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Abstract

Let G be a graph with vertex set V(G) and edge set E(G). A
(p,q)-graph G = (V, E) is said to be AL(k)-traversal if there exist a
sequence of vertices (v1,v2,...,vp) such for eachi =1,2,...,p—1,
the distance for v; and v:4; is equal to k. We call a graph G
a 2-steps Hamiltonian graph if it has a AL(2)-traversal in G and
d(vp,v1) = 2. In this paper we characterize some cubic graphs which
are 2-steps Hamiltonian. We show that no forbidden subgraphs char-
acterization for non 2-steps-Hamiltonian cubic graphs is available by
showing every cubic graph is a homeomorphe subgraph of a non 2-
steps Hamiltonian cubic graph.

1 Introduction

In this paper we consider graphs with no loops. A graph is called Hamil-
tonian if it contains a cycle passing through all its vertices. Such a cycle
is called a Hamiltonian cycle. A graph is cubic if each of its vertex is of
degree 3. Cubic graphs have been much studied in graph theory and they
seem to be among the most desirable regular graphs.

Historically, cubic Hamiltonian graphs have been associated with the
Four-Color Theorem. In 1880 Tait conjecture that every cubic 3-connected
planar graph is Hamiltonian. However, Tait’s conjecture turned out to be
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false. The first simple 3-polytope with no Hamiltonian circuit was con-

structed by Tutte (8, 9].
Lau, Lee, et al. [7], extended the general concept of Hamiltonian to

k-steps Hamiltonian graphs.
Definition 1. For k > 2, a (p,q)-graph G = (V, E) is said to have k-
step traversal if there exist a sequence (vi,vs,...,vp) such for each i =

1,2,...,p—1, the distance for v; and v;4; is equal to k. A graph admits a
k-step traversal is called the AL(k)-traversal graph.

Example 1. The following graph is AL(2)-travesal.

vi

\(]

Figure 1:

Example 2. The following graph is AL(2)-traversal but not AL(3)-traversal.
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Figure 2: An AL(2)-traversal Graph

Definition 2. We call a graph G a k-step Hamiltonian graph if it has a
AL(k)-traversal in G and d(vp,v1) = k.
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A Hamiltonian graph need not be k-step Hamiltonian. The simplest
examples are cycles C,, with n = 0 (mod k) which are not AL(k)-traversal,
hence cannot be k-step Hamiltonian.

Example 3. A 2-step Hamiltonian cubic graph.

Figure 3: A 2-steps Hamiltonian cubic graph

Example 4. The following graph G is 2-steps Hamiltonian but not Hamil-
tonian.
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Figure 4: A 2-steps Hamiltonian cubic graph

Example 5. The following Grotzsch graph is Hamiltonian and 2-steps
Hamiltonian.

Deciding whether a graph is Hamiltonian, is a notorious difficult prob-
lem even for cubic graphs. The same situation is also true for 2-steps
Hamiltonian cubic graphs. In section 2, we exhibits infinite classes of cubic
graphs which are non 2-steps Hamiltonian. In section 3, we determine gen-
eralized Petersen graphs G(n, k) which are 2-steps Hamiltonian and we also
find 2-steps Hamiltonian starfish cubic graph SF(n). Finally in section 4, we
introduce the bridge-join construction which will produce infinite families
of 2-steps Hamiltonian cubic graphs. We also showed that it is impossible
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Figure 5:

to have Kuratowski type of characterization of non 2-steps Hamiltonian
cubic graphs.

2 Cubic graphs which are not 2-steps Hamil-
tonian

Barnette’s conjecture is an unsolved problem in graph theory, it states that
every bipartite cubic polyhedral graph has a Hamiltonian cycle. However,
we have the following surprising result

Proposition 2.1. Every bipartite cubic graph is not 2-steps Hamiltonian.

Theorem 2.2. Cop41 X Ko is 2-steps Hamiltonian for alln > 1.

Figure 6: C3 x K5 and Cs x Ky are 2-steps Hamiltonian.

Corollary 2.3. For n > 2, the cylinder graph Cs, x Ks is not 2-steps
Hamiltonian.

We can construct infinitely many bipartite cubic graphs which include
the utility graph K3 3 as a special case. For integer n > 3, let U(n) with
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2n vertices {uo, u1,...,un—1} U {v0,%1,...,vn_1}. If we label the vertices
{uo,u1,...,un—1} U {vo,v1,...,vn—1} and add an edge from each u; to v;,
Vi+1 and vi42 (with indices modulo n), then we obtain a cubic bipartite
graph. (The vertex v; is adjacent to u;, u;_; and u;_s, so it is indeed
cubic.) An example when n =5 is given below:

Corollary 2.4. The graph U(n) is not 2-steps Hamiltonian for any n > 3.

Let n be a positive integer. The Mébius ladder (also known as the
Mobius wheel) is the cycle Csp, with n additional edges joining diago-
nally opposite vertices. We will denote this graph by M, the vertices by
V1,V2,...,V2n. Then the edges are (vy,v2), (ve,v3), ..., (V2n, v1) in the cy-
cle, and the » diagonals (v1,Vn+1), (V2, Un+2), - . ., (Un, van). Figure 7 shows
the Md&bius ladder My, for n = 3,4, drawn in both the circulant form and
the ladder form. This class of graphs was first named and introduced by F.
Harary and R. Guy [4] in 1967.
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Figure 7:

Lau, Lee et al. showed in [7] that

Theorem 2.5. Mobius ladder M,, is 2-steps Hamiltonian forn = 0 (mod 4).
When n =2 (mod 4), M,, is not 2-steps Hamiltonian.
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Example 6. The Mobius ladder Mg is 2-steps Hamiltonian.

Figure 8: The Mobius ladder Ms is 2-steps Hamiltonian.

3 Generalized Petersen Graphs and starfish
graphs
After Watkins [10], a generalized Petersen graph G(n, k) is defined as
Definition 3. G(n,k) is a graph with vertex set
{uo, U1,+ - -y Un—1,V0,V1y+ .+, Un—1}
and edge set
{wstigr, wivs, vivigr |1=0,1,...,n -1}

where subscripts are to be read modulo » and k < 3.

Alspach in [2] showed that G(n, k) is Hamiltonian if and only if it is
neither G(n, 2) = G(n,n—2) = G(n, 23! = G(n, 23!) when n =5 (mod 6)
nor G(n, % when n =0 (mod 4) and n > 8. We show here

Theorem 3.1. If n is even and k is odd, G(n, k) is not 2-steps Hamilto-
nian.

Proof. For G(n,k) is bipartite if and only if n is even and & is odd. We
know that all bipartite graphs are not 2-steps Hamiltonian. m]

Theorem 3.2. For any n > 5, the generalized Petersen graph G(n,2) is
2-steps Hamiltonian.

Proof. For G(n,2), label uo, u1,...,un—1 by odd integers 1,3,5,...,2n—1
and va,v3,...,Vn~1, Vo, V1 by even integers 2,4,6,...,2n — 2,2n. Then we
see that the 2-steps circuit

(u0, ¥2,%1,V3, . - -, Un—1, Un—2, V0, , Yn—1, V1, %0)

190



Figure 10: G(5,2) is 2-steps Hamiltonian
is Hamiltonian. Figures 9 and 10 illustrate the cases for G(5,2) and G(6, 2).
0O

Theorem 3.3. For any n > 6, the generalized Petersen graph G(n,3) is
2-steps Hamiltonian if and only if n is odd.

Proof. If n is even, G(n, 3) is bipartite. The graph G(8, 3) is shown here.

N4
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If n is odd, see the general prove in Theorem 3.6. =]

Theorem 3.4. For any n > 9, the generalized Petersen graph G(n,4) is
2-steps Hamiltonian.

Figure 11:

Theorem 3.5. For any n > 11, the generalized Petersen graph G(n,5) is
2-steps Hamiltonian if and only if n is odd.

Proof. If n is even, then G(n,5) must be a bipartite and hence not 2-
Hamiltonain. To prove G(even, 5) is bipartite. Let us color

UL, U3, UBy + - -y U2i41y - -« Un—1

black (i.e. u,34 black) and ueven white. Add color vyqq white and veven
black. Then vj,...,vj+10i (mod n) for i =0,1,2,...and j = 1,3,5,7,9 are

192



white and Vj451- -+ Vj45410i (mod n) for i = 0, 1, 2, ...and ] = 1, 3, 5, 7, 9
are black. Note: in the v’s, v; is adjacent to v; ;5. Now we see the adjacent
vertices of the u’s have alternate colors and the adjacent vertices of the v's
also have alternate colors and also the vertices pairs u; and v; have different
colors (i.e. if u; is black then v; is white, and vise versa). This shows all
adjacent vertices have different colors and hence G(2k, 5) is bipartite. An
example of G(20, 5) is shown here.
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Figure 12: G(11,5)

0

Theorem 3.6. Any generalized Peterson graph G(n,k) is 2-steps Hamil-
tonian for n is odd and any k < 7.

Proof. If n is odd, then we can have the vertex sequence

Uy, V2, U3, V4, U5, . . .y Un—1, Up, V1, U2, U3, U4, U5, UG, U7,y - ., Un—1, Un, U]
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as the 2-steps Hamiltonian cycle. O

The graph K, 3 is called the claw in literature. Assume V(K)3) =
{u, 21, 22, z3}, we can construct a cubic graph called the starfish SF(k) as
follows: take k copies of claw and label the vertices of i copy by {ui, i1, %2, Zi 3}
We denote V(SF(k)) = U{uwi, zi1,%i,2,%i,3 | 1 £i <k} and

E(SF(k)) =UE(K1,3,5 |1 <j <k)U{(%ij) Ti,5+1) [ 1 Si<3,1 <5 <k}
The graph is not Hamiltonian.

Theorem 3.7. The starfish SF(n) is 2-steps Hamiltonian if and only if
n > 3 is odd.

Proof. If n is even, then SF(n) is bipartite and it is not 2-steps Hamilto-
nian.

If n > 3 is odd, we see that it is 2-steps Hamiltonian by observe the
vertex sequence

('ul, Z2,1, 22,2, T2,3, U3, T4,1, 4,2, T4,3, U5, T6,1, 6,2, T6,35 - + - ; Un—1, Un,

V1, U2, V3, Ud, Us, U6, V7, . - -, Un—2, Tn—1,1, Tn—1,2, Tn—1,3)

as the 2-steps Hamiltonian cycle.
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Figure 13:

4 Bridge join of cubic graphs

Recall an edge e of a graph G is called a cut edge if G — e is disconnected.
It is well known that if G possess a cut edge then it is not Hamitonian.
One may propose the following

Conjecture 1. Cubic graph G when G — e is disconnected is not 2-steps
Hamiltonian.
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However, we have the following infinitely many counterexamples through
the following construction:

Bridge join construction: Let (G,e), (H, f) be two graphs in Reg(3),
and e, f are edges in G, H, respectively. Insert a vertex u in e and v in f,
then join the edge (u,v) between u and v, the resulting graph is a cubic
graph, with bridge (u,v). We denote the graph by B((G, e), (H, f)).

Denote Reg(2,3){1} the class of all (2, 3)-regular graphs (G, {u}) with
only one vertex u with degree 2. We give the following sufficient conditions
for bridge join cubic graphs are 2-step Hamiltonian.

Theorem 4.1. If (G, {u}) and (H,{v}) are two graphs in Reg(2,3){1},
we form B(G, H) by join u and v, the cubic graph B(G, H) is 2-steps
Hamiltonian if

1. G is AL(2)-traversal with 2-steps Hamiltonian path (u,...,z) such
that dg(u,z) = 1 and H is AL(2)-traversal with 2-steps Hamiltonian
path (y,...,v) such that dy(v,y) =1 or

2. G is AL(2)-traversal with 2-steps Hamiltonian path (z,...,u) such
that dg(u,z) = 1 and H is AL(2)-traversal with 2-steps Hamiltonian
path (v,...,y) such that dy(v,y) = 1.

Example 7. B(C3; x K2,C3 x K3) and B(Cs x Kj,Cs x K,) are 2-steps
Hamiltonian.

- 4 Yo

Figure 14: B(Cs X K2,03 x Kg) and B(Cs X Kz,Cs x Kz)

Now, we have the general Theorem
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Theorem 4.2. For any odd m,n > 3, the bridge join of (Cr, X Ka,€) and
(Cn x Ko, ) is 2-steps Hamiltonian with cut edges.

Examples 8 and 9 illustrate other (G, {u}) and (H, {v}) in Reg(2, 3){1},
that produce 2-steps Hamiltonian cubic graphs.

Example 8. In the Figure 15.
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Figure 15:
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Example 9.

X X P

BITWIS){xsx* 1, (Coxka )

B{(TWIS) x5 x"sIl), (Cxkas)
Figure 16:

Theorem 4.3. The bridge join of (K4,€) and any cubic graph (G, f) is
not 2-steps Hamiltonian.

Proof. Let V(K4) = {u1,u2,u3,us} and e = (us,u4) and let u be the
vertex insert on e in K4. We see that in Dy(B(Kjy,e), (G, f)), u; is connect
with u and ug is connect with u, u; and u; are degree 1. Thus the graph
Dy(B(K4,e), (G, f)) is non-Hamiltonian.

]

B omeiees DN
DBk e} {0 :
Thus B((K4,e), (G, f)) is not 2-steps Hamiltonian. O
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We also have the following

Theorem 4.4. The bridge-join graph B ((K3,3, {z3,y3}),(H, f)) of Ka s,
and any cubic graph H and f € E(H) is non 2-steps Hamiltonian cubic
graph.

Kuratowski [6] in 1930 showed a graph is non planar if and only if it
contains K33 or K5 as induced subgraphs. From Theorem 4.4 we have the
following

Theorem 4.5. There does not exist forbidden subgraphs characterization
for non 2-steps Hamiltonian cubic graphs.

We propose the following two conjectures.

Conjecture 2. The bridge join of any Mébius ladders (M, €), (Mn, f) is
not 2-steps Hamiltonian.

Conjecture 3. For any n > 3, the bridge join of (U(n), e) and any cubic
graph (G, f) is not 2-steps Hamiltonian.
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