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Abstract

A permutation 7 on a set of positive integers {a;,az, ..., an} is said
to be graphical if there exists a graph containing exactly a; vertices
of degree m(a;) for each i (1 < i < n). It has been shown that
for positive integers with a1 < a2 < ... < aq, if 7(an) = an then the
permutation = is graphical if and only if the sum Y"1, a:m(a;) is even
and a, < Z::]l a;m(a;). We use a criterion of Tripathi and Vijay to
give a new proof of this result, as well as to provide a similar result
for permutations 7 such that m(an—1) = an. We prove that such a
permutation is graphical if and only if the sum 3°7_, a;7(a:) is even
and anan-1 < an_1(@n-1 — 1) + 2 ign—1 @i7(a:). We also consider
permutations such that 7(an) = an-1, and then, more generally,
those such that 7(an) = an-; for some j (1 < j < n).

1 Introduction

Let G be a graph with vertices vy, vs, ..., v, with degrees d; = deg(v;) for
each i (1 < i < n). Then dy,dy,...,d, is a degree sequence for G. It is
standard to list the terms of a degree sequence for a graph in nonincreasing
order. A sequence s : dj,ds,...,dn of nonnegative integers is a graphical
sequence if there exists a graph G whose degree sequence is s. There are
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several known characterizations of graphical sequences, but we mention the
familiar result of Erdos and Gallai [1].

Theorem 1 (Erdés-Gallai Theorem) A sequences :dy,dz,...,dp (2
2) of nonnegative integers with dy > dy > --- > dp is graphical if and only

P
if ) di is even and for each integer n with1 <n <p,

k=1
n 4
de <n(n-1)+ Z min{n,dx}.
k=1 k=n+1

In [5], Tripathi and Vijay give a new result, which states that the number
of values for which the inequality in the Erdds-Gallai Theorem must be
verified in order to conclude that a sequence is graphical can be reduced.
In fact, in the case that the degree sequence contains any values that are
repeated multiple times, we must only check the inequality in the Erdés-
Gallai Theorem at the end of each segment of repeated values. Because of
this, we refer to the result as the EG Shortcut, stated formally below. We
shall use the notation (d)m, to mean m occurrences of the value d.

Theorem 2 (EG Shortcut) Let s : (di)m,,(d2)mss-- -, (de)m, be a se-
quence where dy > dy > -++ > dg, and mg > 1 for each k (1 < k < £), with

k
my+mg+---+meg=p. Foreachk=1,2,...,¢, let ox = Y m;, and for
i=1

t
1<r<t<lletS,;= Z dim;. Then the sequence s is graphical if and

1=r
only if S1,¢ is even, and for each k =1,2,...,¢,

k ¢
Sk = Zld,-mi <or(or—-1)+ z m; - min{o, d;}.
i= i=k+1

Let S = {a;,a3,...,an} be a set of distinct positive integers such that
1<a; <as <--- < an, and let 7 be a permutation of the elements of the
set S. We say that the permutation = is a graphical permutation, or simply
that 7 is graphical, if there exists a graph G containing exactly a; vertices
of degree m(a;) for each i. This concept was first introduced by Hansen and
Schultz in [2]. If a permutation 7 on a set S as described is graphical, the
resulting degree sequence is

(an)ﬂ'"(a,.)’ (an—l)w"‘(a"_,)i [ERX) (02)1r-1(a3)7 (al)ﬂ“l(al)'
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Note that in order to keep our degree sequence listed in nonincreasing order,
we need to consider w1, since each degree a; will appear w~1(a;) times in
the sequence.

In (3], Schultz and Watson characterized all graphical permutations on
sets of four elements, and a proof is given for the specific permutation
denoted by 734 = (a ¢ b d). We would like to give a correction to the
characterization given for this permutation. We do not need to consider the
two cases as stated in [3]. Instead, regardless of how the size of ¢ compares
to the size of (a + b — 1), both of the stated inequalities must always hold
in order for the permutation to be graphical. This result is proved by
Thune [4]. We note that the proof given in [3] uses graph constructions
and requires the consideration of six different cases. The proof stated in [4]
does not require the consideration of graph constructions, but instead uses
the EG Shortcut theorem, resulting in a much shorter proof.

Theorem 3 Let S = {a,b,c,d} be a set of positive integers such that 1 <
a <b<c<d Then the permutation 734 = (a c b d) is graphical if and only
if a and b or ¢ and d have the same parity, and bd < ab+ bc+ ad + b(b—1)
and ac+bd < bc+ad + (a + b)(a +b—1).

Next we consider a corresponding permutation on a set of six elements,
and give a characterization which has a similar proof, also provided in 4]).

Theorem 4 Let S = {a,b,c,d,e, f} be a set of positive integers such that
l<a<b<c<d<e< f. Letm be the permutation of S as follows:
m=(adbec f). Thenn is graphical if and only if the sum cf + be +ad +
ce+bd +af is even and the following inequalities hold:

Q) ef <elc—1)+bec+ac+ce+bd+af
(2) cf +be < (b+c)(b+c—1)+ce+bd+af +a-min{b+ c,d}
(B)cf+be+ad<(a+b+c)a+b+c—1)+ce+bd+af

2 Main Results

We now consider some general results for graphical permutations on sets
of n elements. We are particularly interested in the largest elements of
the given set on which the permutations will act. Specifically, we prove
results for permutations which send large elements to other large elements,
and give necessary and sufficient conditions for when such permutations are
graphical.
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Suppose S = {a1,a2,...,an} is a set of positive integers satisfying 1 <
a; < az < +++ < ap. In [3], permutations = on S such that 7(an) = an,
are considered, and necessary and sufficient conditions are given for 7 to be
graphical. We state it here and mention that a proof of this result using the
EG Shortcut is given by Thune in [4]. Since our next result uses a similar
technique, the proof is omitted.

Theorem 5 Let S = {aj,a2,...,an} be a set of integers such that 1 <
a; <az < -+ < @y, and let  be a permutation of S such that m(an) = an.

Then 7 is graphical if and only if E a;w(a;) is even, and

=
n—-1

an < Za,ﬂr(ai).
i=1

A similar result holds for permutations 7 such that 7(an—1) = an.

Theorem 6 Let S = {aj1,az,...,an} be a set of integers such that 1 <
a1 < ag < -+ < Gn, and let w be a permutation of S such that m(an-1) = @n.
n

Then w is graphical if and only if 3 a;m(a;) is even, and
i=1

nln-1 < ap_1(@pn-1—1)+ Z a;m(a;).
i#n—1

Proof. The sequence to be considered is as follows:

(@n)an—1s (@n-1)a=1(an-1)s - -+ (82)7=1(az) (@1) 71 (ay)-
In order to match our current notation, the value of o}, as stated in the EG
Shortcut will be as follows throughout this proof:

n

gx = Z 7r‘1(a,~).

i=n—k+1

Assume that 7 is graphical, and so the sequence above is graphical.
Then there exists a graph G with exactly a; vertices of degree m(a;) for
each i (1 < i < n). Since such a graph exists, clearly the sum of the

n

degrees, 3 a;m(a;) must be even. By the EG Shortcut, the degree sequence
=1
must satisfy the inequality in the Erdés-Gallai Theorem for each value
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of ok (1 < k < n). In particular, the degree sequence must satisfy the
inequality corresponding to o7 = a,,—;, which is the following:

n-1

Qnln_1 < an_l(an_l - 1) + Z W_l(a,‘) . min{an_l, ai}.
i=1

Since our summation is taken up ton—1, and a; < a,_, foreachi < n-—1,
this is equivalent to

Gn8n_) < an-1(@n-1—1) + Zaﬁr'l(ai).
i#n
Finally, since a,m~!(an) = anan_1 = Gn-17(@p—1), this is equivalent to
ntn-1 < @n-1(@n-1— 1)+ Y aim(as),
i#En—1
as desired.

n
For the converse, assume that Y a;7(a;) is even, and

1=

0nan-1 < @p-1(@n-1 — 1) + Z a;m(a;).
ign-1

By the EG Shortcut, we must verify the inequality in the Erdés-Gallai
Theorem for each value of 4 (1 < k < n). Thus in general, for o, we need
to show that

n n—k
Z a1 (a;) < or(or — 1) + Z 77—1(0,") - min{ox, a;}.
i=n—k+1 i=1

Using our notation for this particular permutation, and since a; < ap_; for
each i < n — 1, after some rearranging this is equivalent to

QnQn-} S an—l(an—l - 1)

n—1 n-—1
+( Z 7r"1(a,-))< Z 1r‘1(a,-)+2an..1—1)

i=n—k+1 i=n—~k+1
n=k n—1
+Y e Ma) - Y am ().
i=1 i=n—k+1
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Recall that we are assuming that

antn-1 < an-1(@n-1—1) + Z a:m(ai),
i¥gn~-1
and so it suffices to show that

n—1 n—1
Z aim(a;) < ( Z w'l(ai)) ( z 7Y a;) + 2e0-1 —1)

i#n—1 i=n—k+1 i=n—k+1

n—k
+ ) e (as)
i=1

n—1

- z a7 (a;). (*)

i=n-—k+1

Since @n_1m(@n—-1) = @n-1an = anT " }(a,), We note that

n—k

Z aim(a;) = z aim Y a;) = Za,w Ya;) + z aim (a;),

iggn—1 i=1 i=n—k+l

by first converting from 7 to 7!, and then separating the summation into
two parts. We also note that

n—k n—1 n—k n—1
Za.-'fr‘l(a,-)+ Z a;m " a;) < Zaiﬂ"l(a,-)+a,._1- z 7 Yay),
i=1 t=n—k+1 i=1 i=n—k+1

since a; < an-1 for each i < n — 1. Thus we have shown that

n—-k n—1

Z a;m(a;) < Z a,~1r'1(a,~) +ap_1- Z 7r"1(a,~).

iF#n—1 i=1 i=n—k+1
Then notice that

n-1 n-1 n-1
( Z W—l(ai))( Z 7r‘l(a,~)+an_1—1)— Z a;m " a;)

i=n—k+1 i=n—k+1 i=n—-k+1

must be positive, and so we add this expression to the right hand side to
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obtain

n—k n—-1
z a;m(a;) < Z a,-1r‘1(a,') +an_1- Z 7r'1(a,')
i#n—1 i=1 i=n—k+1
n-1 n—1
+ ( Z w‘l(ai)) ( Z ™ a;) + ap—q — 1)
i=n—k+1 i=n—k+1
n—1
- Z a1 (ay).
i=n—k+1

After factoring the right hand side, this is equivalent to (x) as desired.
Thus we have shown that the sequence satisfies the inequality stated in
the Erdés-Gallai Theorem for each value of o (1 < k < n). Then by
the EG Shortcut, the sequence is graphical, and thus the permutation  is
graphical. a

Now instead of looking at which element the permutation sends to the
largest element a,,, as in the previous result, we will consider which element
ar is sent to by the permutation. We will again be particularly interested
in the next largest element of the set, a,—;.

Theorem 7 Let S = {ay,as,...,a,} be a set of integers such that 1 <
a1 < a2 <--- < an, and let w be a permutation of S such that m(an) = an-;.
n

Then m is graphical if and only if Y a;m(a;) is even.
i=1

Proof. The sequence being considered corresponding to this permutation
is as follows:
(@n)r-1(an)s (@n=1)ans (@n—2)n=1(an_s)s- - - 1 (@2)r-1(ap), (@1)r-1(ay)-

To match our current notation for the permutation 7, the value of o} as
stated in the EG Shortcut will be as follows throughout this proof:

n

O = Z 7r_l(a,~).

i=n—k+1

By the EG Shortcut theorem, this sequence is graphical if and only if
the sum Z a;m(a;) is even and the inequality stated in the Erdss-Gallai

Theorem is satlsﬁed for each value of oy (1 <k < n).
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We will first consider the inequality corresponding to o1 = 7~ !(an),
which is

n-1
e Han) < (771 (an)) (77 an) — 1) + Z 7~ (a;) - min{a;, 7 (an)},
i=1

or equivalently, since 771 (an-1) = an,

anm(an) < (77 (an)) (T~ "(an) = 1) + @n - min{an-1, 77 (an)}
n—-2

+ 3" 77 (a;) - min{ai, 7 (@n)}-

i=1

Observe that 7= (a,) < a,—1, and therefore
min{a,-1,7" (@)} = 77 }(as). Thus the inequality we need to verify is
equivalent to

anm " Han) < (171 (an)) (771 (an) — 1) + an7 ™ (an)
n—2
+ Y7 Y(a;) - min{a;, 77} (an) },
i=1

which is clearly true. Therefore, the inequality corresponding to o1 holds.

For k > 2, notice that oy is a sum containing a,, and thus min{ox,a;} =
a; in each inequality corresponding to o with k£ > 2. Knowing this, and
using our particular sequence, what we need to show for each oy (k > 2) is

i aiw_l(ai)s( Xn: w‘l(ai))< i 71'-1((1,')—'1)

i=n—k+1 i=n—k+1 i=n—k+1
n—k
+ Y amHa). (%)
i=1

Since a; < a, for each i < n, it is easy to see that

n n

Z a;im Ya;) < apn - Z 7 (a;).

i=n—-k+1 t=n—k+1

Then since the expression

n n—k
> 7w ai) ( > 7N a) - 1) —an+ Y aim N ai)
i=1

i>2n—k+1 i=n—k+1
i¥n—1
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must be positive, we can add this to the right hand side to obtain

n

Zn: a;im™(a;) < ap - Z 7~ a;)

i=n—k+1 i=n—k+1
n
+ Z 1 (a;) ( Z 1r”1(a,»)—1)
i2n—k+1 i=n—~k+1
i#gn—1
n—k

—an+ z a;m~Y(a;),
i=1

or equivalently,

n

Z a,-7r‘l(a.-) <ayp- ( i 1r‘1(a,-) - 1)

t=n—k+1 i=n—k+1

+ Z 7~ Y(a;) ( i w'l(a;)—l)

i>2n—k+1 i=n—k+1
ign-1
n—k

+ Z a.-7r‘1(a,-)
t=1

Then by factoring the right hand side, we obtain

i arHa) < lan+ Y, 7 (a) ( zn: W—l(ai)—l)

i=n—k+1 i2n—k+1 i=n—k+1
i#gn—1

n—k
+ Z aiﬂ-_l(ai)i

i=1

which is equivalent to the inequality (x). Thus the sequence satisfies the

inequality corresponding to oy, k > 2.

We have shown that the sequence satisfies the inequality in the Erdés-
Gallai Theorem for each value of 0% (1 < k < n), and so by the EG Shortcut,

the sequence is graphical. Therefore the permutation = is graphical.

Next, we will generalize this idea. We consider a permutation 7 such
that m(a,) = an—; for some j (1 < j < n). Notice that the previous

theorem is the case when j = 1.
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Theorem 8 Let S = {a1,a2,...,an} be a set of integers such that 1 <
a) < ag < -+ < an, and let w be a permutation of S such that w(an) = an_;
n

for some j (1 < j < n). Let oy, be defined asor = Y, 7 Yai). Then
i=n—k+1

n
7 is graphical if and only if 3 ain(a;) is even, and the inequality in the

Erdés-Gallai Theorem holds f‘o=1} each value of ox (1 < k < j).
Proof. The sequence being considered for this permutation is as follows:
(@n)r-1(an)s (@n—1)m=1(an_1)s- -~
---,(an—j+1)n~1(an_j+1):(an-j)an)(an—j—l)ﬂ"(an—j-lﬁ"'
vv 3 (@2)r=1(ag)s (@1)m-1(a1)-

First assume that 7 is graphical, and thus the above sequence is graph-
n
ical. Then clearly the sum Y a;w(a;) is even. By the EG Shortcut, the

i=1
sequence must satisfy the inequality in the Erdds-Gallai Theorem for each
value of o) (1 < k < n). Therefore, the inequalities corresponding to the
values 0y,03,...,0; must all be satisfied, as desired.

n
For the converse, we assume the sum ) a;m(a;) is even, and that the
=1
inequalities corresponding to the values 0,,09,...,0; are all satisfied. We
show that the remaining inequalities corresponding to the values for o (j+

1 £ k £ n) are also satisfied.

We notice that for k > j, the value of o) is a summation containing
@n, since 7~ (an—;) = an. Thus the inequality corresponding to ok, where
j+1<k<nis

n

z a,~7r‘1(a,-)$< Z w‘l(ai))( Z 71"1(0:')—1)
i=n—k+1 i=n—k+1 i=n—k+1

n—k

+ Z am‘l(a,-). (*)
i=1

Since a; < a, for each i < n, we know that

n

zﬂ: a;m Na;) < an- Z 7~ a).

i=n—~k41 i=n—k+1
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Observe that the expression

n n—k
>, ) ( > w-l(ai)—l)-aﬁzaiw-l(ai)
i>n—k+1 i=n—k+1 i=1
i#En—~j

must be positive, and so by adding this to the right hand side, we obtain

n n
Z aim"Y(a;) < an - Z W—l(ai)
i=n—k+1 i=n—k+1
n
+ Z 7Y a;) ( Z w"(ai)—l)
i>n—k+1 i=n—k+41
ign—j

n—k
—an + z aim " a).

=1

Then notice that by factoring the right hand side, this is equivalent to

zn: ain™ a;) < | an + Z 7 (a;) ( i w‘l(a,-)—l)

i=n—k+1 i2n—k+1 i=n—~k+1
igEn—j
n—k

+ Z a,-1r‘1(a,-).
i=1

Since @, = 7~!(an—_;), this inequality is equivalent to the inequality (x).
Thus, we have shown that the sequence satisfies the inequality in the Erdos-
Gallai Theorem for each value of o (j+1 < k < n). Recall that by assump-
tion, the inequality is satisfied for values of o (1 < k < j). Thus, by the
EG Shortcut theorem, the sequence is graphical, and thus the permutation
7 is graphical. O

3 Conclusions

We conclude with a restatement of the EG Shortcut theorem, specific to
the notation that comes from considering graphical permutations.

Theorem 9 Let S = {ay,a,,...,a,} be a set of integers such that 1 <
2; < a2 < -+ < an. Let w be a permutation on the set S such that
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n n
3. a;m(a;) is even. Let Sy = Y. aim~(a:) and let
i=1 i=n—k+1
n
Te = 3. 7 a:). Then the permutation = is graphical if and only if
i=n-—k$l
the following holds for each value of k (1 < k < n):

Sk < Ti(Te - 1) + _s_ aim™Ma) + E T~ as).
iSn—k i<n—k
a;<Tk a;>Tk

We also point out that Theorem 8, which considers a permutation 7
such that m(a,) = an—; for some j (1 < j < n), reduces (even more so
than by using the EG Shortcut) how many different inequalities must be
verified in order to conclude that 7 is graphical. If m(an) = an—j, then we
must verify the inequality stated in the Erdés-Gallai Theorem for j different
values. Thus it is easier to conclude a permutation 7 on a set S is graphical
when it sends its largest element a, to another large element of the set,
which results in a smaller value of j.

While this general result still does not give us one single inequality to
verify in order to conclude a permutation 7 is graphical, it does allow us to
immediately identify a maximum number of inequalities which would need
to be verified, based on how the permutation acts on the largest element
Q.

We note that this is not the best possible case, in the sense that it
does not give the minimum number of inequalities which are necessary to
verify. For example, recall Theorem 4, which gave a result for a particular
permutation on a set of six elements, # = (a d b e ¢ f). With the EG
Shortcut, there are six inequalities to verify. Since n(f) = a, or in different
notation w(ag) = a;, for this permutation, we have j = 5, and by Theorem
8, we need to verify five inequalities. But, in fact, by Theorem 4, we only
needed to verify three inequalities for this permutation, those corresponding
to 01,02, and o3.

Consider a generalization of this permutation on a set of 2n elements,
S = {a1,0a2,...,82n-1,82n}, such that 1 < a; < a2 < -++ < Ggn-1 < G2n.
The permutation in question is 7 = (@1 Gn41 @2 Gn42 ... Gn—1 G2n—-1 Cn A2n)-
This type of permutation can be defined as follows:

Gpyn for p<n
m(ap) ={ Gp-n+1 for n<p<2n
a; for p=2n

We give the following conjecture for this type of permutation.



Conjecture 1 Let S = {a1,a3,...,82n-1,a2,} be a set of 2n positive in-
tegers such that 1 < a1 < a3 < '+ < @gpy < Q2. Let m be the per-

2n
mutation of the set S as defined above, with Y a;m(a;) even. Let o) =
=1
2n
7~ 1(a;). Then m is graphical if and only if the inequality in the
i=(2n)—k+1
Erdés-Gallai Theorem holds for each value of o (1 < k < n).

This conjecture says that for this type of permutation on a set of even
cardinality, we need to verify only half of the inequalities required by the
EG Shortcut theorem. It would be interesting to see if a similar method
can be used to prove this conjecture for this specific type of permutation.

Note that in this case, the largest product a;7(a;) occurs for i = n, with
the product a,7(a,) = a,a2n,, and we proposed that n inequalities need to
be verified. Suppose for general permutations, instead of only considering
how the permutation acts on the largest element of the set, we focus on this
largest product a;7(a;). This has been considered in conjectures in previous
papers, including (3] and [6], however the proposed conjectures have since
been shown to be false. Perhaps this idea could lead to interesting results
of graphical permutations with future study.
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