DIMENSION OF A CATERPILLAR

S. A. KATRE AND LALEH YAHYAEI

ABSTRACT. k-labeling of a graph is a labeling of vertices of the graph
by k-tuples of non-negative integers in such a way that two vertices
of G are adjacent if and only if their label k-tuples differ in each
coordinate. The dimension of a graph G is the least k such that G
has a k-labeling.

Lovész et al showed that for n > 3, the dimension of a path of
length n is (logyn)*. Lovdsz et al and Evans et al obtained the
dimension of a cycle of length n for most n. In the present paper we
obtain the dimension of a caterpillar or close bounds for it in various
cases.
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1. INTRODUCTION

The graphs considered in this paper are symmetric graphs without loops.
The dimension of a graph G is defined as the minimal number of complete
graphs whose product contains G as an induced subgraph. An equivalent
way of defining dimension is as follows:

Represent vertices of the graph by vectors of length n with nonnegative
integer coordinates in such a way that two vertices are adjacent if and
only if all their corresponding coordinates are different. The least such n is
called the dimension of the graph. More information regarding this concept
is found in (3], [4]. The dimension of G is also called the product dimension
of G denoted by pdim(G). For a related concept viz. representation number
of a graph, see [1], [2], [5].

For a graph G, V(G) denotes the vertex set of G and E(G) denotes the
edge set of G.

Definition 1.1. A spanned (or induced) subgraph of G is a graph H with
V(H) C V(G) and E(H) = E(G)N(V(H) x V(H)). For every M C V(G)
there is ezactly one spanned subgraph H of G with V(H) = M. It will be
referred to as the subgraph of G spanned by M.

N denotes the set of all nonnegative integers. N also denotes the complete
graph on vertices represented by nonnegative integers. N" denotes the
cartesian product of the complete graph N taken n times, so N” is a graph
with vertices as n-tuples of nonnegative integers and two such n-tuples are
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joined by an edge if and only if all the corresponding coordinates in the
two vertices are different. An embedding of a graph G into a graph G is
a one to one map ¢ from V(G;) to V(Gz) such that {z,y} € E(G,) if and
only if {¢(z), #(v)} € E(G2).

An embedding of a graph G into the graph N" is called an n-labeling of
G. Thus by an n-labeling of G we mean associating the vertices z € V(G)
with distinct vectors v(z) = (v1(z),...,vn(z)) of nonnegative integers in
such a way that {z,y} € E(G) if and only if the vectors v(z) and v(y) differ
in all the corresponding coordinates. For finite graphs G, the dimension
of G is the least natural number n such that G can be embedded into N™.
Encoding of a graph means an n-labeling for some n. The labeling vectors
will be written simply as words in the coordinates (e.g., 0102 stands for (0,
1, 0, 2)). A particular choice of the vectors above will be referred to as an
encoding.

Dimension of G is 1 if and only if G is a complete graph. Let P, (resp.
Cr) denote a path (resp. cycle) with n edges. The encoding in the following
Figure 1 yields a proof that dim(P;) =2 and dim(Cy) = 2.

00 11
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Figure 1 = 02

We have dim(P,) = 1, dim(P;) = 2. Let (r)* denote the upper integral
approximation of the real number r. In [4], Lovész et al have shown that
for n > 3, dimension of P, is (logy n)*. Also dim(C3) = 1. In [4], Lovész
et al obtained the following results for the dimension of a cycle:

For n > 3, dim(Ca,) = (logy(n — 1))* + 1.
For n > 2, (log, n)* + 1 < dim(Can41) < (logy n)t + 2.
If n is a power of 2 of the form 22+, then dim(Ca2n+1) = (logs n)* + 2.

It was proved by Evans et al [1] that if n is not a power of 2, dim(Ca2.41) =
(logon)*t + 1. If n is a power of 2 of the form 22, the dimension of Can 41
is still unknown.

In this paper we shall obtain the dimension or close upper and lower
bounds for the dimension for some classes of caterpillars. In Sections 2
and 3 (resp.), we get the main results regarding lower and upper bounds
(resp.) for the dimension of a caterpillar. In Section 4, we present results
regarding the dimension of certain classes of caterpillar.

2. A LOWER BOUND FOR THE DIMENSION OF A CATERPILLAR

Definition 2.1. A caterpillar is a tree in which there is a path that contains
at least one end-point of every edge. Such a path in a caterpillar is called
a spine.



A point and a path are trivial caterpillars. In what follows we shall
assume that the caterpillar is nontrivial.

: .
N

Figure 2

The caterpillar considered in Figure 2 has many spines. The minimum
spine called m-spine which contains all non-pendent vertices is uniquely
determined. There are many maximal spines called M-spines which are
spines of maximum length. These have all the non-pendent vertices and
also two pendent vertices of the caterpillar as extreme vertices of the spine.
For any caterpillar, any M-spine contains the m-spine and is obtained by
attaching one pendent vertex on each extremity of the m-spine. The m-
spine is the intersection of all M-spines. The number of vertices in any
M-spine is equal to the number of vertices in m-spine +2. The number of
edges in any M-spine of a caterpillar is called as the length of the caterpillar
and it is equal to the diameter of the caterpillar.

In this paper we consider families R, of caterpillars of length n and
vertex degrees < 3 and for all these families we get

(logon)t < dim(R,) < (logy(n +2))t + 1.

For particular families we get better bounds in which the upper and lower
bounds differ by at most 1. We get cases when the bounds become equal
and in those cases we are able to find dim(R,).

To prove our results we mainly use the ideas of Lovész et al in [4).

Notation 2.2. Let z%-z!-...-z" be an M-spine of a caterpillar R, and
deg(z’) <3,1<i<n—1 Let B={i|1<i<n—1, deg(z’) = 3}. For
i€ B, z' is called a leg vertex. For i € B, let y* be the pendent vertex of
Ry, adjacent to *. Thus the vertex set of R,, is V = V(R,) = {z}| 0< i <
n} U {y'| < € B} and the edge set of R, is E(R,) = {(z,z"*1)]0< i<
n—1}U{(z%,y")| i € B}. z° 2™ and y° for s € B are the pendent vertices
of R,. If ¢ € B, z' is called a gap vertex or a non-leg vertex. Thus a leg
vertex is of degree 3 and a gap vertex is of degree < 2.

Let z7+1,27%2, ... 27+ be consecutive leg vertices of R, and suppose
that 27 and z™+**1 are gap vertices, i.e. i€ Bforr+1<i <+t but
7,7 +t+1 & B. We call the induced subgraphon z° and y°, r+1 < s < r+t¢,
a bunch of legs. The induced subgraph (path) on all gap vertices between
consecutive bunches of legs is called a bunch of middle gap vertices. Initial
and final bunch of gap vertices or set of gap vertices can be defined in an
obvious manner. (See Figure 3.)



We shall get a lower bound for dim(R,) in our Main Theorem I using
the ideas from [4] directly or indirectly:

Remark 2.3. A Criterion for Adjacent Vertices in Terms of

Inner Product : Put S(n)={A: AC {1,2...,n}}.
Then |S(n)| = 2". Let N be the set of all non-negative integers. For a

vector X = (x1,-..,%n) € N* and A € S(n) define vectors Z,Z € NS(™) by
putting

(2.1) 2(A) = [ = 2(4) = [J(—=s)-
i€A igA
Then Z and % have 2™ coordinates. We see immediately that
(2:2) @i -v) =23
i=1

where the notation %.j designates the inner product of Z and §. Thus x
and 'y are labelings of adjacent vertices if and only if .4 # 0.

Proposition 2.4. (L. Lovasz et al)([4], Proposition 5.3) Let z*,... ,zk be
distinct elements of V(G) such that for some y*,...,y* € V(G), {z',4'} €
E(G) and {zt,v’} ¢ E(G) fori<j, 1<4,j <k. Then

dim(G) > log, k.

Theorem 2.5. (Main Theorem I) Let R,, n > 4, be a caterpillar of
length n with z°,...,2" as vertices of an M-spine and deg(z®), 1 < i <
n — 1, be at most 3. Let the caterpillar R, contain ty bunches of gap
(non-leg) vertices consisting of odd number of vertices. Lett, =1 provided
at least one of the initial and final bunches of non-leg vertices consists
of exactly 1 vertex, and t, = 0 otherwise. Then dim(R,) satisfies the
inequality,
(logo(|V| = to + t1))* < dim(Ry).

¥ oyt s yn—2
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of gap of gap of gap
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Figure 3
Proof. Let W be the subset of V obtained from V by removing certain
vertices as follows:
1) If at least one of the initial or final sets of gap vertices has exactly
one element then renaming the vertices of the M-spine if necessary
we arrange that the final set of gap vertices has exactly one element.



2) If after Step 1, the initial set of gap vertices has odd number of
vertices we remove z°,

3) If any bunch of middle gap vertices contains odd number of vertices,
then remove the pendent vertex of the preceding leg.

4) If the final bunch of gap vertices contains 3 or more odd number
of vertices, then remove the pendent vertex of last leg.

5) Call the remaining set of vertices as W. Let |[W| = t. Let the
elements of W be denoted by w?, 1 <i < t.

Let k be the dimension of the caterpillar R,. Let f be an embedding
(encoding) of R, in N*. Let f(w') = wi, 1 < i < t. We assume by
adding 1, if necessary, to all coordinates of w* for all 4, 1 < i < ¢, that
all coordinates in all w' are positive integers. These new w' satisfy the
requirements of an embedding.

Let @' and &' € N2* be 2k_tuples of non-negative integers, as defined in
Section 2, corresponding to the k-tuples w*. We show that w* are R-linearly
independent. Let

t
*) > aqp’ =0,a; € R.
i=1
w* can be one of the z7, i.e. a vertex of the M-spine, or one of the y7, i.e.
a pendent vertex other than z° and z™. If 3 is any pendent vertex (of a
leg) in V, then taking dot product of the last equation with §7 we get

a’. ¥ =0,

where a is the coefficient of z7 in (*). Since §7. 7 # 0, we get @ = 0. Let
Wi = W\{z7|z7 is a leg vertex }.
* Suppose we have an odd number of initial gap vertices z°,z!, ...,
z°. Then z° ¢ W, so z° ¢ W;. Also W and W; contain 71, ..., z°.
From (*), consider the resulting equation omitting Z’ correspond-
ing to the leg vertices z7. Call it (**). Taking dot product suc-
cessively with z0,z',...,2°=!, we get that the coefficients of %7,
1<j<s,in (**) are 0.
e If we have even number of initial gap vertices z°,z!, ... ,Z*%, then
W and W, contain all of them. Taking dot product successively
with 2% 2%,...,2°"! (even superscripts) we get that the coeffi-
cients of £!,Z%, ...,Z* (odd superscripts) are 0. Then taking dot
product with #°,Z°~2, ... %! (odd superscripts in reverse order)
successively, we get that the coefficients of z°~!,z°-3, ... %2, 30
(even superscripts in reverse order) are 0. Thus coefficients of
0,71, are 0.
Consider the equation (**) and remove the terms containing &' where 1 <
i < sif siseven, (i.e. number of initial leg vertices is odd),and 0 <i< sifs



is odd. We deal with middle bunches of gap vertices one by one successively
from the left. If zi+1 zi+2 . . 27+3 form a middle bunch of gap vertices,
then if s is odd, we have ¥/ € W. Then taking dot product successively with
#9,79+1 . F+s=1  we get that the coefficients of Z/*!,...,Z7%% in the
equation are 0. If s is even, then y/ € W. We take dot product successively
with £7+1, 79+3 . Fi+e=1to get the coefficients of Z7+2, 27+, ..., 7/ as
0. Then take successively dot product with £/+3,zi+s=2 __  £i+2 We get
that the coefficients of Z/+5~1,z7+s=3 79+l are 0. In this way we deal
with the middle bunches of gap vertices one by one.

Next we look at the final bunch of gap vertices. If this bunch has exactly
one vertex viz. z", then W contains y"~1. We are left with an equation of
type

ag™ ! +bz" = 0.
Since z" and y™~! have at least one coordinate same but not all, and since
the coordinates are positive, we get a =0 and b= 0.

If the final bunch has 3 or more odd number of gap vertices, say z7*1, ...,
z3+* = 2™ then the pendent vertex of the last leg i.e. y? is not in W. Hence
successively taking dot product with 77,27+, ... #7+5=1 we get that the
coefficients of z7+1,..., 79t = " are zero.

If the final bunch of gap vertices has even number of vertices, then z7 is in
W. In this case take successively dot product with #/+1, 7743, . . zi+e=1 =
Z"=1 and then with %",7"2,...,77%2, we get that the coefficients of
Fi+l zi+2 Z™ are zero.

This shows that the vectors wi, 1 < i < t, are R-linearly independent.
Hence t < 2", so (log, t)t < n. Now t = |V| —tg + ¢1, so

(loga(|V| = to + £1))* < dim(Rn).
O

3. AN UPPER BOUND FOR THE DIMENSION OF A CATERPILLAR

Theorem 3.1. (Main Theorem II) Let R,,, n > 4, be a caterpillar of
length n and let 20,21,...,z™ be the vertices of an M-spine of R, and let
deg(z?) = 3 for2 < i < n—2 and deg (z*) =2 fori =1, n — 1. For
2<i<n—2, lety' be the pendent verter adjacent to x*. Then

dim(R,) < (logyn)* + 1.

Figure 4



Proof. To prove the upper bound for the dimension of the caterpillar R,,, we
first show that the caterpillar Ryx can be embedded in N*+1, We consider
the M-spine of the caterpillar R, given by z%-z!-...-z". In analogy with a
theorem of Lovész et al [[4], Theorem 5.6], we define

ve(i) € K¥t1,0<i< 2k
(i refers to vertex number in the M-spine), and
vp(i) € KX+, 2<i< 2k —2

(7 refers to vertex number of the pendent vertex adjacent to the it® vertex
in the M-spine), and define them inductively as follows:
For k = 2, define v5(¢), 0 <7 < 4, as

v2(0) = 000, v2(1) = 111, v9(2) = 022, v,(3) = 110, v,(4) = 001.
Again for k = 2, define v4(2), for i = 2, as
vp(2) = 101.
For k > 2, we shall now define vy41(¢) for 0 < ¢ < 2k+1, We first define

1 J 0 ifiiseven, w1 ifiis even,
“(’)“{ 1 ifiis odd, ‘md"(‘)‘{o if 1 is odd.
Define
v (3)v' (1) ifo<i<2k—2,
v(2F-1)1=11...1...1001 ifi=2%—-1,
ves+1(8) = ¢ vk(2¥)2=100...0...012 if i = 2%,
ve(2F +1)0=11...1...100 ifi=2% 41,
v (25! — i)' (3) if 2% +2 < i< 2k,
Again for k > 2, we define v} (i), 2<i < 2%+ — 2, as
v (§)v"(3) if2<ig2k -2,
0200...0...010 ifi=2F—1,
U (8) =< 1211...1...101 if i = 2k,

0200...0...011 ifi=2F41,
vp(2% —i)'(5)  if 2% 4+ 2 <i < 2k,

We claim that the correspondence sending z* to vk(i) and y* to v} (i) is
an encoding of Ryx. We shall see that neighbors agree in no coordinate and
non-neighbors agree in at least one coordinate. We will prove by induction
that, for 1 < 4,5 < 2,

A: if [i—j| > 1, vk(i) and vk(j) agree in a coordinate and for |i —j| =
1, they agree in no coordinate.

B: if|i—j| > 1, v; (i) and v} (j) agree in a coordinate and for |i—j| = 1,
they agree in no coordinate.



C: for i # j, vk(¢) and v (j) agree in a coordinate and for i = j, they
agree in no coordinate.
This is true for £ = 2. Let it hold until k¥ and let us consider vg41(i) and
Ve41(9)-
A: Let vgy1(3) and vey1(5), 0 < 4,5 < 2K+, ¢ # j, be vertices of

the M-spine of the caterpillar Ryx+1. The first k + 1 coordinates of
Vk41() are vy (i) where i = ¢ if 0 < i < 2%, and i/ = 2F+! — 4 if

i> 2k,
[Case[ = [ 4 [ & [ 4 [I-4 ]
I[[<2F[<2F i I i— g
2 >2F[>2F [ 2FFl 4| 25+ 5| |i—3
3[[<2F > 2% B FF ;[ 12FFT =i — g

Let v(z) and w(j) be vectors of the same length for certain indices
i and j. We shall say that A(%,j) (resp. B(i,7)) holds for v(i)
and w(j) if v(i) and w(j) agree in at least one of the non-final
coordinates (resp. in the final (i.e. last) coordinate). We shall
say that A’(i,j) (resp. B’(4,3)) holds for v(i) and w(j) if v(i) and
w(j) do not agree in any of non-final coordinate (resp. in the last
coordinate).

e In Case (1) and Case (2), | —j'| = |¢ — j|, so if |i — j| > 1,
then |’ — 7’| > 1, so A(%, ) holds by induction. If |i — j| =1,
then |i — j'| = 1, so A'(i,j) holds by induction and further,
i, 7 being of opposite parity, B'(i, ) holds.

e In Case (3), consider the subcase i < 2% and j > 2%. Then
i — 5] > 1. Now |’ — j/| = [2k+! — 4 — j|.

— Ifi! = 5/, i.e. 28*1 = {44, all the first ¥+ 1 correspond-
ing coordinate of vg4+1(%) and vk4+1(j) are the same, so
clearly A(%,j) holds.

— If |i' — j'| > 1, then by induction A(%, j) holds.

— If |i' — j'| = 1, then [25*! — 4 — j| = 1. Hence i and j
are of opposite parity. As i < 2¥ and j > 2* we see that
B(i, 7) holds.

e In Case (3), consider the subcase i = 2* and j > 2*.

—If|i—j|=1,then j =2 +1,|i - j'| =1, so A'(4,])
holds. Also i, j being of opposite parity, B’(%, j) holds.

— If|i—j| > 1, then j > 2%+ 1, so |’ — j'| > 1, so A(3,5)
holds.

In all the cases we see that if |i — j| = 1, then A’(%, ) and B'(%,J)
hold and if |i — j| > 1, then A(3,j) or B(4,j) holds. Thus 7 and j
correspond to adjacent vertices of the M-spine if and only if all the
k+2 corresponding coordinates of vk+1(2) and vi41(j) are different.
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B: Let v, (%), v341(j) for 2 < 4,5 < 25+1 _ 2 i + j. be the pendent
vertices of the caterpillar R,,. In this case, by induction we can see
that vy, (i) always agrees with vj_,(j) in one of the first k + 1
coordinates, for k > 2.

C: Let vi4+1(i) be a vertex of the M-spine and v}, (j) be a pendent
vertex of the caterpillar R,, 0 <i < 2kt 2 < j < 2ktl _ 9

o Ifi > 2% and j < 2%, we see from definition that vk+1(2) agrees
with v}, +1(j) for 2 <4 < n—2 in the first coordinate, if i,
are of opposite parity, and in the last coordinate, if ¢, 7 are of
the same parity. The same holds for j > 2% and i < 2*.

eIfi=3j 2<i< 25! _2 then vk+1(%) and v ,(j) are
adjacent. Here vi41(¢) defers in all corresponding coordinates
of ;. (7). This can be clearly seen by induction, in the cases
i< 2k =2k i> 2* separately.

e If both 4,5 < 2% and i # j, vy (i) and v}, ,(j) are non-
adjacent vertices. By definition, vj(i) does agree with v}, +1(79)
in one of the first £ + 1 coordinates by induction. The same
holds if both i,j > 2*. This argument holds for i = 2* and
J <2 or j > 2F also.

e Ifj=2%and 0 <i< 25!, i 2% fori=2m+1,iand 28+ —§
are odd, so by induction we see that the first 4 coordinates of
vk+1(%) are given by va(1) = 111 or v2(3) = 110. In this case,
vi.41(7) agrees with vy (3) in the first coordinate. If i = 2m,
0 <m < 2%, i # 251 we have the following cases:

— If m = 0 or 2%, vy, (i) starts with v5(0) = 000. In
this case, by induction, the first (k + 1) coordinates of
Vk+1(t) are zero. Therefore, by the definition of v}, +109)
it agrees with v41(%) in the (k + 1)** coordinate, which
is 0.

—If mis odd, 1 £ m < 2% — 1, by induction, vg4;(4)
starts with v2(2) = 022. In this case, v} +1(J) agrees
with vg41 (%) in the second coordinate.

— If m is even, 1 < m < 2F — 1, by induction, vky;(3)
starts with v3(4) = 001. In this case, v} +1(J) agrees
with vk41(4) in the 3** coordinate.

This shows that the caterpillar Ry« can be embedded in N**!. Thus
dim(Ryx) < k+ 1. Now if 25~ < n < 2%, then R, is an induced subgraph
of Ry« and so dim(R,) < dim(Ry) < k + 1 = (log, n)* + 1. Therefore for
any value of n,

dim(R,,) < (log,n)* + 1.



4. DIMENSION OF A CATERPILLAR

In this section we shall get results about dimensions of certain types of
caterpillars using results of Sections 2 and 3.
First we get close bounds for the dimension of a general caterpillar con-
sidered in Theorem 2.5. Then we consider special types of caterpillars for
which we get dimension for most n.

Theorem 4.1. Let R, be a caterpillar of diameter n as considered in
Theorem 2.5. Then

(logyn)* < dim(R,) < (logy(n +2))* + 1.

If one of the initial and final sets of gap vertices has 2 or more vertices,
then dim(R,) < (logo(n+ 1))t + 1. If both the initial and final sets of gap
vertices have 2 or more vertices then dim(R,) < (logyn)* + 1.

Proof. In the notation of Theorem 2.5, there are n+1 z's and at least to—1
y's,s0 |V| > n+1+tp—1. Hence |V|—to+t) > (n-+to)—to+0 = n. Hence
(logy n)* < dim(R,) (or use that dim(M-spine) = (logy n)* < dim(R,)).

Now R,, is an induced subgraph of the caterpillar considered in Theorem
3.1, but having length n + 2. Hence dim(R,,) < (logy(n + 2))* + 1.

If any one or both (resp.) of the initial and final sets of gap vertices
have 2 or more vertices, then the length n + 2 can be replaced by n+1 or
n (resp.) by considering suitable caterpillar in Theorem 3.1. O

Theorem 4.2. Let R,, n > 4, be the caterpillar considered in Section 3.
Then dim(R,) = (logy n)* +1 if n is not of the form 25 +1. Forn = 2F+1,
k+1<dim(R,) < k+2.

Proof. By Theorem 2.5, for R,,, |[V|=2(n—-1),tg =1t =0, so

(logo(n — 1))* + 1 < dim(R,,). From Section 4, dim(R,) < (logyn)* + 1.

For n # 2% +1, both the bounds are equal and so dim(R,) = (logy n)* + 1.
Forn=2+1k+1<dim(R,) <k+2 O

Theorem 4.3. Let R,,, n > 2, be a caterpillar of length n and let z*,z2,.. .,
z"~! be the vertices of the m-spine of R, such that deg(z’) = 3 for
1<i<n-—1. Then dim(R,) satisfies the inequality,

(logo n)t +1 < dim(R,) < (logy(n +2))* + 1.

In particular, dim(R,,) = (logy,n)* +1 if n is not of the form 2% — 1 or 2%,
and k+1 < dim(R,) < k+2 ifn=2k_—-1 or2k.
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Proof. Here |V| = 2n, to = 2 and t; = 1, so (log,(2n — 1))t < dim(R,).
Now (logy(2n — 1))+ = (log,(2n))* = (logyn)t + 1, so

(logyn)* + 1 < dim(R,).

Now joining z° to a new vertex z~! and z" to a new vertex z"+!, we
get a new caterpillar say Ry, which is of the same type as Theorem 3.1.
R, being an induced subgraph of R, ,,, we get dim(R,) < dim(R,,_,). By
Theorem 3.1, dim(R}, , ;) < (logy(n + 2))* + 1. Thus

(logyn)* +1 < dim(R,) < (logy(n 4 2))* + 1.

Hence for n not of the form 2% — 1 and 2%, dim(R,,) = (log,n)* + 1 and
forn=2% —1or 2% k41 < dim(R,) <k +2. a

Now we shall consider a caterpillar (a train-compartment graph) with sets
of bunches with p — 1 leg vertices followed by a gap vertex.

Theorem 4.4. Let R,, n > p, be a caterpillar of length n and let 2°, 21, ...,
™! be the vertices of the M-spine of R, and for 1 < i < n—1, let
deg(z*) = 3 or 2 according as pti or pli. Forpti, 1 <i<n, the pendent
vertez adjacent to x* is denoted by y'. Letn =1 (mod p), 0 <7 <p-— 1.
Leth=2ifr=1 andh=1ifr =0,23,...,p~1. Then dim(R,)
satisfies the inequality,

(logo(n - [2] + R))* +1 < dim(Rn) < (logg(n +2))* + 1.
Forr =1, (loga(n — [2] + h))* +1 < dim(R,) < (logy(n + 1)) +1.
In particular, for 281 + % <n<2k_1, dim(R,) =k + 1.
Ifn=2%—1, wheren =1 (mod p), then dim(R,) = k + 1.
Further for n = 2¥=1 2% k41 <dim(R,) < k +2.
If2*' +1<n <281 4+ 2222k <dim(Ry) S k+1.
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Figure for the case n = pr:

2 yp— yn—l
zP'l x" zn—1 z"

-1 leg vertices

Figure 6

Proof. Here [V|=2n—[2]+1, to = [5]+ ! where [ = —1ifr =1 and
1=1ifr=0,23,...,p—1,¢t; = 1. Then

VI = to — b1 = 2n—r T+1-[21+1+1=2(n—[2]+3})ifr=1,
Vi-to—t1= ["']+l—['|—1+l—2(n—[]+2)1fr961

Therefore by Theorem 2.5,
(logy(n — [2] + h)* +1 < dim(Ra),

where h=2ifr=1and h=1ifr=20,2,3,...,p—1.
Now as R, is an induced subgraph of the caterpillar of Theorem 4.3, say
R!,, we get dim(R,) < dim(R},). By Theorem 4.3,

dim(R/) < (logy(n+2))* + 1.
Thus

(logy(n — [%] +h))t +1 <dim(Rg) < (logy(n+2))* + 1.

Take k so that 25~! < n +1 < 2*. Then the lower bounds will be equal
if 2%~ < n— [2]+h, ie. k=1 < g — Z‘J'L-i-h where 7' = p.[3] —n
(0<r <p-1),ie 2k 1<n“’-;,—-§-M ie 2k 1+2k - 21’—'—'-<n
Now
ph—r’{ =-2=l - 12 fr=1h=2r"=p-1,
S _

—1 p-1
P—l — —2=—-L if,,.%l’h:l,os’l‘,sp_2'

p-1 p-1

Hence in any case we get equality for lower and upper bounds if

251 4 27022 < 1 < 2% — 2, and then dim(Rn) = k + 1.

When n =1 (mod p), the final set of non-leg vertices has two vertices, so
by Theorem 4.1,

(logy(n — [%] +h)t +1 < dim(R,) < (logy(n+1))* + 1.

14



Ifn=2%_—1andr=1,1ie 2¥=2 (mod p) then dim(R,) < k + 1. Thus

dim(R,) = k + 1.
Also k+1 < dim(Rn) < k+2if n = 2% and k < dim(R,) < k+ 1 if
2141 <n <okl 2022 o

Example 4.5. If p = 2, in Theorem 4.4, then for n = 2¥ — 1 we have,
2¥ ~1=1 (mod 2), so dim(R,) =k + 1.
If p=3, then for k odd, 2* —1 =1 (mod 3). Hence dim(R,,) = k + 1.

Example 4.6. Let R,, n > 3, be a caterpillar of length n and let z°,z!, ...,
z" be the vertices of the M-spine and let deg(x?) = 3 or 2 according as i is
even or odd for 1 <i < n—1. For even i, y' is the pendent verter adjacent
to z*. Then dim(Ry,) satisfies the inequality,

(logy(n + 2))* < dim(Ry) < (logy n)* + 1.
In particular,
ifn=2% or 2% — 1, dim(R,) =k +1.
If25"1 4 1< n < 2% -2, then k <dim(R,) < k+ 1.

Proof. Use Theorem 2.5 and Theorem 4.1. 0
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