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Abstract

We describe the construction of transitive 2-designs and strongly
regular graphs defined on the conjugacy classes of the maximal and
second maximal subgroups of the symplectic group S(6,2). Further-
more, we present linear codes invariant under the action of the group
5(8,2) obtained as the codes of the constructed designs and graphs.
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1 Introduction

An incidence structure is an ordered triple D = (P,B,I) where P and B
are non-empty disjoint sets and Z C P x B. The elements of the set P are
called points, the elements of the set B are called blocks and 7 is called
an incidence relation. If |P| = |B|, then the incidence structure is called a
symmetric one. The incidence matrix of an incidence structure is a b X v
matrix [m;;] where b and v are the numbers of blocks and points respec-
tively, such that m;; = 1 if the point P; and the block z; are incident,
and m;; = 0 otherwise. An isomorphism from one incidence structure to
other is a bijective mapping of points to points and blocks to blocks which
preserves incidence. An isomorphism from an incidence structure D onto
itself is called an automorphism of D. The set of all automorphisms forms
a group called the full automorphism group of D and is denoted by Aut(D).

At — (v,k, ) design is a finite incidence structure D = (P, B,I) satis-
fying the following requirements:

1‘ Ipl =7,
2. every element of B is incident with exactly k elements of P,
3. every t elements of P are incident with exactly A elements of B.

A 2 — (v,k,\) design is called a block design. Note that this definition
allows B to be a multiset. If B is a set, then D is called a simple design. If
a design D consists of k copies of some simple design D', then it is denoted
by D = kD'.

Let T = (V,&,I) be a finite incidence structure. I is a graph if each
element of £ is incident with exactly two elements of V. The elements of
V are called vertices and the elements of £ are called edges. Two vertices
u and v are called adjacent or neighbours if they are incident with the
same edge. The number of neighbours of a vertex v is called the degree
of v. If all the vertices of the graph I have the same degree k, then I’ is
called k-regular. We define a square {0, 1}-matrix A = (ay,) labelled by
the vertices of I' in such a way that a,, = 1 if and only if the vertices u and
v are adjacent. The matrix A is called the adjacency matrix of the graph
T.

A graph T is called a strongly regular graph with parameters (n, ky A, 1),
and it is denoted by SRG(n, k, A, ), if T' is k-regular graph with n vertices
and if any two adjacent vertices have A common neighbours and any two
non-adjacent vertices have y common neighbours.

The code Cf of the design D over the finite field IF is the space spanned
by the incidence vectors of the blocks over F. If Q is any subset of P, then
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we will denote the incidence vector of Q@ by v©. Thus Cy = (vB|B e B)isa
subspace of F”, the full vector space of functions from P to F. Similarly, we
can span a code by the incidence vectors of the points over some finite field
F. All our codes will be linear codes, i.e. subspaces of the ambient vector
space. If a code C, over a field of order g, is of length n, dimension &, and
minimum weight d, then we write [n, k,d], to show this information. An
automorphism of a code is any permutation of the coordinate positions that
maps codewords to codewords. Two codes over a field of prime order are
equivalent if one of the codes can be obtained from the other by permuting
the coordinates and multiplication of components by non-zero elements.

The code of a graph I' over the finite field F is the row span of an
adjacency matrix A over the field F.

Let G be a group and S be a subset of G. The conjugacy class of S is
denoted by cclg(S) and |celg(S)| = [G:Ng(S))-

In this paper we consider block designs and strongly regular graphs
constructed from the symplectic group S(6,2). S(6,2) is the simple group of
order 1451520, and it has eight distinct classes of maximal subgroups: Mg =
U(4, 2)222, M7 =2 Sg, Mg = E3,:Ss, Mg = U(3, 3)2Z2, M, = Feq:L(3, 2),
Mj; = ((Er6:22) x E4):(S3 x S3), Mz & S3 x Sg, and M) = L(2,8):Z3. Up
to conjugation, S(6,2) has 30 second maximal subgroups, given in Table 4.

We define incidence structures on the elements of the conjugacy classes
of the maximal and second maximal subgroups of S(6,2). This construc-
tion will result with 2-designs and strongly regular graphs on which the
group S(6,2) acts transitively. Note that 2-designs and strongly regular
graphs on which the group S(6,2) acts primitively (i.e. the points and the
blocks labelled by the elements of the conjugacy classes of the maximal
subgroups in S(6,2)) are described in [6].

Generators of the group S(6,2), and its maximal subgroups are avail-
able on the Internet: http://brauer.maths.qmul.ac.uk/Atlas/.

The construction employed in this paper is introduced in [8] and it
is a generalization of the construction described in [6) and [7]. While in
(6] and [7] we constructed the block designs and strongly regular graphs
from primitive groups, in [8] we described a construction of combinatorial
structures from transitive groups. Using this method, in this paper, we
construct block designs with 28, 36, 63, 120 and 378 points, and strongly
regular graphs on 378, 630 and 1120 vertices from the simple group $(6,2).
Moreover, we study the linear codes generated by the incidence matrices of
the block designs. The linear codes are spanned by incidence vectors of the
points and the blocks. Additionally, we consider linear codes obtained from
the adjacency matrices of the strongly regular graphs. Note that the lin-
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ear codes that admit a primitive action of S(6, 2) are described in (3] and [4].

For basic definitions and group theoretical notation we refer the reader
to [5] and [15].

All the structures are obtained by using the programs Magma ([1]),
GAP ([14]) and GAP package Design ({16]).

The paper is organized as follows: in Section 2 we briefly describe the
method of construction of transitive designs and graphs used in this paper,
and in Section 3 we describe structures constructed on the conjugacy classes
of the maximal and second maximal subgroups under the action of the
symplectic group S(6,2) and codes of the constructed designs and graphs.

2 .The construction

The construction of primitive symmetric 1-designs and regular graphs for
which a stabilizer of a point and a stabilizer of a block are conjugate is
presented in [10], [11] and [12]. The generalization, i.e. the method for
constructing not necessarily symmetric but still primitive 1-designs, is pre-
sented in [6] and [7). In [8] we presented a construction of not necessarily
primitive, but still transitive block designs:

Theorem 1 Let G be a finite permutation group acting transitively on the
sets Q; and Qp of size m and n, respectively. Let a € Q) and Ay =
Ui.18:Ga, where 8y, ...,8, € Qo are representatives of distinct Gq-orbits.
If As # Q9 and

B={Axg:9€G},

then D(G, @, 81, ..., 8,) = (Q2, B) is a 1—(n, |Aq|, lJGG—‘;;IT >, |aGs,]) design
with %%H blocks. The group H = G/, ¢q, Gz acts as an automorphism
group on (Qa, B), transitively on points and blocks of the design.

If Ay = Qy then the set B consists of one block, and D(G,a, 6y, ...,0;)
is a design with parameters 1 — (n,n, 1).

The construction described in Theorem 1 gives us all simple designs on
which the group G acts transitively on the points and blocks, i.e. if a group
G acts transitively on the points and blocks of a simple 1-design D, then
D can be obtained as described in Theorem 1.

Remark 1 Let Q; = oG, and let us define the function f: Q) — B such
that ag — Agg. That function is not neccessarily an injection. Further,
let us define the design such that for each element ag € Q, the block Aqg
is constructed. This design consists of m blocks and has parameters 1 —
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(n,182], 3724 |aGs,]). The constructed design may or may not be simple;
depending on whether the function f is an injection or not.

Remark 2 If Q) = Qy and Az is a union of self-paired and mutually
paired orbits of G, then the design D(G,q,éy,...,8,) is a symmetric self-
dual design and the incidence matriz of that design is the adjacency matriz
of a |Ag|—regular graph.

We can use Theorem 1 to construct 1-design as follows. Let M be a
finite group and H), Hj, and G be subgroups of M. G acts transitively on
the class cclg(H;), i = 1,2, by conjugation and

lcelg(H)| = [G:Ng(H,)] = m,
lecla(Hz)| = |G:Ng(Ha)] = n.

Let us denote the elements of cclc;(H 1) by H{*,H{?,...,H{™, and the
elements of cclc(H,) by Hi*, H}2,... Hi»,

By taking into con51derat10n the Remark 1, the 1-designs can be con-
structed in the following way (but the resulting 1-designs may have repeated
blocks):

e the point set of the design is cclg(H>),
e the block set is cclg(H,),

e the block H{" is incident with the point H2 if and only if H2 NHY =
G, s=1,...,k, where {Gy,...,Gk} C{H§ NH} | z,y € G}.

We denote a 1-design constructed in this way by D(G, H,, Hy; Gy, ... , Gi).
Let M be a finite group and H and G be subgroups of M. One can
construct regular graph in the following way:

e the vertex set of the graph is cclg(H),

e the vertex H9: is adjacent to the vertex H9 if and only if H% NH9% =
Gs, s=1,...,k, where {Gy,...,Gx} C{H*NHY | z,y € G}.

A regular graph constructed in this way is denoted by I'(G, H; Gy, ..., G).

Remark 3 Note that we only consider 1-designs that are 2-designs and
regular graphs that are strongly regular.

Remark 4 If H, and H, are subgroups of G such that M; = Ng(H;) and
Mz = Ng(H3) are mazimal subgroups of G, then the group G acts prim-
itively on cclg(Hy) and cclg(Hz). If D(G,Hz, Hy;G,...,G)) is a design
constructed from the group G by the method described in Theorem 1, then
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there exist groups G, ..., Gy (k > 1) such that {GiNH\NHy |i=1,..,k} =
{G1,....Gi} and {G},...,GL} C{ M{ " M3’ | gi,9; € G}. Using the de-
scribe method, one can construct primitive design D(G, M2, My; Gt ..., GY)-
Note that the designs D(G, Ha, Hy; G, ..., G1) and D(G, M3, M,; Gy, ...,Gg)
are isomorphic because there ezists bijective mapping that maps the class
cclg(My) onto the class cclg(Hy) and the class cclg(Mz) onto the class
celg(Hy), such that the intersection of the images of the groups M, and
M is equal to the intersection of the groups Hy and Ha.

By Remark 4, we did not need to construct structures whose points and
blocks are labelled by the elements of the conjugacy classes of the subgroups
which normalizer is a maximal subgroup in S(6,2) because they are already
described in [6]. Below we give a list of structures constructed in (6] from
the group S(6,2): primitive block designs (Table 1) and primitive strongly
regular graphs (Table 2).

Table 1: Primitive block designs constructed from the group S(6,2)

esign Parameters [ The full
automorphism group
D(5(6, 2), Ms, Me; Er6:5s) (28,12,11) | 3(6,2)
D(S(6,2), Mg, M3; ((Es-Z12):26):2Z2) (28,4,5) 5(6,2)
D(8(6, 2), Mg, Ma; E27:(Dg % Z3)) (28,10,40) | S(6,2)
D(S(8,2), M7, Mg; Ag: Ea) (36,16,12) | S(6,2)
D(S5(6,2), M7, My; Eg:L(2,7)) (36,8, 6) 5(6,2)
D(S(6, 2), M7, M3; E16:54) (36,12,33) | 5(6,2)
D(5(6,2), M7, M2; S5 x S3) (36,6,8) 5(6,2)
D(S(6,2), Mg, Mg; Ex},:(Dy2 X Z3), E32:S¢) | (63,31,15) | PGL(6,2)

Table 2: Primitive strongly regular graphs constructed from the group S(6,2)

Graph Parameters The full
automorphism group
T(S(6,2), Mg; Ex3,:(D12 X Z3)) | (63,30,13,15) 5(6,2)

I(S(6,2), Ms; (Ex3,:22).24) (120,56,28,24) | OF (2): Z2

P(S(G, 2)v Md: L(21 7)) (135v 64, 28, 32) Q{ (2) : ZZ

More details about the listed designs and graphs can be found in [6].

3 Transitive combinatorial structures con-
structed from the group S(6,2)

In this section we consider transitive structures constructed from a simple
group G isomorphic to the symplectic group S(6,2). We describe structures
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constructed on the conjugacy classes of the maximal and second maximal
subgroups of the group G. The maximal and second maximal subgroups
of the group S(6,2) are listed in Table 3 and Table 4, respectively.

Table 3: Maximal subgroups of the group S(6,2) (up to conjugation)

Subgroup Structure ize Size of
of the subgroup G-conjugacy class
Mg U(4,2):2; 51840 28
M, Ss 40320 36
Mg E33:S¢ 23040 63
M, U(3,3):2, 12096 120
M, E¢4:L(3,2) 10752 135
M3 ((Eh6:22) X E4):(S3 x S3) 4608 315
M, S3 x Se 4320 336
M, L(2,8):Z3 1612 960

Table 4: Second maximal subgroups of the group S(6,2) (up to conjugation)

Subgroup Structure Size Size of
of the group G-conjugacy class

H, Ei6:Ss 1920 378

Hy ((Z2 x Dg):Z3):(S3 x S3) 1152 1260
Hj; Za x Se 1440 1008
H, (E9:23):GL(2,3) 1296 1120
Hy Eq7:(Z23 x S4) 1296 1120
Hg (Ss x S4):22 1152 1260
H, 7 5040 288

Hg Eg:(Z3 x Sq) 384 3780
Hy Ss x S3 720 2016
Hyy PSL(32):2, 336 4320
Hl‘ (Esz:A_',):Zz 3840 378

H12 Zz x ((Eu;!As):Zz) 3840 378

H]3 22 X ((34 X 34)122) 2304 630

Hi, E32:(Z2:84) 1536 945

His Eg:(Dg x S4) 1536 945

Hye Z2 % Se 1440 1008
H,~ (E9:23):QDhe 432 3360
HIB (SL(23)ZZ4):Zg 192 7560
H]o E4:(22 X 54) 192 7560
Hao E33:(Z2 x 84) 1536 945

Ha, (Ee4:27):23 1344 1080
Haz Eg.PSL(32) 1344 1080
Haa Eg:PSL(32) 1344 1080
Ha, Z2 X S3X S, 288 5040
H25 35 X 53 720 2016
Hae ((S3 x 83):22) x S3 432 3360
Har Za2 x Sq4x 83 288 5040
Hgg (Es:Z-():Za 168 8640
Hag (Z29:23):22 54 26880
H3o EzUZz 42 34560

Below we give the intersections of the elements of the conjugacy classes
that we use for construction of strongly regular graphs and block designs.
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The intersection of two different elements, one from the conjugacy class of
the maximal subgroup M; and the other from the conjugacy class of the
second maximal subgroup H;, denoted by Pk i+ is isomorphic to:

® P 6534"5'4: se—EQDS

o P}, Ss, P$, =S5 x 22

o Plg=Syx Ey Pig 2y xDg

b Psl,ggsfixzz‘ P3_9£‘22x53 xSa,Psg_S4 x Za

e P}y, = Er6:(Zs:24), P§y = S5 x 22

o P}y, (Ds x Dg):2Z2, P31, = Sa x E4

o P}, = Ei6:(Aa:Z2), P35 = S4 x Ds, P15 2 Sa x By

o P} 16 (Sa x S3):Ea, P§ 162 Ss, P36 S5 x Z;

o P},s 2 (23 x Q8):2Z2, P15 Ds

o P}, = QDie, P§ o= D12

o P}, = Ds xS, P§24 2 Zy x S3 x S3, P34 = Z2 x Dg

o Pj g% Ds x S3, Pfag 2 (S3 x 83):D12, P§ 56 & Ea x 53

¢ Pgar ™ 22 x 53 x 5, P8,27—D8 x S3, P§ 27 2 Sa x Za, Pd 57 = Eqa x S3
o P}, = Ex};:S3, P}, 55, 31 2 E16:5s

o P}, E6:(As:22), P32 ((Z2 x Ds):22):(S3 % ), P§, = Sa x 22
o Py=8s, Pis2sx Ss, P3S4 x Es

® Psl,so = Zg, Psz,so =

o P}, =S5, P?, Sy x Eq

s P}, =S4 x Ey, P-,2'2'a‘34 x 22

o P} (53 x S3):Eq, P'?.s ™S, x 2o

o P}g = (Dg x Dg):Z2, P}g 2 E16:(A4:Z2), Pig = 5a x 2, Pjg = Z2 x Dg
o P}y 283 xSy, P?4 2 S5 x S3, p79 E4 x S3

o P} o2 84, P}y = PSL(3,2):22, P70 = D1s

o P}y E4:(Z2 X Sa), P14 = (Ds x Ds):Z2, P} 14 Sa x Eq
o P} 152 (Ds x Dg):2Z2, P} 5 S4 x Ds, P15 % Sa x Eq

. P'rl.ls Ss x 22, P, 7 16 = (S3 x S3):Eq, P-, 16 2 E9 x Dg

» P} gD, P} 4= Dg

o P} o= D12, P} 9% Dis, P} 19 ™ Sa

o P}go ® E16:(Aa:Z2), P30 2 Ds x Ds, P§ oo & Ez3,:S3

o P}, =(Es:Z7):23, P}y 2 Esx Ay

o P}, 2 Dg x S3, P}y, 2 Eq x S3, P7gq 222 % Ds

o P} 5o Zy x S3 x S3, P}yg = (S3 x S3):Ea, Pfy6 = Z2 % Ds
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oP727_sz33x53,P.,27E.‘E4xSs,P72.,_SgxS4,P.,27°_‘ngDs

o Pjog ™ Z7:23, Py 2 Zs

oP-,3_S4><E4,P3§Z2xSG,P.,3_E9Dg

o Plg = Eg:Dg, P}¢ 2 (Sy x S4):23, P3g & Ea:Ds

o P!, Eyg: (szS.;) P2,y = Es:L(2, 7) P}yy =Sy x 22

® Plog 2 Z6, Piog = 2,

® Plao ™ Z3, P73 2 D14:23, PJ 3y & 22

o P}, %S4 x Ea, P}, & Ex},:Ss, P}, = E16:Ss, P4, = Ss

. P63-54><E4,P63 szSs,P63—Ss,P43_E9xDs

0P66§S4xE4,P = Eg:Dg, Bs_(S4XS4)Z2, ss_EgDs

* Pd14 = 22 x (Ex6:22), P§ 4 & Eq x (Es:Ds), P14 2 Es2:(Z2 x Sa, P§ 4 =
4% Z2

* Pi1o ™ Bs, P¢1g = Ex3y, P§ 1o = (Za x Za):D12, P19 = S3

oP627_S4xE4,P627_Els,P62.,_Z2xS;,xS.;,PGz.,_EsxSs,P627_
S3 x S3, P§ oy & Di2

o Pl o= Dig, P2 1o Sy, P30 D12, P}y Ss, P 1o = PSL(3,2):22

The intersection of two different elements Hf € cclg(H;) and H} €
cclg(Hj), denoted by Pf;, is isomorphic to:

. Pll,12 2 Sy x Zg, ‘Pl,12 > S, P?l? & Ey6:(A4:22), P, 12 = Gy, Pl 12 = Eq6:S5,

Pf i, = Ex$,:S3, P] 1, 2 E4 x Ss

The intersection of two different elements from the class cclg(H;), de-
noted by PF, is isomorphic to:

e Pl, = Sg, Pl2 = E:ca : 83, P12 & S4 x By, P, 12 = Eg:(E4 x Sa), P152 = Sy,

P, = Eg x 83, P172 o 73 x ((Er6:As):22)
. P & Fg:Dg, P. 13 = Fg:Dg, P133 =~ Fg:S3, P143 2 Zy x ((Dg x Dg): Z7), P153 = Dsg,
P13 = E:csz, Pm =~ Za x ((Sq x S4):Z2)
. Pé & Sy, P} = D12, P} & GL(2,3), P{ & (Eo:Z2) x S3, P§ = (Ee:Za):GL(2,3),
& QDIG P] 2,

Further on, we describe 2-designs and strongly regular graphs obtained
from G—conjugacy classes of the maximal and second maximal subgroups.
In the following tables (Table 5, 6, 7 and 8) we give the list of the con-
structed designs and strongly regular graphs and some of their properties.
The group G acts on all constructed designs, primitively on points, and
transitively but imprimitively on blocks.
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Table 5: Transitive block designs constructed from the group 5(6,2), v =28

D Construction Parameters | Simple | Corresp. Aut(D)
design | D’
Dy | D(G. Mo, Ho Fg) (28,12,110) | no (28,12,11) | 5(6,2)
D, | D(G.Ms, Hri Pi.r) (28,7,16) | yes 5(6,2)
Ds | D(G, Ms, Hs; Ps o) (28, 4, 60) no (28, 4,5) 5(6,2)
Dy | D(G, Mo, Hoi Pio) (28,3,16) | yes 5(6,2)
Ds | D(G, Ms, Hoi Pyo) (28,10,240) | no (28,10,40) | 5(6,2)
Do | D(G,Ms, Hoi Py, PZ) (28,13,416) | yes S(6,2)
D, | D(G, Ms,H".Ps 1) (28,12,66) | no (28,12,11) | 5(6,2)
Dg | D(C. Ms, Husi Pa.1a) (28,12,165) | no (28,12,11) | 5(6,2)
Dy | DG, Ms, Hisi Pi1s) (28,4,15) | no (28,4,5) | 5(6,2)
Dio D(G Mg, ”151 Ps 15) (28| 8, 70) yes 5(6, 2)
Dy | D(G, Ms, Hii Py 1) (28,10,120) | no (28,10, 40) | 5(6,2)
D12 | D(G, Ms, Hae; P3 16) (28,12,176) | no (28,12,11) | 5(6,2)
D13 | D(G, Ms, Hie; Pa 16) (28,6, 40) yes 5(6,2)
Dis | DG, Ms. Husi Py.1o) (28,4,120) | no (28,4,5) | S(6,2)
Dys | D(G, Ms, Hyo; Ps 19) (28,12,660) | no (28,12,11) | 5(6,2)
Dis | D(G, Ms, Haai Plag) (28,6,200) | yes 5(6,2)
Dy7 D(G, Mg, Haq; Ps 24) (28, 4,80) no (28,4,5) S§(6,2)
Dia | D(G, Mo, Haai Paay, Pias) | (28,10,600) | no (28,10,40) | S(6,2)
Do D(G, Mg, Hag: Ps 28) (28,9, 320) yes 5(6,2)
Do | D(G, Mo, Hzo: Paze, Piaa) | (28,10,400) | no (28,10,40) | S(6,2)
D21 | D(G, Ms, Har; Pa 27) (28,4,80) yes 5(6,2)
D22 | D(G, Mg, Haz; PB 274 Ps 27) | (28,12,880) | no (28,12,11) | S(6,2)
Dz3 | D(G, Mg, Haz; Ps.z-,) (28,12,880) | yes 5(6,2)
Do | DG, Ms, Hyi P41) (28,10,45) | yes 5(6,2)
Dys | D(G, Ms, Hai PL,) (28,3,10) | yes 5(6,2)
Do | D(G, Ma, Hzi Paz, Plo) (28,4,20) | no (28,4,5) | S(6,2)
Dar | D(G, Ms, H3; PL s, PZ3) (28,13,208) | yes 5(6,2)
Dys | D(C, Ma, Hao; Pl 30) (28,7,1920) | no (28,7,16) | $(6,2)
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Table 6: Transitive block designs constructed from the group S(6, 2), v = 36

D Construction Parameters imple [ Corresp. Aut(D)
design | D’
D2 | D(G, M+, Hy; Py ,) (36, 16, 72) no (36, 16, 12) 5(6,2)
Dso | D(G, M7, Hy; P,'_,) (36, 12, 132) no (36, 12, 33) S(6,2)
D3y | D(G, M+, Hs; P., s) (36,9,64) yes 5(6,2)
Daz | D(G, M7, Hg; P-, 8) (36,3,18) yes 5(6,2)
Das | P(G, M, Hg; P., ar P., 8) (36, 4, 36) no (36,4,9) S(6,2)
Diss | D(G, M+, Hg; P7 8) (36, 8, 168) no (36, 8,6) 5(6,2)
Das | D(G, M7, Hs; P-, 8 P1 a) (36,9, 216) yes 5(6,2)
Das | D(G, M7, Hg; P., 8 P., 8) (36, 11, 330) yes S5(6,2)
D37 ’D(G Mg, Ha; P., ar P723, (36, 12, 396) no (36,12, 33) 5(6,2)
P3g)
Das | D(G, M+, Hg; P-, o) (36, 5,32) yes S5(6,2)
D3g D(G M-, ng P‘r ovP'l 9) (36!61 43) no (361 6, 8) 3(6, 2)
Dgo | D(G, M7, Hyo; P-, 10) (36, 14, 624) yes 5(6,2)
Dar | D(G, M7, Hyo; P.,_m, P.;".m) (386, 15, 720) yes 5(6,2)
Da2 | D(G, M7, Hyy; P, 14) (36, 8,42) no (36,8,6) S5(6,2)
Daz | D(G, M7, Hyy; P., 14) (36,12,99) yes 5(6,2)
Das | D(G, My, Hyy; P-, 14) (36, 16, 180) no (36,16,12) 5(6,2)
Dys D(G, M+, Hys; P7 15) (36, 12,99) no (36, 12, 33) 5(6,2)
Dyo | D(G, M7, Hs; P7 15) (36,8,42) yes 5(6,2)
Dar | D(G, My, Hyg; P-, 16) (36,6,24) no (36, 6,8) 5(6,2)
Das | D(G, M7, Hyg; P., 16) (36,10, 72) yes 5(6,2)
Das | D(G, M+, Hyg; P., 160 P7 16) | (36,16,192) no (36, 16,12) 5(6,2)
Dso | D(G, M7, Hyg; P., 18) (36, 12, 792) no (36, 12, 33) 5(6,2)
Dsy | D(G, M7, Hyg; F‘7 19) (36, 16, 720) no (36, 16,12) 5(6,2)
Dsz2 | D(G, M+, Hyg; P-, 19) (36, 12, 396) no (36, 12, 99) 5(6,2)
Ds3 | D(G, Mz, Hao: P7 20) (36,4,9) yes 5(6,2)
Dss | D(G, M7, Hzy; P-,_2,) (36, 8, 48) no (36,8,6) S(6,2)
Dss | D(G, M7, Hay; P., 24) (36, 6,120) no (36,6,8) S(6,2)
Dss | D(G, M7, Hay; P., 24) (36, 12, 528) no (36,12, 33) 5(6,2)
Ds7 | D(G, M7, Ha,; P., 241 P., 24) | (36,18,1224) | yes S(6,2)
Dss | D(G, Mz, Hay; P., 24) (36, 18, 1224) | yes 5(6,2)
Dss | D(G, M7, Hae; P., 26) (36, 6, 80) no (36,6,8) 5(6,2)
Doo | D(G, M7, Hag; }"7 26) (36,3, 16) yes 5(6,2)
Der D(G, M+, Hae; P1 26 P-r ze) (36,9,192) no (36,9,64) 5(6,2)
Dez D(G M7, Hg'r, P-, 27) (36, 4. 48) yes 5(6, 2)
Des | D(G, My, Haz; P., 27) (36, 12, 528) yes 5(6,2)
Dea | D(G, M7, Hay; P., 27 P‘7 27) | (36,14, 728) yes S8(6,2)
Des | D(G, M+, Haz; P., 2 P} 27) | (36,186,960) no (36, 16, 12) 5(6,2)
Deo 'D(G Mo, Haz; P.,. 270 P.} 270 | (36,18,1224) | no (36,18,153) | S(6,2)

P?47)
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Table 7: Trensitive block designs constructed from the group 5(6, 2), v = 36 (continued
from the previous page)

D Construction Parameters Simple | Corresp. Aut(D)
design | D'
Der | D(G, Mz, Har; P-, 27) (36,18,1224) | no (36,18,153) | S(6,2)
Des | D(G, M7, Has; Pv ,28) (36,8,384) no (36,8,6) 5(6,2)
Deo | D(G, M7, Ha; P-, a) (36, 15, 168) yes S5(6,2)
D7 | D(G, Mz, Hg; P., 6) (36, 16, 120) no (36,16,12) 5(6,2)
Dn D(G, M7,H0,P1 0,P7 6) (36,18, 153) yes S5(6,2)
D72 | D(G, M7, Hg; P7 6) (36, 18,153) yes 5(6,2)
Des | D(G, M7, Has; P7 23) (36,7,36) yes 5(6,2)
D23 | D(G, Mz, Hae; P., 20) (36,9,1536) no (36,9, 64) S5(6,2)
D+ | D(G, Mz, H3o; P., 30) (36,14,4992) | no 36, 14,624 S5(6,2)
D1 | D(G, Mz, Hao; P} 50, PEap) | (36,15,5760) | no (36,15,720) | S(6,2)

Table 8: Transitive block designs constructed from the group S(6,2), v = 63,120,378

D Construction Parameters Simple | Corresp. Aut(D)
design | D’
Do 'D(G Mg, H1: Pg 4, P5,, | (63,31,90) no (63,31,15) | PGL(6,2)
P3y)

Drs ‘D(G Mg, Hj; PG a (63,31, 240) no (63,31,15) | PGL(6,2)
P¢3)

Dig ‘D(G Mg, Hg; Pl g, (63, 31,150) no (63,31,15) | PGL(6,2)
Pa 6 Pe 6)

Dso D(G Ms, Hyg; Po 140 (63, 31, 225) no (63,31,15) | PGL(6,2)

: Po “PG 14)

Ds1 D(G Mg, Hyo; Pg. 1o, (63,31, 900) no (63,31,15) | PGL(6,2)
Po 191 Po 1)

Ds2 ‘D(G Me, Haz; P6 27 (63,31,1200) [ no (63,31,15) | PGL(6,2)
Po 27-Po 27-Ps 27)

Dss ‘D(G Ms, Hw,P5 100 (120, 35,360) | yes 0%(8,2):2,
Ps.lo)

Daa | D(G, Hy, H12; P} 5, (378,117,36) ( yes 0(7,3):22
P‘lz.lzi sz,lz)

Table 9: Strongly regular graphs constructed from the group S(6, 2) from the conjugacy
classes of the second maximal subgroups

Graph I' | Construction Parameters of I’ Aut(l’)
r, (G2, H12; P 2:P132) (378, 52, 26, 4) Szs

) oS I'(Ga, Hia; Pﬂz’ P52, Pl2) (378,117, 36, 36) 07(3):22
Ta (G2, Hh3; Pls, P,:,) (630,68, 34, 4) Sae

T4 I'(Ga, Hq; P, P2, P2, P8) | (1120,390,146,130) | OF(3).Ds

Remarks on the constructed structures:
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o Block designs D, D7, Dg, D12, D15, Dag are made of the copies of the
design with parameters 2-(28,12, 11) which is isomorphic to the de-
rived design of the symplectic SDP design with the parameters 2-
(64,28,12) (see [13]).

e Block designs D3, Dy, D14, D17, D26 are made of the copies of the de-
sign with parameters 2-(28, 4, 5) which is simple design isomorphic to
the design constructed in [6].

e Block designs Ds, D11, D1, Doo are composed of the copies of the de-
sign with parameters 2-(28, 10, 40) which is simple design isomorphic
to the design constructed in [6].

® Dog is composed of the copies of the design with parameters 2-(28, 7, 6)
isomorphic to the design D,. D; is isomorphic to the design described
in [8).

® Dyg, D44, Dag, D51, Des and Dyg are made of the copies of the design
with parameters 2-(36, 16, 12) which is isomorphic to the residual de-
sign of the symplectic SDP design with the parameters 2-(64, 28, 12)
(see [13]).

¢ D30, D37, Das, Dso, Dse, Daa, Da2, Dsa, Des, Dag, Daz, Dss and Dsg are
made of the copies of the designs isomorphic to the primitive designs
constructed from the group 5(6,2) (see [6]).

e Designs D77, D7g, D79, Dso, Ds1, Ds2 are made of the copies of the de-
sign with parameters 2-(63, 31, 15), which is isomorphic to the design
described in [9].

e According to [2], the strongly regular graph I'; is the unique T'(28)
graph and I's is the unique T'(36) graph.

e Strongly regular graphs I'; and I’y are isomorphic to the graphs men-
tioned in [2].

e We did not find any other information about other designs con-
structed in this paper.

We describe codes of the constructed simple designs and their comple-
ments. If A is an incidence matrix of a 2-(v,k,A) design D and p is a
prime that does not divide 7 — A, then rank,(A) > v — 1 (see [17]). If
rankp(A) < v — 1 then p divides r — X, hence the code of a design D is
interesting only when p divides » — A.

In Tables 10, 11 and 12 we present the non-trivial codes of the con-
structed simple block designs and their complements. Further, in Table
13, we present information about the non-trivial codes obtained from the
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strongly regular graphs constructed in this paper. Note that for some codes
we could not determine the automorphism group in a reasonable amount
of computational time.

Table 10: Non-trivial codes, spanned by the blocks of the incidence matrices of the
designs

Design { Parameters [Aut(C)| Aut(C)
Dio 28,21, 4}, 1451520 5(6,2)
Dio 36, 15, 82 1451520 S5(6,2)
Das 36,21, 6]2 1451520 5(6,2)
D 36,29, 4], 1451520 5(8,2)
Dea 378,27,117)3 | 9170703360 [ O(7, 3):Z2
Ds3 120, 84, 8]s > 1451520 -

Table 11: Non-trivial codes, spanned by the points of the incidence matrices of the
designs

Design | Parameters JAut(C)] Aut(C)
D2 288, 28, 48'2 1451520 5(6,2)
D4 2016, 28, 2162 1451520 S5(6,2)
Dg 2016, 28, 3362 1451520 S(6,2)
Do 945, 21, 2102 1451520 5(6,2)
Daa 1008, 21, 216)2 1451520 S5(6,2)
Die 5040, 21, 1080}, 1451520 S(6, 2)
Dio 3360, 28,1080}z | 1451520 5(6,2)
D2y 5040, 27, 720] 1451520 5(6,2)
Daa 5040, 27, 1280)2 1451520 S5(6,2)
Dag 378, 27, 52]2 1451520 S5(6,2)
Dar 1008, 28, 144}, | 1451520 5(6,2)
Das 378, 28,1173 9170703360 | O(7,3):2;
Day 1120, 36, 160]2 1451520 5(6,2)
Das 2016, 36, 280|2 1451520 5(6,2)
Dao 4320, 15,1680); | 1451520 5(6,2)
Da 4320, 36, 720)2 2> 1451520 -

Daa 945, 15, 315)2 1451520 S5(6,2)
Das 1008, 21, 280]; 1451520 S5(6,2)
Dsa 945, 29, 105), > 1451520 -

Dsz 5040, 21,1760]2 | > 1451520 -

Deo 3360, 36, 280), 2 1451520 -

De2 5040, 35, 5602 > 1451520 -

Dea 5040, 35,1024]; | > 1451520 -

Deoa 5040, 21,1800]; | > 1451520 | —

Dao 1008, 36, 112]2 > 1451520 -

Dn 630, 35, 68], > 1451520 -

D12 630, 35, 682 > 1451520 -

D7a 1080, 36, 180], > 1451520 -

Dsa 4320, 120); > 1451520 -
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Table 12: Non-trivial codes, spanned by the points of the incidence matrices of the
complement designs

Design | Parameters [Aut(C)] Aut(C)
Di, 945,21, 336]; 1451520 5(6, 2)
DS, 1008, 21, 280], 1451520 5(8,2)
D 5040,21,1760)2 | 1451520 5(6,2)
D5, 5040, 27,1280)2 | 1451520 5(6,2)
DL, 5040, 27, 1280]2 | 1451520 5(6,2)
Do 4320, 15,2016)2 | 1451520 5(6,2)
DS, 945, 15, 400), 1451520 5(6, 2)
Dis 1008, 21,216]2 | 1451520 5(6,2)
DS 945, 29, 192, > 1451520 | —

DE, 5040, 21,1080); | > 1451520 | —

DS, 5040, 35,1024]2 | > 1451520 | —

DE, 5040, 35,1024], | > 1451520 | —

DE, 5040, 21,1920)2 | 1451520 5(6,2)

Table 13: Non-trivial codes, spanned by the rows of the adjacency matrices of the
graphs

Graph | Parameters | JAut(C)] Aut(C)
r, 378, 26, 52}z 28! Sas

Ty 378,351, 4]s > 1451520 -

T2 378,27,117)3 9170703360 O(7,3):22
Ty 630, 34, 68)2 36! Sae

T4 1120, 300]3 2> 1451520 =

Appendix

In this section we give the generators of all maximal and second maximal
subgroups used in this paper.

5(6,2) :

a1 = (2,3)(6, 7)(9, 10)(12, 14)(17, 19)(20, 22)

92 =(1,2,3,4,5,6,8)(7,9, 11, 13, 16, 18, 14)(10, 12, 15, 17, 20, 19, 21)(22, 23, 24, 25, 26, 27, 28)
M :

91 =(1,9,4,21,13,11,6,25,12)(2, 15,26, 19, 10,7, 17, 16, 28) (5, 18, 8, 20, 14, 22, 24, 23, 27)

92 = (1,2,10)(3, 12, 15)(4, 11, 7)(5, 24, 16)(6, 28, 13)(8, 19, 21)(9, 23, 20)(14, 26, 22)(17, 25, 27)
M;:

a1 = (1,24,3)(2,8, 23, 13)(4, 25,7, 17)(5, 28, 26, 6, 12,27, 9, 21, 20, 19, 18, 11)(10, 16)(14, 15, 22)
g2 = (1,26,12, 24, 18,20)(2,17, 10, 4, 23,8)(3,9, 5)(6, 15)(7, 13, 25)(11, 22) (14, 21)(27, 28)
Mj:

o1 =(1,27,6,16,9,19,17,20, 26,7, 11,5)(2, 28, 12,8)(3, 15, 18, 14, 24, 23)(4, 25, 10, 22)
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g2 = (1, 11)(2, 12, 28, 8)(3, 27, 18, 7)(4, 24, 5, 21)(6, 25, 26, 22)(9, 17)(10, 15, 19, 13)(14, 20,23, 16)
g3 = (1,25)(2, 28)(3, 14)(4, 10)(5, 20)(7, 16)(8, 12)(13, 23)(15, 24)(17, 22)(18, 21)(19, 27)

M, :

o1 = (1, 16,26, 3, 24,6, 18,8)(2, 23, 19, 10, 25,7, 15, 13)(4, 21,5, 12,9, 11,17, 20)(14, 22, 27, 28)
g2 = (1,2, 26,22,13,9,8)(3,12, 15,21, 14, 10, 6)(4, 17, 20, 19, 18, 28, 23)(5, 24, 25,11,27,7,16)
Ms :

a1 = (1,25,2,21,28,9,17, 14)(4, 11,24, 5, 23, 22, 27, 7)(6, 20, 10, 26, 8, 18, 15, 12)(13, 19)

g2 = (1,21,7,20,26,23)(2, 15, 25)(3, 14,6, 5, 22, 9)(4, 8, 28, 16, 17, 27)(10, 24, 18,13, 12, 11)
Mg :

a1 = (1,18)(2, 26, 10, 24)(3, 4, 25)(5, 14, 22, 16)(6, 15, 21,27, 23,7, 28, 12, 19, 17,20, 11) (8, 13,9)
g2 = (1,26, 10,8,9, 13)(2, 4, 3, 25, 18, 24)(5, 22, 21, 20, 28, 16)(6, 7,17, 11, 23, 12)(14, 19, 27)
My :

a1 = (1,26, 13,27,22,21,20)(2,7, 25, 18, 28, 10, 3)(4, 15,19, 24, 5, 14, 8)(6,23,12,16,17,11,9)
g2 = (1,6,24, 15, 25, 16)(2, 19, 9, 20,4, 12)(3, 18, 8, 26, 10, 13)(5, 27, 22, 14, 11, 23)(17, 28, 21)
Mg :

a1 = (1,6,23,22,10,15,7,5, 18, 4,25, 24)(3,9, 16,8, 19, 11, 14,27, 17, 28, 26, 20)(12, 21, 13)

g2 = (1,4,25, 12,9, 26)(3, 16, 20, 17, 22, 13)(5, 6,7, 8, 27, 24)(10, 14, 15, 23, 28, 21)(11, 19, 18)
H;:

a1 = (1,2, 25)(5, 14, 27)(7, 23, 21)(10, 13, 18)(15, 19, 20)(17, 28, 22)

g2 = (1,3,21,13,12,27,23,7,25,5, 10, 18)(2,9, 6, 14)(4, 28, 26, 15)(8, 19, 17, 24, 22, 20)

Hsy:

a1 = (1,10,24,18,21, 15, 11, 20)(2, 19, 23, 26,7, 13, 25, 12)(3, 8)(4, 27, 28, 17,9, 22, 14,5)

g2 = (1,13)(2, 10,23, 26, 24, 20)(3, 8)(4, 5, 27,9, 17, 22)(7, 15, 25, 12, 11, 18)(19, 21)

g3 = (1,23)(2,7)(4, 12)(5, 19)(8, 16)(9, 26)(10, 28)(13, 17)(14, 15)(18, 22)(20, 27)(21, 25)

Hj:

a1 = (1,7,23,8,24,3)(2, 25, 16, 11,6, 21)(4, 14, 18)(5, 12,13, 10, 17, 20)(9, 22, 27, 28, 26, 15)
g2 = (1,25)(2, 11,6, 8)(3, 16, 7, 24)(4, 14, 15, 10)(5, 18, 27, 13)(9, 26, 12, 28)(17, 22)(21, 23)
Hy:

a1 = (1,3,21,26,8,12)(2,23,9,13,15,4)(5, 6, 17)(7, 22, 20, 19, 27, 11)(10, 18, 14, 25, 24, 28)
g2 = (1,9)(2, 10, 19, 26, 15, 22, 25, 5)(3, 11,27, 23, 18, 17, 7, 14)(4, 21, 12, 28, 6, 8, 24, 13)

Hs :

a1 = (1,17,3,28,2,19)(5, 20, 12, 15, 14, 22)(6, 18, 7,9, 21, 10)(8, 25) (11, 26)(24, 27)

g2 = (1,20, 3, 10)(4, 28, 23, 6, 25,5, 27, 19, 24, 21, 11, 12)(7, 13, 14, 8, 17, 26)(9, 18, 15, 22)

Hg :

a1 = (1,8,18,23,3,26,9, 27)(2, 25, 17, 20, 13, 10, 16, 11)(4, 28, 14, 22, 24, 19, 7, 15)(5, 12,6, 21)
g2 = (1,24,27,3,7,26)(2, 10,6, 11,17, 21)(4, 8, 15, 14, 23, 22)(5, 20, 16, 12, 13, 25)(18, 28, 19)
H7:

a1 = (1,27,8,2,10,13, 19, 18, 14,6, 11, 5)(3, 7, 26, 28)(4, 25, 15, 20)(9, 23, 12)(16, 24, 22)(17,21)
g2 = (1,28)(2, 17)(3, 19)(4, 23)(13, 16)(24, 27)

Hg :

a1 = (1,7)(3, 14)(4, 22)(5, 6)(8, 28)(9, 27)(10, 25)(11, 20)(15, 24)(16, 17)(18, 23)(19, 26)

g2 = (1,7,9,24,3, 14, 18,4)(2, 25, 16, 11, 13, 10,17, 20)(5, 12, 6, 21)(8, 22, 27, 28, 26, 15, 23, 19)
g3 = (1, 14, 16)(2, 28, 8)(3, 7, 17)(4, 25, 15)(5, 6, 21)(9, 23, 20)(10, 22, 24)(11, 18, 27)(13, 19, 26)
Hy :
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g1 = (1,10,9,18,2,3)(4, 24)(5, 23, 14)(7, 21, 27)(8, 26)(11, 20, 28, 16, 17, 15)(13, 25)(19, 22)
g2 = (1,27,18,9,7,3)(2, 19,8)(4, 21, 24)(6, 28, 15)(10, 26, 22)(11, 23, 16, 17, 14, 20)(12, 25, 13)
Hyo: ]

91 = (1,2,26,22,12,27)(3, 8,17, 24, 18, 16)(4, 13,9, 7, 21, 19)(5, 20, 6)(10, 14, 23, 25, 15, 28)
g2 = (1,21)(3,6)(4, 17)(5, 9)(8, 16)(10, 13)(11, 24)(12, 18) (14, 27)(15, 18)(20, 26)(22, 28)
Hy

o1 =(1,4,26,23,19,27,7,24)(2, 12,5, 17,13, 21,6, 16)(3,9, 14, 18, 28, 22, 8, 15)(11, 20)

g2 = (1,19,22)(2,21, 6,13, 12, 5)(3, 8, 4)(7, 28, 24)(10, 20, 16, 25, 11, 17)(14, 26, 15)(18, 23, 27)
Hys :

g1 = (1,7)(3, 14)(4,9)(5, 6)(8, 28)(10, 11)(15, 23)(16, 17)(18, 24)(19, 26)(20, 25)(22, 27)

92 = (1,9,27, 4,23, 19,15, 28,8, 14,26, 18)(2, 20, 13, 11)(3, 7, 22, 24)(10, 16, 12, 25, 17, 21)
Hysz:

g1 = (2,12)(3, 15,23, 28)(4, 19,22, 26)(5, 20, 10, 17)(6, 11, 25, 16)(8, 14, 24, 18)(9, 27)(13, 21)
g2 = (1,7)(2, 21)(3, 24)(4, 22)(5, 20)(6, 11)(8, 23)(10, 17)(12, 13)(14, 15)(16, 25)(18, 28)

93 = (1,27,14)(2, 5, 25)(4, 26)(6, 10, 13)(7, 23, 9)(8, 28, 19, 24, 15, 22)(11, 16)(17, 20)

Hia:

91 =(1,2,24,16,4,19)(3, 28, 17,27, 13,23)(5, 11, 18, 26, 14, 7)(6, 25, 20, 15, 12, 9)(8, 21, 22)
g2 = (1,20)(2,24,6, 19, 15, 12, 4, 25)(3, 21, 23, 26, 18, 8, 14, 5)(7, 10, 17, 13, 27, 22, 11, 28)
H15 .

g1 = (2,23,11, 7,25, 24)(3, 6)(4, 19, 27, 18, 14, 15)(5, 26)(9, 13, 22, 20, 28, 10)(12, 17)

g2 = (1,24,23,2)(3, 8)(4, 5, 28, 22)(6, 16)(7, 21, 11, 25)(9, 17, 14, 27)(10, 12, 15, 26)(18, 20)
g3 = (1,24)(2,7)(4, 10)(5, 19)(8, 16)(9, 15)(11, 21)(12, 27)(13, 17)(14, 18)(20, 28)(22, 26)
Hig:

a1 = (1,2,9,4,13)(3,22, 25,7, 10,27, 8,12, 18, 21)(5, 16, 14, 15, 28)(6, 20, 11, 17, 23)(19, 24)
92 = (3,27)(4, 26)(7, 18)(8, 19)(10, 21)(11, 16)(12, 25)(15, 28)(17, 20)(22, 24)

Hy7:

g1 =(2,5,4,6,10,12,7, 26,18, 3,22, 17)(8, 21, 16)(9, 15, 25, 28, 14, 11, 20, 27, 23, 13, 19, 24)
g2 = (2,27,13,26,21,9, 12, 19)(3, 20, 10, 28, 15, 6, 16, 23) (4, 22) (5, 25, 18, 24, 11, 17, 8, 14)
Hig:

g1 = (1,20)(2, 15)(3, 22)(5, 10)(7, 21)(8, 13)(9, 12)(11,27)(14, 18)(16, 24)(17, 28)(23, 26)

g2 = (1,26,27,2,15, 28,14, 12,11, 5,10, 21)(3, 7, 23, 18, 25, 24, 16, 17, 9, 20, 4, 22)(6, 19, 8)
Hig :

g1 = (1,3)(2,27)(4, 16)(5, 12)(7, 10)(8, 20)(11, 26)(13, 23) (14, 25)(15, 22)(17, 24)(19, 28)

92 = (1,6,22,5,18,19)(2, 8,4, 25, 17, 16)(3, 21, 15, 12,9, 28)(7, 10, 13)(11, 14, 20, 26, 27, 24)
93 = (1,28,5,15,3,19,12,22)(2, 11,8, 7,27, 26, 20, 10)(4, 24, 13, 14, 16, 17, 23, 25)(9, 18)
Hao :

g1 = (1,21)(2, 24)(3, 8,6, 16) (4, 18,9, 20)(5, 10, 17, 15)(7, 11)(12, 22, 26, 27)(13, 14, 19, 28)
92 = (1,26,24,18)(2, 19,25, 15)(3, 16, 8, 6)(4, 17,9, 5)(7, 13, 23, 10)(11, 20, 21, 12)(14, 22)(27, 28)
Haq :

91 =(1,7,23,20,3,17)(4, 15,6)(5, 8, 12, 13, 10, 24)(9, 27, 14, 16, 18, 11)(19, 28, 21, 25, 26, 22)
92 = (1,25,13,4,14,7,21)(2, 23, 18,8, 20,24, 5)(3, 22,9, 12, 28, 6, 17)(10, 16, 19, 26, 15, 11, 27)
Haa :

g1 =(1,9,20)(2,7, 10, 15, 27, 22)(3, 21,6, 18, 8, 4)(5, 24, 11, 26, 12, 17)(13, 19, 14, 28, 25, 23)
92 = (1,28,16,13)(2, 11,4, 14)(3, 7, 27, 18)(5, 9, 26, 20)(6, 17, 15, 23)(12, 24, 25, 19)
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Haz :

a1 = (1,17,9,11)(2, 10, 28, 19)(4, 22, 5, 25)(6, 21, 26, 24)(7, 27)(8, 13,12, 15)(14, 16)(20, 23)
g2 = (1,20,9)(2, 13,27, 15, 28,7)(3,6, 5, 18, 4, 26)(8, 17, 24, 21,11, 12)(10, 14,19, 22, 23, 25)
Hoy4 :

a1 = (1,9,26,13,2,4)(3, 24, 25, 10, 8, 18)(5, 17,6, 23, 20, 14)(7,27, 19, 12, 21, 22)(15, 28, 16)
g2 = (1,9,4, 13,2, 26)(3, 22, 25, 21,24, 7)(5, 20, 6,23, 17, 14)(8, 12, 10, 19, 18, 27)(11, 28, 15)
g3 = (1, 10)(2, 18)(3, 13)(4, 8)(5, 14)(6, 23)(7, 21)(9, 25)(12, 27)(15, 28)(17, 20)(24, 26)

Hos :

a1 = (1,21, 4,7,2,22)(3, 25, 24)(5, 15, 23)(6, 28, 14)(8, 18, 10)(9, 12, 26, 27, 13,19)(11, 20, 17)
g2 = (1,26, 4,13)(3, 27)(5, 28, 23, 11)(6, 17, 20, 14)(7, 24, 22, 25)(8, 12, 18, 19)(10, 21)(15, 16)
Hog .

a1 = (1,7)(2, 12,9, 21, 13, 27)(3, 10, 25)(4, 19)(5, 6, 23)(8, 24)(11, 17, 28, 16, 20, 15)(22, 26)

g2 = (1,8, 26, 18,4, 24)(2,25,9, 10, 13, 3)(5, 20, 15)(6, 28, 16)(7, 22, 19)(11, 17,23)(12, 27, 21)
g3 = (1,9, 26,13)(2, 4)(3, 19, 25, 7)(5, 28, 16, 20)(6, 23, 15, 17)(8, 21)(10, 22)(12, 18,27, 24)
Ha7 :

a1 = (1,3,12)(2, 10, 21)(4, 24, 22, 26, 8, 19)(6, 14, 23)(7, 9, 25)(11, 20, 15, 16, 17, 28)(13, 18, 27)
g2 = (1,3)(2, 25)(4, 8)(5, 6)(7, 27)(9, 18)(10, 13)(11, 16)(12, 21)(14, 23)(17, 20)(24, 26)

g3 = (1, 21)(2, T)(4, 22)(5, 14)(9, 27)(10, 18)(12, 13)(15, 20)(17, 28)(19, 26)

Hag :

a1 =(1,7,15,18,13, 8,24)(2, 3, 10,5, 6, 16, 14)(4, 20, 27, 19, 11, 22, 21)(9, 23, 25,17, 28, 26, 12)
g2 = (1,24,13,9,4,10)(2, 11, 26,15, 3, 5)(6, 28, 16, 12, 22, 20)(7, 23, 14)(8, 19, 18, 21, 25, 17)
Hog :

a1 =(1,4,21,26,12,23,24,17,13)(2, 15,6, 22, 25, 8, 16, 11, 20)(3, 19, 10, 27,9, 14,7, 28, 5)

g2 = (1,11, 16,27, 14,12)(2, 3, 5,4, 26, 25)(6, 23, 9, 8, 21, 28)(7, 10, 17, 24, 15, 22)(13, 19, 20)
Hso :

g1 = (1,16)(2, 25)(3, 11)(4, 6)(5, 8)(7, 27)(9, 20)(12, 24)(14, 23)(15, 19)(17, 18)(21, 26)

g2 = (1,21,11)(2,27,17)(3, 18, 10)(4, 25, 22)(5, 23, 14)(6, 26, 19)(7, 28, 9)(8, 12, 13)(15, 16, 20)
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