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Abstract
For a graph G = (V, E) and a coloring f : V(G) = Z; let v,(i) =
If~Y(@)l. f is said to be friendly if |vs(1) — v7(0)] < 1. The coloring
f : V(G) = Z; induces an edge labeling fi : E(G) — Z defined

by fi(zy) = |f(z) - f(y)], Vzy € E(G). Let e;(3) = |f+'(i)|. The
friendly index set of the graph G, denoted by FI(G), is defined by

FI(G) = {les(1) —es(0)| : f is a friendly vertex labeling of G }.

In this paper we determine the friendly index set of certain classes of
trees and introduce a few classes of fully cordial trees.

Key Words: Friendly coloring, friendly index set, near perfect matching,
Fibonacci and Lucas trees.
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1 Introduction

In this paper all graphs G = (V, E) are connected, finite, simple, and undi-
rected. For graph theory notations and terminology not described in this paper,
we refer the readers to (7). Let G = (V, E') be a graph and f : V(G) — Z, a bi-
nary vertex labeling (coloring) of G. For i € Zs, let vs(i) = | f~1(i)|. The color-
ing f is said to be friendly if jus(1) —vs(0)| < 1. That is, the number of vertices
labeled 1 is almost the same as the number of vertices labeled 0. Any friendly
labeling f : V(G) — Z induces an edge labeling f,. : E(G) — Z; defined by
f+(zy) = 1f(z) = f(y)l, Vzy € E(G). For i € Zy, let e4(3) = |f+.~2(3)| be the
number of edges of G that are labeled . The number N(f) = |es(1) —ef(0)] is
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called the friendly index (or cordial indez) of f. A graph G is said to be cordial
if it admits a friendly labeling with index O or 1.

To illustrate the above concepts, consider the graph G of Figure 1, which has
ten vertices. The condition |vs(1) — v5(0)] < 1 implies that five vertices be
labeled 0 and the other five 1.

Figure 1: A typical friendly labeling of G.

Figure 1 also shows the associated edge labeling of G, where five edges have
label 1 while the other four edges have label 0. Therefore, the friendly index
provided by this labeling is 5 — 4 =1 and G is cordial.

I. Cahit [2, 3, 4] introduced the concept of cordial labeling as a weakened
version of the less tractable graceful and harmonious labeling. A graph G is
said to be cordial if it admits a friendly labeling with index 0 or 1. Hovay
[10], later generalized the concept of cordial graphs and introduced A-cordial
labelings, where A is an abelian group. A graph G is said to be A-cordial if it
admits a labeling f : V(G) — A such that for every i,j € A,

lvg(s) — v ()| <1 and [ef (i) —es(§)] < 1.

Cairnie-Edwards [5] proved that the problem of deciding whether or not a graph
G is cordial is NP-complete, as conjectured by Kirchherr [12]. Cordial graphs
have been studied extensively. Interested readers are referred to a number of
relevant literature that are mentioned in the bibliography section, including
[1, 8,9, 11, 13, 14, 16, 17, 18].

Chartrand-Lee-Zhang [6] introduced the concept of friendly indez set of a graph
G defined by

FI(G) = {N(f): [ is a friendly labeling of G }.

For the graph G in Figure 1, it is easy to verify that FI(G) = {1,3,5,9}. The
friendly colorings of G that provide the other friendly indices are presented in
Figure 2.

In this paper, we will focus on the group A = Z; and determine the friendly
index sets of certain classes of trees. Note that if 0 or 1 is in FI(G), then
G is cordial. Thus the concept of friendly index sets could be viewed as a
generalization of cordiality. A friendly labeling f : V(G) — Z; is called a
mazimum friendly labeling of G if its friendly index is the maximal, that is,

172



Figure 2: Three friendly labelings of G with indices 3, 5 and 9.

N(f) = |E(G)|. In this case, we call N(f) the maximum friendly index of
G. Also, if f : V(G) — Z; is a friendly labeling, so is its inverse labeling
g: V(G) = Z; defined by g(v) = 1- f(v) Vv € V(G). Moreover, N(g) = N(f).
First we state a few known results from [15] and {18] to be used in the following
sections.

Theorem 1.1. For any graph G with q edges,
FIG)C{q—-2i:i=0,1,2,...,|9/2]}.

Theorem 1.2. Let 1 < m < n. For the complete bipartite graph K. m,n we have

_ [ {m—=2)%2:0<i<|m/2]} if m+niseven;
FI(K'"-")—{ (i+1):0<i<m}  if m+nisodd

For any n > 2, the complete bipartite graph K(1,n) is called a star and is
denoted by ST(n). Stars are the trees of diameter 2, for which we have:

{1} ¥ =7 is odd.

Theorem 1.4. The friendly indez set of a full binary tree with depth d > 1 is
{0,2,4,...,24+1 — 4}

Corollary 1.3. FI(ST(n)) ___{ 0,2} if nis even;

2 Fully Cordial Trees

In what follows, whenever there is no ambiguity, we suppress the index f and
denote ef(i) by simply e(z). For a graph G = (p, q) of size g, and a friendly
labeling f : V(G) — Z; of G, we have

N(f) = les(0) —es(1)] = g — 2e5(1)| = |g — 2e4(0)|- (2.1)
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Therefore, to find the index of f it is enough to find es(1) ( or ef(0) ). More-
over, to determine the friendly index set of G it is enough to compute ef(1),
or es(0), for all different friendly colorings f of G. Another immediate conse-
quence of (2.1) is the following useful fact:

Observation 2.1. For a graph G of sizeq, FI(G) C {g—2k:0< k < |g/2]}.

Definition 2.2. A graph G is said to be fully cordial if
FIG)={¢-2i:i=0,1,2,...,|q/2}}.

The Observation 2.1 indicates that the friendly index set of a graph G is a
subset of {¢—2i:i=0,1,2,..., |g/2]}. Asillustrated by the example provided
in Figure 2, we may not have equality. However, Salehi-Lee [18] proved the
following theorem concerning the fully cordial graphs.

Theorem 2.3. If T = (p,q) i3 a tree with perfect matching, then FI(T) =
{1,3,5,...,9}. That is, T is fully cordial.

For any graph G = (p, q), the maximum possible element of its friendly index
set is g, the number of its edges. By equation (2.1), this maximum can be
achieved if ef(1) = 0 or es(0) = 0. The following observation indicates that

es(1) #0.

Observation 2.4. Let G be a non trivial connected graph and f : V(G) = Z,
any friendly coloring of G. Then ef(1) 2 1.

Proof. The two sets A= {u € V(G): f(u) =0} and B={ve V(G): f(v) =
1} partition V(G). Since G is connected, there are vertices u € A and v € B
that are adjacent. The label of edge uv is 1. therefore, ef(1) > 1. O

Corollary 2.5. For any greph G = (p,q), g € FI(G) if and only ife;(0) =0
for some friendly coloring f : V(G) = Z,.

3 Near Perfect Matching Trees

In [18], Salehi-Lee showed that any tree with perfect matching is fully cordial.
However, there are many other fully cordial trees that do not have perfect
matchings. Paths of odd orders P, are the most obvious examples. In this
section we introduce another class of fully cordial trees. Namely, near perfect
matching trees.

Definition 3.1. A matching of a graph G is called near perfect matching if it
covers all the vertices of G but one. G is called a near perfect matching graph
if any maximal matching of G is near perfect matching.

Observation 3.2. A tree T with near perfect matching M contains at least a
P3 pendent uy ~ up ~ uz such that degu; =1, deguz =2 and uuz € M.
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Proof. Let P : uy ~ uz ~ uz ~ «++ ~ Up_y ~ ug_; ~ ug be the longest
path in T. Clearly, degu; = degur = 1. Also, degup = 2 or degur_; = 2.
Otherwise, any maximum matching of T would miss at least two vertices. If
degu; = degui.; = 2, then ujup € M or urux—; € M. Suppose (wlog)
degus = 2 and deguy_; > 2. Then ujuz € M. Otherwise, any meximum
matching of T" would miss at least two vertices. a

Theorem 3.3. Any near perfect matching tree is fully cordial.

Proof. Note that T is a tree of odd order, |T| = 2n+1. We proceed by induction
on n. Clearly, the statement of theorem is true for n = 1. Suppose the statement
is true for any tree of order 2n + 1 and let T be a tree of order 2rn + 3 with
near-perfect matching M. By Observation 3.2, T contains vertices u ~ v ~ w
such that degu = 1, degv = 2 and the edge uv is in M. Now consider the
tree § = T ~ {u,v} which has order 2n + 1 and has near perfect matching
M’ = M — {uv}. Therefore, by the induction hypothesis
FI(S)={0,2,4,--- ,2n}.

We need to show that FI(T) = {0,2,---,2n,2n + 2}. Consider a friendly
coloring f : V(8) = Z; of S and extend it to g : V(T) — Zy by defining
g(v) = f(w), g(u) =1 — f(w). Then g is a friendly coloring of T with e,(1) =
es(1) + 1, eg(0) = es(0) + 1. Therefore, N(g) = N(f). This implies that

' FI(S)={0,2,4,--- ,2n} C FI(T).

It only remains to show that 2n+2 € FI(T). Let ¢ : V(S) — Z; be a friendly
coloring of S with index 2n. We may assume that e(1) = 2n, ¢(0) = 0, and
extend ¢ to ¥ : V(T) — Z by defining ¥(v) = 1 — ¢(w), ¥(x) = #(w). Then v
is a friendly coloring of T with ey (1) = e¢(1)+2, e4(0) = e4(0) = 0. Therefore,
N@)=N(@@)+2=2n+2. O

Theorem 3.4. Forn > 2, the path of order n is fully cordial.

Proof. This is an immediate consequence of theorems 2.3 and 3.3. Because,
any path P, is either near perfect matching or is a perfect matching tree.
Therefore, it is fully cordial. O

Definition 3.5. Fibonacci Trees, denoted by FT,,, are defined inductively as
follows: FT; is the trivial tree with one vertex, FT; is the path P,, and for
n 2 3, FT, = (V,, E,) is the binary tree of root r,, whose left and right
children are FT,_, and FT,_, respectively.

In (18] it is shown that any Fibonacci tree is fully cordial. Here, we present a
different proof in which we utilize theorems 2.3 and 3.3.

Theorem 3.6. Forn > 1, every Fibonacci tree FT,, is fully cordial.

Proof. Note that every Fibonacci tree has either a perfect matching or is a near
perfect matching tree. In fact, if n = 1 (mod 3), then FT,, is a near perfect
matching tree; otherwise, it has a perfect matching. We prove this statement
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FTy FT, FTs FT,
FTs
Figure 3: The first five Fibonacci trees.

by induction on n. Clearly the statement is true for n = 1,2,3. Now suppose
the statement is true for all positive integers less than n (3 < n) and let FT,
be the Fibonacci tree of order n. We consider the following cases:

(A) n =1 (mod 3). In this case, by the induction hypothesis, both the left
and right children have perfect matchings. Let M; and M; be perfect
matchings of FT,_; and FT,_o, respectively. Then M; U M; is a maxi-
mum matching of FT,, that covers all the vertices but its root. Therefore,
FT, is a near perfect matching tree.

(B) n =2 (mod 3). In this case, by the induction hypothesis, the left child
FT,_ is near perfect matching while the right child FT;,_2 has a perfect
matching. Let M; be a maximum matching of FT,_; (we may assume
that M, leaves the root r,_; out) and M, be a perfect matching of
FT,_». Then M; UM>U {r,r,_1} will form a perfect matching of FT,.

(C) n =0 (mod 3). The argument is similar to the previous case.

]

The complete bipartite graphs K ,, are also known as stars, for which we have
the following fact:

Theorem 3.7. [15] FI(Kyn) = { ?1’}2} s even
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One can view the star ST(n) = K} , as a graph formed by n copies of P all
of them sharing an endpoint. From this perspective, one can introduce the
star-like trees, where P, is replaced with P, (k > 2).

Definition 3.8. Star-like tree, denoted by ST(n,k), is a graph formed by
n copies of P, when all of them share exactly an end-vertex. This common
end-vertex is clearly the center of the graph.

We observe that ST(1,k) ~ Py, ST(2,k) ~ Py, ST(n,2) ~ K, and
ST(n,1) the trivial graph having just one vertex. The friendly index sets of
these graphs have been determined. Therefore, from now on we assume that
n,k > 3.

Figure 4: Star-like ST(9, 3) and with the Fl-set {0,2,4,---,16,18}.

Theorem 3.9. For any n,k > 3, the star-like tree ST(n, k) is fully cordial if
and only if k is odd.

Proof. If k is odd, then ST(n, k) is a near perfect matching tree and by Theo-
rem 3.3 it is fully cordial. When k is even, then e(0) 3 0 holds for any friendly
coloring of the graph. Hence, by Corollary 2.5, the maximum possible friendly
index cannot be achieved. In fact, when & is even, then e(0) > |(n—-1)/2). O

4 Caterpillars of Diameter 4

A double star is a tree of diameter 3. Double stars have two central vertices
u and v and are denoted by DS(a,b), where degu = a and degv = b, as
illustrated in Figure 5.

Double star DS(a, b) has a+b vertices and its friendly index set is known [17]:

Theorem 4.1. Let a < b. Then

{1,3,...,2a—1} if a-+biseven;

FIDs@ ) = { Uiy 2ot o axhisee

Corollary 4.2. Double star DS(a,b) is fully cordial if and only if |a — b| < 1.
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Figure 5: Double Star, DS(4, 8), with central vertices u and v.

(%

Double stars are also caterpillars of diameter of 3. A caterpillar is a tree having
the property that the removal of its end-vertices results in a path (the spine).
We use CR(ay,as,...,a,) to denote the caterpillar with a P,-spine, where the
ith vertex of P, has degree a;. Since CR(1,q,,...,a,,1) = CR(ay,...,a,)
and a; #1 (1 <i<n—1), we will assume that a; > 2.

FAAAE

Figure 6: A Caterpillar of diameter n + 1 (P,-spine).

In this section we concentrate on caterpillars of diameter four, whose spines
are P;, and will use the notation G = CR(a, b,c), where degu = a, degv = b,
and degw = c, as illustrated in Figure 7. This caterpillar has a + b+ c -1
vertices and a + b+ ¢ — 2 edges.

Figure 7: A Caterpillar of diameter 4, CR(8,9,8).

The friendly index set of G = CR(a,b,c), when a + b+ ¢ is odd, is determined
in [17]:

Theorem 4.3. Let a,b,c > 2 and a+ b+ c be odd. Then FI(CR(a,b,c)) =
AU BUC, where
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{120 —4i—1|:ma < i< Ma);
{I2b—4j—-1|:mp<j< Mg}
{

A
B
C |2¢—4k—-1|:mec <k < Mc};

and
mA__max{O .‘lﬂL} MA_,mln{a_l &-Lbj»c;};

mp = max{0, =et2=etl}. Mp = min{b~ 2, m—"‘“;},
me = max{0, =2=8tet3}. Mc =min{c -1, ﬁi%—':‘—a}

Lemma 4.4. The caterpillar G = CR(a, b, c) has the mazimum possible friendly
indez if and only if b—a—c+ 1| < 1.

Proof. By the Corollary 2.5, such a friendly labeling f exists if and only if all
edges are labeled 1. Let f(u) = f(w) = 1 and f(v) = 0. Then all the end-
vertices adjacent to u and w are labeled 0, and all end-vertices adjacent to v
are labeled 1. That is, a + ¢ — 1 vertices are labeled 0 and b vertices are labeled
1. But for this labeling to be friendly we require [b—a —c+1| < 1. O

Theorem 4.5. Let a + b+ ¢ be odd. Then G = CR(a,b,c) is fully cordial if
and onlyifb=a+c—1anda=2orc=2.

Proof. Suppose G is fully cordial. Then by Lemma 4.4, b = a + ¢ — 1. Also,
a =2 or ¢ = 2. Otherwise, using the notation of Theorem 4.3, the sets A and
C are subsets of B and FI(G) =B = {|2b—4j—-1]:0 < j < b—2}. However,
this set has b — 1 odd numbers; the smallest is 1 and the largest element is
2b — 1. Therefore, one odd number between 1 and 2b — 1 is missing. In fact,
2b— 3 is not in FI(G).

Conversely, let b = a+c—1 and a = 2 or ¢ = 2. Without loss of generality, we
may assume a = 2. In this case G = CR(2,c + 1, ¢). Using 4.3, one can easily
see that FI(G) = {1,3,...,2c + 1} which shows that G is fully cordial. 0

In what follows, we consider the caterpillar G = CR(a,b,c), when a + b+ ¢
is even. First we determine its friendly index set, then we completely identify
those that are fully cordial. As mentioned before, G has a + b+ ¢ — 1 vertices
and a + b+ ¢ — 2 edges.

We observe that any friendly coloring f : G — Z, that labels the central
vertices the same will result in either index N(f) = 0 or N(f) = 2, which
are not very interesting. Therefore, we consider the cases in which the central
vertices are labeled differently.

Case 1. Suppose we label the central vertices by f(u) = 0, and f(v) = f(w) =
1 and label all other vertices by 1 except

flm) =f(uw) = = f(u) =0,
flv1)) =f(w) = = f(v;) =0; (4.1)
fw)) =f(w) = = f(wg) = 0.
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Then v(0) =i+ j+ k+ 1 and (1) = a — i + j + k. For this labeling to be
friendly we require either

i+j+k+1=—a+;+c, (4.2)
or b 2
i+jrk+1=2t2te=2 ;c— , (4.3)

Equation (4.2) yields N(f) = |e(1) —e(0)| = |2a — 4i|. In this situation, i+1 <
(@+b+c)/2and a —i+1 < (a+ b+ c—2)/2, which provide the inequalities
(ea—b—c+4)/2 <i < (a+b+c—2)/2. Therefore, the friendly indices obtained
in this case would be

A={12a - 4i] : ma < i < Ma},

where m4 = max{0, (a—b—c+4)/2} and M4 = min{a—1, (a+b+c—2)/2}.
Equation (4.3) gives us |e(1) — e(0)| = |2a — 4i — 2|. In this situation, s + 1 <
{a+b+c—2)/2and a —i+1 < (a+ b+ c)/2, which provide the inequalities
(a—b—c+2)/2 <i < (a+b+c—4)/2. Therefore, the friendly indices obtained
in this situation would be

D={2a-4i—-2|:mp i< Mp},

where mp = max{0, (a —b—c+2)/2} and Mp = min{a—1, (a+b+c—4)/2}.
Case 2. Let f(v) =0, and f(u) = f(w) = 1 be the labeling of the central
vertices and all other vertices be labeled 1 except for those specified in (4.1).
In this case, v(0) = i+j+k+1 and e(1) = b~ j+i+k. Again, for this labeling
to be friendly we require either (4.2) or (4.3).

The equation (4.2) gives us N(f) = le(1) — e(0)| = |2b — 45]|. In this instance,
ji+1< (a+b+c)/2and b—j < (a+b+c—2)/2, which provide the inequalities
(b—a—c+2)/2 < j < (a+b+c—2)/2. Therefore, the friendly indices obtained
in this case would be

B = {|2b - 4j| : mp < j < Mg},

where mpg = max{0, (b—a—c+2)/2} and Mg = min{b—2, (a+b+c—2)/2}.
The equation (4.3) yields N(f) = |e(1) — e(0)] = |2b — 47 — 2|. In this instance,
j+1< (a+b+c—2)/2 and b—j < (a+b+c)/2, which provide the inequalities
(b—a—c)/2 < j < (a+b+c—4)/2. Therefore, the friendly indices obtained
in this subcase would be

E={2b-4j-2|:mg <j< Mg}
where mg = max{0, (b - a — ¢)/2} and Mg = min{b -2, (e +b+c—4)/2}.

Case 3. Suppose we label the central vertices by f(w) =0, f(uv) = f(v) =1
and label all other vertices by 1 except for those specified in (4.1).
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Then v(0) =i+ j+k+1 and e(1) = b~ k +1i + j. Again, for this labeling to
be friendly we require either (4.2) or (4.3).

The equation (4.2) gives us N(f) = |e(1) — e(0)| = |2c — 4k|. In this situation,
k+1<(a+b+c)/2andc—k+1< (a+b+c—2)/2, which provide the
inequalities (c —a — b+ 4)/2 < k < (a + b+ ¢ — 2)/2. Therefore, the friendly
indices obtained in this subcase would be

C= {|2c—4k| tmeo <k< Mc},
where m¢ = max{0, (c—~a—b+4)/2} and M¢c = min{c—1, (a+b+c—2)/2}.
The equation (4.3) gives us N(f) = le(1) — e(0)] = |2c — 4k — 2|. In this
situation, k+1 < (a+b+c—2)/2and c—k+1 < (a+b+c)/2, which provide

the inequalities (c—a—b+2)/2 < k < (a+b+c—4)/2. Therefore, the friendly
indices obtained in this subcase would be

F = {|2c — 4k| : mr < k < MF},

where mp = max{0, (c—a—b+2)/2} and Mp = min{c-1, (a+b+c—4)/2}.
We summarize the above discussion in the following theorem.

Theorem 4.6. Suppose ¢ + b+ c is even and a,b,c > 2. Then
FI(CR(a,b,c))=AUBUCUDUEUF, where

A={|2a —4i| :ma <t <Ma}; D={2a-4i-2|:mp <i< Mp};
B={|2b-4j]:mp<j<Mp}; E={|2b—4j—2:mg<j< Mg}
C={|2c-4k| :mc <k<Mc}; F={2c—-4k~2|:mp <k < Mr};

Lemma 4.7. Let a + b+ c be even. Then the caterpillar G = CR(a, b, c) has
a mazimum friendly indez if and only if lb~a—c+1| = 1.

Proof. By Corollary 2.5, such a friendly labeling f exists if and only if all edges
are labeled 1. Without loss of generality we may assume that f(u) = f(w) =0
and f(v) = 1. Then all the end-vertices adjacent to u and w are labeled 1, and
all end-vertices adjacent to v are labeled 0. That is, v(0) = b. However this
labeling is friendly if and only if either 26 =a +b+cor2b=a+b+c—2
which proves the lemma. a

Lemma 4.8. Let |b—a—c+ 1| =1. Then FI(CR(a,b,c)) = AU where
A={2b-4jl:1<5< (3} Q@={2b-45-2/:0<j < 53]},
Proof. We utilize Theorem 4.6 and note that

A={|2a-4i]:0<i<a-1}; D={|2a-4i-2|:0<i<a—-1};
B={|2b-4j|:1<j<b-2}; E={|2b-4j-2[:0<j<b-2}
C={|2c-4k]:0<k<c-1}; F={2c—4k-2|:0<k<c—1}.

Since AUD, CUF C BUE then by 4.6, FI(G) = BU E. We also observe
that |2b— 4| produces the same number for j and b— 5. Similarly, |2b— 4k —2|
produces the same number for & and b—k+1. Therefore, B=Aand E=Q. O
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Theorem 4.9. Let a + b+ c be even. Then G = CR(a,b,c) is fully cordial if
and only iflb—a—-c+1|=1.

Proof. Suppose G is fully cordial. Then G achieves its maximum friendly index
and by Lemma 4.7, |b—a—c+1| = 1.

Conversely, let |b—a —c+ 1| = 1. Then by Lemma 4.8, FI(G) = AU(. Also,
we observe that G has either 2b — 2 or 2b edges and the set A U 2 generates
exactly either {0,2,4,...,2b — 2} or {0,2,4,...,2b}. These numbers are the
full spectrum of friendly indices of G. (]
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