(2,3) >,
< (3,2),(4,2),(1,2),(2,2) >, < (3,1),(4,1),(1,1),(2,1) >
< (1,4).(2,3),(3,2), (4,1) >, < (1,3),(2,4).(3,1),(4,2) >,
< (1,1),(2,2),(3,3),(4,4) >, < (1,2),(2,1),(3,4),(4,3) >,
<(1,3),(2,3),(3,3), (4,3) >, < (1,2),(2,2),(3,2), (4,2) >,
< (1,1),(2,1),(3,1),{4,1) >,< (3,2),(4,1),(1,4),(2,3) >,
< (3,1),(4,2),(1,3),(2,4) >, < (3,3),(4,4),(1,1),(2,2) >,
< (3,4),(4,3),(1,2), (2, 1) >, < (1,4),(2,1),(3,3),(4,2) >,
<(1,2),(2,3),(3,1),(4,4) >, < (1,1),(2,4),(3,2),(4,3) >,
< (1.3).(2.2).(3,4), (4,1) >, < (3,3),(4,2), (1,4),(2,1) >,
< (3,1),(4,4),(1,2),(2,3) >, < (3,2),(4,8),(1,1),(2,4) >,
< (3,4),(4,1),(1,3),(2,2) >,< (1,4),(2,2),(3,1), (4,3) >,
<(1,1),(2,3),(3,4),(4,2) >, < (1,3),(2,1),(3,2), (4,4) >,
< (1,2).(2,4),(3,3), (4, 1) >, < (3,1),(4,3),(1,4),(2,2) >,
< (3,4),(4,2), (1, 1), (2,3) >, < (3,2),(4,4),(1,3),(2,1) >,

<(3,3),(4,1),(1,2),(2,4) >}.

Let D* = {(00,(4,3),(3,4),(4,4)).((3,3),0,(4,4),(4,3)),
((3,4),(3,3),(4,3),00), ((4,4), (3,4),0,(3,3)) , ((4,3), (4,4), (3,3),(3,4)) ,
(00,(1,3),(2,4), (2,3)),(00,(1,3),(1,4),(2,3)), ((1,3),(1,4),(2,4),(2,3)) ,

((1,3),(2,3),(1, 4) (2,4)),((1,1),(2,3),(1,2),(2,4)) ,((1,1),(2,3),(1,2),(2,4)) ,
((2,1),(1,3),(2,2),(1,4)), ((2,1),(1,3),(2,2),(1,4)) , ((3,1),(4,8),(3,2), (4,4)),
((3,1),(4,3), (3, ) (4,4)),((4,1),(3,3),(4,2),(3,4)) ,((4,1),(3,3),(4,2),(3,4)) ,
((1,1),(2,1),(2,2),(1,2)),((1,1),(2,1),(1,2),(2,2)) , ((1,1),(1,2),(2,1),(2,2)),
((3,1),(4,1),(4,2),(3,2)),((3,1),(4,1),(3,2), (4, 2)) ,
((3,1),(3,2),(4,1),(4,2))}-

(V, H, L, D*,0) is a metamorphosis of 2K)7, as desired. O

We can now proceed to the 12n + 5 > 29 Construction, which is simply a
modification of the 12n + 11 > 23 Construction.

Theorem 3.3. There etists a metamorphosis of 2K1an+s if and only if 12n +
52>17.

Proof. Write 12n + 5 = 3(4n) + 5. Since Lemma 3.1 shows that n # 0 and
Lemma 3.2 handles the case where n = 1, assume 12n + 5 > 29, and thus 4n >
8. Let 0O= {00y, 002,003,004,005} and @ = {1,2,3, ...,4n} Let H(Q) =
{hosh1,..., han—1}, where h; = {2 +1,2i + 2}. Let (Q,©) be a commutative
quamgroup of order 4n with holes H(Q) and set V =00U(Q x {1,2,3}).
Proceed as in Theorem 1.2 by letting B; = h; x {1,2,3} for 0 <9< 2n - 1.
Let L; = {< (20 +1,1),(2i +2,1) >} for 0 < 7 < 2n and let L® = Lo. Thus
(Ao, Ho, L, D§, LA) is a metamorphosis of 2K;, and (A;, H;,8,D;,L;) is a
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metamorphosis of 2K; \ 2K for 0 < i < 2n. Cover the leaves and the double
edges remaining from our hinges as follows:

1. We have 2K3 5 ... 2 on Q x {2} and Q x {3}. We can again apply the result
of Sotteau to partition the remaining edges into 4-cycles and put them in
C.

2. We have 2K, on Q x {1}. For 0 <i < n, on {(4i+1,1),(4¢ +2,1), (4: +
3,1), (4i+4,1)}, we have {((d4i+1, 1), (4i+2, 1), (4i+3, 1), (4i+4, 1)), ((4i+
1,1),(4i+3,1), (4i+4,1), (4i+2,1)), ((4i+1,1), (4i+3, 1), (4i+2, 1), (4 +
4,1))} € C. What remainsis 2K4 4,... 4 on Q% {1}, so we can, again, apply
the result of Sotteau and place the 4-cycles in C.

(V,H,L?,D*,0) is a metamorphosis of 2K 2,45, as desired. |

4 Case: n =8 (mod 12)

We begin this section by showing that there does not exist a metamorphosis of
2Kjg in Corollary 4.9, after a series of lemmas. If there were to be a suitable
packing with triples (and thus a packing with hinges), then we would have to
be able to use the double edges from our hinges (along with the leave) to create
five 4-cycles. Let 2G represent the multigraph induced by D and the double
edge in the leave. Then clearly 2G has 20 edges. Let G be the simple graph on
8 vertices with 10 edges formed by treating each double edge in 2G as a single
edge. If there exists a 4-cycle system on 2G, each edge in G must be in a 4-cycle,
and no vertex in G can have degree 1. If 2Kg has a maximum packing with
hinges, each vertex of 2G is incident with at most 3 double edges from D, so
each vertex v in G has degree at most 4, with equality only if v is incident with
the edge corresponding to the leave. We begin with a handy Lemma concerning
the graph below, G*.

€

G*
d c

Lemma 4.1. K, and G* are the only simple graphs with ezactly 6 edges that
have a double cover by {-cycles.

Proof. A simple graph with 6 edges must have at least 4 vertices, and any 4-
cycle would require 4 vertices. A connected simple graph on 6 vertices with 6
edges cannot contain any 4-cycles. It is easily verified that G* is the only simple
graph on 5 vertices with exactly 6 edges that contains more than one 4-cycle.
Now, {(a,b,c,d),(a,b,d,c),(a,d,b,c)} is a double cover of K4 by 4-cycles
and {(a,b,c,d),(a,e,c,b),(a,d c,e)} is a double cover of G* by 4-cycles. (]
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Lemma 4.2. There can be no repeated 4-cycles in our 4-cycle system on 2G.

Proof. Suppose C = (a, b, ¢, d) is a repeated 4-cycle. Then none of {(a,b), (b,¢c),
(c,d), (a,d)} can be used in another 4-cycle. Thus the remaining three 4-cycles,
C*, must be a double cover of the remaining six edges in G. Let k£ be the
maximum number of vertices from {a,b,c,d} incident with a particular cycle
in C*, and let C’ be a cycle where that occurs. The cases are approached by
examining subgraphs of G.

a b a b

Case:k=4ork=3d C d y C
Obviously, C = C' for k = 4. Without loss of generality, suppose C' =
(a,b,c,e) for k = 3. Amongst many reasons, (e,b) is used again in either

situation. e e f f
A T &
a C
K
Case: k=2 f d

The first situation is easily dismissed. Suppose without loss of generality
that a and c are the vertices in some cycle C' € C* which are not adjacent in C
and not adjacent in C’. Since dg(a) = d¢(c) = 4, a and ¢ must be incident to
the edge corresponding to the leave of our packing. This means a and ¢ should
be adjacent, but they are not.

The next situation is also easily dismissed. Suppose without loss of generality
that a and ¢ are the vertices in some cycle C' € C* which are not adjacent in
C but are adjacent in C’. Without loss of generality, C' = (a,e, f,c). Now, 2
more edges must be added to C’ to form K4 or G* (by Lemma 4.1), but then
dg(a) > 4 or dg(c) > 4.

Finally, suppose without loss of generality that a and b are the vertices
in some cycle C’ € C* which are adjacent in C. Note that they cannot he
adjacent in C’, since (a,b) cannot be used again. Without loss of generality,
C’ = (a,e,b, f), and the other cycles in C* are (a,e,9, f) and (b,e,g, f). Now,
since dg(a) = dg(b) = 4, < a,b > is the leave of our packing. Consider the
hinges containing a. First, @ must be incident with the double edge in each of
them. The hinge containing < a,e > must be < a,e,c,h >, since (e, g) cannot
be used again. Similarly, the hinge containing < a, f > must be < a, f,c,h >.
Now, we still need to cover (a, g) twice, but we cannot do that with the remaining
hinge containing a.
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Case: k=lcf

Without loss of generality, this can’t happen because dg(a) > 4.

Case: k=0

The remaining edges in G form Kj on {e, f,g, h}. Now, 9 of the 10 edges in
G are associated with hinges in our packing, so we need 36 edges from 2K44 to
finish those hinges; unfortunately, 2| E(K, 4)| = 32. O

Corollary 4.3. Vertices of degree 2 in G cannot be adjacent.

Proof. If there were a pair of adjacent vertices of degree 2 in G, they would
have to be in a repeated 4-cycle in our double cover, a contradiction to Lemma
4.2, O

Lemma 4.4. G contains no 7-cycle

Proof. Suppose G contains a 7-cycle, C. Let e, f, and g be the remaining 3
edges. Now, C contains no 4-cycles, so each 4-cycle must contain at least one of
these edges. Without loss of generality, assume that e and f are hoth covered
by some 4-cycle, since e, f, and g must each be covered by two 4-cycles and
this means that there must be some 4-cycle that covers a pair of these edges.
Now, there still must be two 4-cycles that cover g, but that requires a repeated
4-cycle, a contradiction to Lemma 4.2. a

Corollary 4.5. G has no vertexr of degree 0.

Proof. Suppose dg(v) = 0. Note that this means that there is no other vertex of
degree 0. If there were, neither our hinges from our packing nor the leave would
cover the edges between v and this vertex. This also means that v appears in
exactly 7 of the hinges in our packing to cover all edges incident with v in 2Kj.
Hence, by Lemma 4.4, we must have the following graph as a subgraph of G:

®
v

Now, all the edges in C) must be double covered by 4-cycles, and a 4-cycle
can cover at most a pair of its edges. Thus the remaining 3 edges in G must go
from C; to C; to cover the edges in C;. However, this means we must repeat
C; to double cover its edges, a contradiction to Lemma 4.2. O

Lemma 4.6. G cannot have (4,3,3,2,2,2,2,2) as its degree sequence.
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Proof. Suppose G has (4,3,3,2,2,2,2,2) as its degree sequence. Without loss
of generality, since no vertices of degree 2 can be adjacent (Corollary 4.3), G
must look like this:

Now, redraw G to look like this:

-
-
-
L.
@
-

Note that no 4-cycle can contain the dotted edges. O
Lemma 4.7. G cannot have (3,3,3,3,2,2,2,2) as its degree sequence.

Proof. Suppose G has (3,3,3,3,2,2,2,2) as its degree sequence. Call an edge
pure if it is incident with two vertices of degree 3 and call it mized otherwise.
Note that there are exactly 2 pure edges. By Corollary 4.3, each 4-cycle in our
double cover must use an even number of mixed edges, and thus it must also
use an even number of pure edges. Hence, the pure edges must share a vertex,
v, and both of these edges must be a part of two (distinct) 4-cycles. Now, note
that the remaining edge at v must be mixed, but there is no way to cover it
with a 4-cycle. a

Theorem 4.8. G does not have a double cover by 4-cycles.

Proof. G must have one of the following degree sequences, none of which has
our desired double cover by 4-cycles:

—

. (4,4,3,3,3,3,0,0) (corollary 4.5)
. (4,4,3,3,2,2,2,0) (corollary 4.5)
. (4,4,2,2,2,2,2,2) (corollary 4.3)
. (4,3,3,3,3,2,2,0) (corollary 4.5)
. (4,3,3,2,2,2,2,2) (lemma 4.6)

. (3,3,3,3,3,3,2,0) (corollary 4.5)

[= T L B O VL B
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7. (3,3,3,3,2,2,2,2) (lemma 4.7)
a

This leads us to the following conclusion:
Corollary 4.9. There does not exist a metamorphosis of 2Ks. O

Before we can begin the 12n + 8 Construction, we must consider the cases
where n € {1,2}. We begin with some intermediate results. The first comes
from [8].

Lemma 4.10. There ezists a metamorphosis of 2K1g.

Proof. Let the vertex set V = Zjo. Let H = {< 0,2,1,3>,< 0,4,5,6 >,
<0,8,7,9>,<24,1,7>,<2,8,3,6>,<4,8,6,7>,<1,57,8>,
<3,5,7,8>,<3,9,4,6><1,96,8>,<5,6,0,2>,<6,7,1,3 >,
<7902>,<5,9,2,4>,<1,3,0,4>}. Let D* = {(0,2,8,4),(0,4,2,8),
(0,8,4,2),(1,5,3,9),(1,5,3,9),(5,6,7,9),(5,6,7,9)} and L = {<1,3>}. Then
(V,H,0,D*, L) is a metamorphosis of 2K, as desired. 0O

Lemma 4.11. Let G’ be a doubled 1-factor on 8 vertices. Then there exists a
metamorphosis of 2Kg \ G'.

Proof. Let OO={00;,002}. Let the vertex set V =00 U(Z, x Z3) and let
E(G") = {< 001,003 >} U {< (0,3),(1,%) >: i € Z3}.

Let H = {< 001,(0,0),(0,1),(1,1) >, < 001,(1,0),(0,2),(1,2) >,
< 002, (0,0),(0,2),(1,2) >, < 002,(1,0),(0,1),(1,1) >,
< (0, 1),(0, 2),001,002 >, < (1, 1),(1,2),001,002 >,
< (0’1)1(1»2)7(070):(1v0) >, < (Ov 2)’(1s 1)!(0r0),(110) >}'

Let C = {(oc01,(0,0), 002,(1,0)),((0,1),(0,2),(1,1),(1,2))} and D* = 2C.
Then (V, H,0, D*,0) is a metamorphosis of 2Kg \ G, as desired. O

Lemma 4.12. There ezists a metamorphosis of 2K3,.

Proof. Note that 32 = 3((5)(2)) + 2. Let OO= {00;,00,} and Q = {1,2,3,.. .,
10}. Let H(Q) = {ho, k1, ..., hq} be a partition of Q into pairwise disjoint sets
of size 2, where h; = {2i+1,2i+2}. Let (@, o) be the antisymmetric quasigroup
of order 10 with holes H(Q) found below and set V =00U(Q x {1,2,3}). For
0 <i<4, let B; = h; x {1,2,3} and 4; =OOUB;. For 0 < i < 3, let
Vi=Q x {i}. Let L = {< 001,002 >}.

(i) For 0 < i < 3, let (V;,J;,0, Ef, M;) be a metamorphosis of 2K;o, where
M; = {<(1,7),(2,7) >} (see Lemma 4.10).
(ii) For 0 < i < 4, let (A;, H;, 0, D}, 0) be a metamorphosis of 2K3 \ G, where
E(G)) = {< oco1,000 >}U | |J hix{k}| and if i = {z,y}, then
0<k<3
D(Hl) = {< 1, (2, 1) >, < 00y, (y7 1) >,< 002, (12, l) >,

< 00y, (y,1) >, < (,2),(2,3) >, < (z,2), (v,3) >,
<(%,2),(=,3) >, < (v,2),(y,3) >} (see Lemma 4.11).
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(iit) Now, LU U M; |y U D(H;) | can be decomposed into 4-cycles
0<i<3 0<i<4
(XUuYu2Z)C D*, where X, Y, and Z are defined as follows.

Let X = {(co1, 002, (1,1),(2,1)), (001,002, (2,1), (1,1)),

(001,(1,1), 002, (2, 1))}, let Y = {((1,2),(2,2),(1,3),(2,3)),
((1,2),(2,2), (2,3), (1,3)), ((1,2), (1,3),(2.2),(2,3))}, and let

Z = {(oo1, (2i+2,1), 002, (2i+1,1)), ((2+1,2), (2i+1,3),(2+2,2), (2i +
2,3)):0< i< 4}

(iv) We now need to use the edges between vertices in B; and B;fori# j. Let
H* = {< (z,1),(3,2),(z 09,3),(y 02,3) >,< (£,2), (s, 1), (z09,3), (y 0
z,3) >: x € hi,y € hj,i # j}, where (Q,0) is found below.

o1 2 3 4 5 6 7 8 9 10
1 5 6 7 8 9 10 3 4
2 5 8 7 10 9 4 3
316 5 9 100 1 2 7 8
4 {5 6 0 9 2 1 8 7
518 7 10 9 3 4 1 2
6|7 8 9 10 4 3 2 1
71100 9 2 1 4 3 5 6
819 10 1 2 3 4 6 5
914 3 8 7 2 1 6 5
103 4 7 8 1 2 5 6

(v) After removing the double edges from our hinges in H*, we have the
following edges remaining to use in our metamorphosis: edges of the type
< (z,1),(y,2) > and edges of the type < (z,2),(y,1) >, where = € h;,
yE€ hjv and ¢ 79 7 Let C = {((zl? 1)1 (y1)2)1 (x’b 1)1 (y2’ 2))!
((xlv2)a (yls l)a (132, 2)1 ('y2s 1)) thy = {.’El, x2}) hj = {yl)yZ}si ?(‘. .7} NOW,
put 2C in D*.

0<i<3 0<i<4

Lee H=H*v | |J J.-) U ( U H;). Then (V, H,L, D*,0) is a meta-
morphosis of 2K32, as desired. O

Now, we must consider the following examples that we will use in the 12n +
8 > 44 Construction.

Lemma 4.13. There exists a metamorphosis of 2Kag.

Proof. We will decompose 2K3zo with vertex set V = {1,2,3,4} x {1,2,3,4,5}.
Let L= {< (4,1),(4,2) >}.

Let H = {< (171)7(1’2)1 (2’ 1)1 (2’2
<(3,1),(3,2),(1,1),(1,2) >, < (1,1),(

) >, < (2»1)1(212)’(&1)’(3’ 2) >,
4,1),(2,1),(3,1) >,

114



<(1,1),(4,2),(2,2),(3,2) >,< (1,2),(4,1),(2,2),(3,1) >,
<(1,2),(4,2),(2,1),(3,2) >,< (3,1),(4,2),(2,1),(2,2) >,
<(3,2),(4,1),(2,1),(2,2) >, < (1,3),(1,4),(1,1),(1,2) >
<(1,3),(1,5),(1,1),(1,2) >, < (1,4),(1,5),(1,1),(1,2) >,
<(2,3),(2,4),(2,1),(2,2) >,< (2,3),(2,5),(2,1),(2,2) >,
<(2,4),(2,5),(2,1),(2,2) >, < (3,3),(3,4),(3,1),(3,2) >,
<(8,3),(8,5),(8,1),(3,2) >,< (3,4),(3,5),(3,1),(3,2) >,
<(4,3),(4,4),(4,1),(4,2) >,< (4,3),(4,5),(4,1),(4,2) >,

<(4,4),(4,5),(4,1),(4,2) >,< (1,1),(3,3), (2,4), (4,4) >,
<(2,1),(4,3),(1,4),(3,4) >, < (1,1),(3,4),(2,5), (4,5) >
<(2,1),(4,4),(1,5),(3,5) >, < (1,1),(3,5),(2,3),(4,3) >,
<(2,1),(4,5),(1,3),(3,3) >, < (1,2),(3,3),(2,5), (4,5) >,
<(2,2),(4,3),(1,5),(3,5) >, < (1,2),(3,4),(2,3), (4,3) >,
<(2,2),(4,4),(1,3),(3,3) >, < (1,2),(3,5), (2,4), (4, 4) >,

<(2,2),(4,5),(1,4),(3,4) >,< (1,3),(3,1),(2,4), (4,4) >
<(2,3),(4,1),(1,4),(3,4) >,< (1,3),(3,2),(2,5), (4,5) >,

<(2,3),(4,2),(1,5),(3,5) >, < (1,3),(3,3), (2,3), (4,3) >,
<(2,3),(4,3),(1,3),(3,3) >, < (1,3),(3,4),(2,1),(4,1) >,
<(2,3),(4,4),(1,1),(3,1) >, < (1,3),(3,5), (2, 2), (4,2) >,
< (2,3),(4,5),(1,2),(3,2) >, < (1,4),(3,1), (2,5), (4,5) >,
<(2,3),(4,5),(1,2),(3,2) >, < (1,4), (3,1),(2,5), (4,5) >,
<(2,4),(4,1),(1,5),(3,5) >,< (1,4),(3,2),(2,3),(4,3) >

<(2,4),(4,2),(1,3),(3,3) >,< (1,4),(3,3),(2,2), (4,2) >
<(2,4),(4,3),(1,2),(3,2) >,< (1,4),(3,4),(2,4), (4,4) >,
<(2,4),(4,4),(1,4),(3,4) >, < (1,4),(3,5),(2,1),(4,1) >

<(2,4),(4,5),(1,1),(3,1) >,< (1,5), (3,1),(2,3), (4,3) >,
< (2,5),(4,1),(1,3),(3,3) >, < (1,5),(3,2), (2, 4), (4, 4) >,
< (2,5),(4,2),(1,4),(3,4) >, < (1,5),(3,3), (2, 1), (4, 1) >
<(2,5),(4,3),(1,1),(3,1) >, < (1,5),(3,4), (2,2), (4,2) >
<(2,5),(4,4),(1,2),(3,2) >, < (1,5),(3,5),(2,5), (4,5) >,

<(2,5),(4,5),(1,5),(3,5) >}.

Let D* = {((3,1),(3,2),(4,1),(4,2)),((3,1),(3,2),(4,1),(4,2)),
((1,1),(4,1),(1,2),(4,2)),((1,1),(4,1),(1,2), (4,2)),
((1,2),(1,2),(3,4),(3,3)),((2,1),(2,2),(4,4), (4,3)),
((1,1),(1,2),(3,5),(3,4)),((2,1),(2,2),(4,5),(4,4)) ,

((1,2),(3,3),(1,1),(3,5)),((2,2),(4,3),(2,1), (4,5)),
((1,2),(3,3),(3,5),(3,4)), ((2,2),(4,3), (4,5), (4,4)),
((3,3),(3,4),(1,1),(3,5)),((4,3),(4,4),(2,1),(4,5)),
((1,3),(3,2),(1,4),(3,1)),((2,3),(4,2),(2,4), (4, 1)),
((1,3),(3,2),(1,5),(3,1)),((2,3),(4,2),(2,5),(4,1)),
((1,9),(3,2),(1,5),(3,1)), ((2,4),(4,2),(2,5), (4, 1))
((1,3),(3,4),(1,4),(3,5)),((2,3),(4,4),(2,4),(4,5)) ,
((1,4),(3,3),(1,5),(3,4)),((2,4), (4,3),(2,5), (4,4)) ,
((1,3),(3,3),(1,5),(3,5)), ((2,3),(4,3),(2,5),(4,5)),
((1,3),(1,4),(1,5),(3,4)), ((2,3),(2,4),(2,5), (4,4)),
((1,3),(1,5),(1,4),(3,3)),((2:3),(2,5),(2,4),(4,3)),
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((1,3),(1,5),(3,5),(1,4)), ((2,3),(2,5), (4,5), (2, 4))}-
Then (V, H, L, D*,0) is a metamorphosis of 2K0, as desired.

Lemma 4.14. There exists a metamorphosis of 2Kz0 \ 2Ks.

Proof. We will be decomposing 2Ka0 with vertex set V = {1,2,3,4,5}
x {1,2,3,4} minus 2K3 on the vertex set {1,2} x {1,2,3,4}.

Let H = {< (3,1),(3,2),(3,3),(3,4) >,< (3,3),(3,4),(3,1), (3, 2) >,
<(4,1),(4,2),(4,3),(4,4) >, < (4,3),(4,4),(4,1),(4,2) >,
< (5,1),(5,2),(5,3),(5,4) >, < (5,3),(5,4), (5,1),(5,2) >,

<(3.1),(4,1),(1,1),(2,1) >,< (3,1),(5,1),(1,1),(2,1) >,
< (4,1),(5,1),(1,1),(2,1) >,< (3,1),(4,2),(1,3),(2,3) >,
<(3,1),(5,2),(1,3),(2,3) >, < (4,1),(5,2),(1,3),(2,3) >,
<(3,1),(4,3),(1,4),(2,4) >, < (3,1),(5,3),(1,4),(2,4) >,
< (4,1),(5,3),(1,4),(2,4) >, < (3,1),(4,4),(1,2),(2,2) >,
< (3,1),(5,4),(1,2),(2,2) >, < (4,1),(5,4),(1,2),(2,2) >,
< (3.2)(4.1),(1,4),(2,4) >, < (3,2),(5,1),(1,4), (2,4) >,
< (4.2),(5,1),(1,4),(2,4) >, < (3,2),(4,2),(1,2),(2,2) >
<(3.2).(5,2),(1,2),(2,2) >, < (4,2),(5,2), (1,2),(2,2) >,
<(3.2),(4,3),(1,1),(2,1) >, < (3,2),(5,3), (1,1),(2,1) >,
< (4,2),(5,3),(1,1),(2,1) >,< (3,2),(4,4),(1,3),(2,3) >,
<(3,2),(5,4),(1,3),(2,3) >, < (4,2),(5,4),(1,3),(2,3) >,
< (3.3).(4,1),(1,2),(2,2) >, < (3,3),(5,1),(1,2),(2,2) >,
<(4,3),(5,1),(1,2),(2,2) >, < (3,3),(4,2),(1,4),(2,4) >,
<(3,3),(5,2),(1,4),(2,4) >,< (4,3),(5,2),(1,4),(2,4) >,
< (3,3),(4,3),(1,3),(2,3) >,< (3,3),(5,3),(1,3),(2,3) >,
< (4,3),(5,3),(1,3),(2,3) >, < (3,3),(4,4),(1,1),(2,1) >,
< (3,3),(5,4),(1,1),(2,1) >, < (4,3),(5,4),(1,1),(2,1) >,
< (3.4).(41),(1,3),(2,3) >, < (3,4),(5,1),(1,3),(2,3) >,
< (4.4),(5,1),(1,3),(2,3) >, < (3,4),(4,2),(1,1),(2,1) >,
<(3,4),(5,2),(1,1),(2,1) >, < (4,4),(5,2),(1,1),(2,1) >,

< (3.4),(4,3),(1,2),(2,2) >, < (3,4),(5,3),(1,2),(2,2) >,

< (4,4),(5,3),(1,2),(2,2) >, < (3,4),(4,4),(1,4),(2,4) >,
< (3,4).(5,4),(1,4),(2,4) >, < (4,4),(5,4),(1,4),(2,4) >}.

Let D* = {((3,1),(3,2),(4,1),(4,2)),((3,1),(3,2),(4,2), (4, 1)),
((3,1),(4,1),(3,2),(4,2)),((4,3),(4,4),(5,3),(5,4)) ,
((4,3),(4,4),(5,4),(5,3)),((4,3),(5,3),(4,4), (5,4)) ,
((3,3),(3,4),(5,1),(5,2)),((3,3),(3,4),(5,2),(5,1)) ,
((3,3),(5,1),(3,4),(5,2)),((4,1),(5,1),(4,2),(5,2)) ,

((4,1),(5,1),(4,2),(5,2)).((3,3),(4,3), (3,4), (4,4)),
((3,3),(4,3),(3,4), (4,4)),((3,1),(5,1),(3,2),(5,2)),
((3,1),(5,1),(3,2), (5,2))((3,3), (5,3), (3,4), (5,4),
((3,3),(5,3).(3,4),(5,4)).((3,1),(4,3),(3,2),(4,4),
((3,1),(4,3),(3,2), (4,4)),((4,1),(5,3),(4,2),(5,4)) ,
((4,1),(5,3),(4,2), (5,4),((3,3),(4,1),(3,4),(4,2),
((3,3),(4,1),(3,4), (4,2)),((4,8),(5,1), (4,4), (5:2)),
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((4,3),(5,1),(4,4),(5,2)),((3,1),(5,3),(3,2),(5,4)),
((3,1),(5,3),(3,2),(5,4))}.
Then (V, H,0, D*, 0) is a metamorphosis of 2K \ 2K, as desired. [}

With the above examples in hand, we can proceed to the 12n + 8 > 44
Construction.

Theorem 4.15. There ezists a metamorphosis of 2K 12,48 if and only if 12n+
8> 20.

Proof. Write 12n + 8 = 3(4n) + 8. The cases where n = 1 and n = 2 are
settled in Lemmas 4.13 and 4.12, respectively, and the fact that n cannot be
0 is shown in Corollary 4.9. Hence 12n + 8 > 44, and 4n > 12. Let OO=
{001, 002,003, 004, 005, 006,007,008} and Q@ = {1,2,3,...,4n}. Let H(Q) =
{ho, b1y ., ha1}, where by = {4i + 1,4 + 2,4i + 3,4i + 4}. Let (Q,0) be a
commutative quasigroup of order 4n with holes H(Q) and set V =00U(Q x
{1,2,3}).

Proceed as in Theorem 1.2 by letting B; = h; x {1,2,3} for 0 < i < n. Let

= {< 001,002 >} and let L; = @ for 0 < i < n. Thus (Ao, Ho, L?,D}§,0) is a
metamorphosxs of 2K5¢ and (A;, H;,0, D}, 9) is a metamorphosis of 2K5 \ 2K3
for 0 < i < n. What remains is 2Ky 4,....4 on Q x {k} for 0 < k < 3, so we can,
again, apply the result of Sotteau and place the 4-cycles in C. (V, H, L2, D*,0)
is a metamorphosis of 2K)9,, 48, as desired. o
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