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Abstract

Let G be a Hamiltonian graph of order n > 3. For an integer
¢ with 1 £ € £ n, the graph G is é-path-Hamiltonian if every path
of order ¢ lies on a Hamiltonian cycle in G. The Hamiltonian cycle
extension number of G is the maximum positive integer ell for which
every path of order £ or less lies on a Hamiltonian cycle of G. For
an integer £ with 2 < £ < n — 1, the graph G is f-path-pancyclic
if every path of order € in G lies on a cycle of every length from
¢+ 1 to n. (Thus, a 2-path-pancyclic graph is edge-pancyclic.) A
graph G of order n > 3 is path-pancyclic if G is ¢-path-pancyclic for
each integer £ with 2 < £ < n — 1. In this paper, we present a brief
survey of known results on these two parameters and investigate the
{-path-Hamiltonian graphs and é-path-pancyclic graphs having small
minimum degree and small values of £. Furthermore, highly path-
pancyclic graphs are characterized and several well-known classes
of £-path-pancyclic graphs are determined. The relationship among
these two parameters and other well-known Hamiltonian parameters
are investigated along with some open questions in this area of re-
search.
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1 Introduction

A Hamiltonian path in a graph G is a path containing every vertex of G
and a Hamiltonian cycle in G is a cycle containing every vertex of G. A
graph having a Hamiltonian cycle is a Hamiltonian graph. Among the many
sufficient conditions for a graph to be Hamiltonian are those concerning the
minimum degree §(G) of a graph G, the minimum of the degree sums of
two nonadjacent vertices in G and the size of G. For a nontrivial graph G
that is not complete, let

02(G) = min{degu + degv : d(u,v) > 2}.

The first theoretical result on Hamiltonian graphs occurred in 1952 and is
due to Dirac.

Theorem 1.1 [10] If G is a graph of order n > 3 such that §(G) > n/2,
then G is Hamiltonian.

In 1960, Ore obtained a result that generalizes Theorem 1.1.

Theorem 1.2 [15] If G is a graph of order n > 3 such that 02(G) > n,
then G is Hamiltonian.

The following known result gives another sufficient condition for a graph
to be Hamiltonian.

Theorem 1.3 [9, p.136] If G is a graph of order n > 3 and size m 2>
(") +2, then G is Hamiltonian.

A graph G is Hamiltonian-connected if G contains a Hamiltonian u — v
path for every pair u,v of distinct vertices of G. In 1963, Ore provided
the following similar sufficient conditions for a graph to be Hamiltonian-
connected.

Theorem 1.4 [16] If G is a graph of order n > 4 such that 6(G) >
(n+1)/2, then G is Hamiltonian-connected.

Theorem 1.5 [16] If G is a graph of order n > 4 such that 03(G) > n+1,
then G is Hamiltonian-connected.

Theorem 1.6 [16] If G is a graph of order n > 4 and size m > (";1) +3,
then G is Hamiltonian-connected.

The concepts of Hamiltonian paths, Hamiltonian cycles and Hamilto-
nian graphs have been studied extensively in the area of graph theory. The
research in this area gave rise to a number of new concepts and properties
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involving paths and cycles in graphs, such as being panconnected [1, 18]
and pancyclic [4]. Recently, two more new concepts involving paths and
cycles in graphs were introduced and studied in (2, 5] respectively, namely
{-path-Hamiltonian graphs and £-path-pancyclic graphs. In this work, we
present a brief survey of known results on these two parameters and several
new results on the £-path-Hamiltonian graphs and ¢-path-pancyclic graphs,
as well as some open questions on the relationship among these two param-
eters and other well-known Hamiltonian parameters. We refer to the book
[9] for graph theoretic notation and terminology not described in this paper.

2 On /-Path-Hamiltonian Graphs

A Hamiltonian graph G of order n > 3 is £-path- Hamiltonian for some pos-
itive integer £ with 1 < ¢ < n if every path of order ¢ lies on a Hamiltonian
cycle in G. The Hamiltonian cycle extension number hce(G) of G is defined
as the largest integer £ such that G is i-path-Hamiltonian for each integer
t with 1 £ ¢ < k€. These concepts were derived from an 1856 observation
of Hamilton when he introduced the Icosian Game, which is a two-person
game that could be played on the vertices and edges of a dodecahedron (a
polyhedron with twenty vertices). Hamilton observed that beginning with
any path P of order 5 on the graph G of the dodecahedron, P could be
extended to a Hamiltonian cycle of G. That is, for every path P of or-
der 5 in G, there exists a Hamiltonian cycle C of G such that P is a path
on C. In fact, this is true for all paths of order 5 or less on the graph
of the dodecahedron. However, Hamilton’s observation does not hold for
all paths of order 6, that is, there is a path of order 6 on the graph G of
the dodecahedron that cannot be extended to a Hamiltonian cycle in G.
This is illustrated in Figure 1, where the path of order 6 (drawn in bold
edges) cannot be extended to a Hamiltonian cycle. This led to a concept
of the Hamiltonian cycle extension number defined for every Hamiltonian
graph. These concepts were introduced by Gary Chartrand in 2013 and
first studied in (5].

2.1 Some Known Results

Among the results obtained on £-path-Hamiltonian graphs are the following.

Theorem 2.1 [5] If G is a graph of order n > 3 and 6(G) > n/2, then
hee(G) 2 26(G) —n + 1.

Theorem 2.2 5] If G is a graph of order n > 4 such that §(G) > rn for
some rational number r with 1/2 < r < 1, then hee(G) > (2r — 1)n+ 1.

203



Figure 1: The graph G of the dodecahedron and a 6-path

Theorem 2.3 [5] Let £ and n be positive integers such that n > £+ 2. If
G is a graph of order n such that 02(G) > n+ £ — 1, then hce(G) > £.

Theorem 2.4 [5] Let £ and n be positive integers such that n > £+ 2.
If G is a graph of order n and size m > (";1) + £+ 1, then G is £-path-
Hamiltonian.

Each of the Theorems 2.1-2.4 is best possible. In particular, the lower
bound presented in Theorem 2.2 for the Hamiltonian cycle extension num-
ber of a graph is sharp for every rational number r. Theorems 2.3 and 2.4

are extensions of Ore’s results on Hamiltonian-connected graphs in Theo-
rems 1.5 and 1.6.

All connected graphs G of order n having hce(G) = n have been char-
acterized in [8]; while all Hamiltonian graphs of order n that are {-path-
Hamiltonian are characterized for £ € {n — 3,n — 2,n — 1} in [13].

Theorem 2.5 [13] Let G be a graph of order n > 3.

(a) For each integer £ € {n—2,n—1,n}, the graph G is £-path-Hamiltonian
if and only if G equals Cy, or Ky, or K, /2 n/2 (when n is even).

(b) For n > 4, the graph G is (n — 3)-path-Hemiltonian if and only if
(i) G equals Cy, or Ky, or K, y2,n/2 (when n is even) or

(11) Ge {Pa + P,,C6,2P;,Cs + C3} or
(ifi) 8(G) =n—2.

2.2 On {-path-Hamiltonian Graphs with Small
Minimum Degree

We begin by studying 2-path-Hamiltonian graphs with minimum degree 2.
Obviously, the n-cycle C,, of order n > 3 is £-path-Hamiltonian for 1 < £ <
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n and 2-regular. The following result shows that the n-cycle of order n > 4
is an exception.

Proposition 2.6 Let ¢,n be integers satisfying 1 < £ <n andn > 3. If
G is an {-path- Hamiltonian graph of order n, then (i) G = C,, or (ii) £ < 2
or (iii) §(G) > 3.

Proof. Since Cj5 is the only Hamiltonian graph of order 3, we may as-
sume that n > 4. Let G be a connected graph of order n with §(G) = 2.
We show that if G # C,, then G is not ¢-path-Hamiltonian for £ > 3.
Let (v1,v2,...,vn,v1) be a Hamiltonian cycle in G. Since §(G) = 2 and
G # C,, it follows that A(G) > 3 and so we may assume, without loss
of generality, that degv, = 2 and degv; > 3, say {v2,va,vn} € N(v;) for
some integer @ (3 < @ < n —1). Thus, G contains a Hamiltonian path
P = (vg-1,Ya=2,---,V1,V,Vat1, .-, VUn). For 3 < € < n, therefore, G con-
tains an £-path Q such that (ve,v1,v.) € Q C P. Since degv, = 2 and v,
is adjacent to v, there is no n-cycle on which Q lies and we conclude that
£<2. ]

In [5], it was observed that if G is a Hamiltonian graph of order n with
minimum degree 2, then

n ifG=C,

1 if G contains an edge not belonging to any
Hamiltonian cycle in G

2 otherwise.

hece(G) =

Of course, if hce(G) = n, then G is ¢-path-Hamiltonian for 1 < £ < n.
In a Hamiltonian graph G of order n, some edge may or may not lie on a
Hamiltonian cycle in G while every edge must lie on a Hamiltonian path in
G. In fact, for each edge e and every integer ¢ with 2 < £ < n, there exists
an {-path containing e. Therefore, if G is ¢-path-Hamiltonian for some
¢ > 2, then there must be a Hamiltonian cycle in G containing e. In other
words, if G is not 2-path-Hamiltonian, then G is not ¢-path-Hamiltonian
for each £ € {2,3,...,n}.

Suppose that G is a 2-path-Hamiltonian graph with 6(G) = 2 and let
v be a vertex in G with N(v) = {z,y}. Since every edge in G lies on a
Hamiltonian cycle in G, it follows that zy ¢ E(G) unless G = Ca. Then
by adding the edge zy while deleting the vertex v and the edges vz and vy
from G, a 2-path-Hamiltonian graph H such that G is a subdivision of H
results. Consequently, we obtain the following.

Proposition 2.7 Let G be a graph of order at least 4 with §(G) = 2. IfG
is 2-path-Hamiltonian, then G is obtained from a 2-path-Hamiltonian graph
by subdividing an edge.

205



The converse of Proposition 2.7 is not true, however. For example,
let Go be the complete graph of order 4. Then for G; and G2 in Fig-
ure 2, the graph G; is obtained from G;_; by subdividing an edge for
i = 1,2. Although Go and G; are both 2-path-Hamiltonian, G is not.

Gy G2 Gy
Figure 2: Subdividing edges of K4

On the other hand, the graph G5 in Figure 2 is also obtained from G; by
subdividing an edge and this is 2-path-Hamiltonian. Hence, subdividing
an edge of a 2-path-Hamiltonian graph may or may not result in another
2-path-Hamiltonian graph.

In a 2-path-Hamiltonian graph G, suppose that S is a subset of E(G)
such that, for each edge e in G, there exists a Hamiltonian cycle C in
G with SU {e} € E(C). Since G is 2-path-Hamiltonian, the set S = 0
certainly has this property. Now let S(G) be the set of nonempty such sets
S. If S € S(G), then subdividing some edges of S (possibly more than
once) results in a 2-path-Hamiltonian graph. Conversely, if § # ® and
S ¢ S(G), then subdividing every edge of S results in a graph that is not
2-path-Hamiltonian.

For example, take G = K4 with V(G) = {v;,v;,v3,v4} and let S =
{vive,v3v4}. Then S; € S(G) since every edge e in G can be extended
to a Hamiltonian cycle C in G that also contains both vjv2 and vsvs. (In
general, if G is complete or regular complete bipartite, then any nonempty
set of independent edges belongs to S(G).) The graph H in Figure 3 as
well as the graphs G; and G in Figure 2 are 2-path-Hamiltonian graphs
obtained from G by subdividing the edges in S);. On the other hand, the
set S = {v1v2,vav3} does not belong to S(G) since there is no Hamiltonian
cycle C in G with Sy U {vv4} € E(C). Consequently, subdividing both
edges in S5 results in a graph that is not 2-path-Hamiltonian, as the graph
G, in Figure 2 shows.

As another example, let G = Mg be the Mdbius ladder of order 8 ob-
tained from an 8-cycle C = (v;,v2,...,Vs,v1) by adding the four edges
vivi4q (1 < i < 4). Note that hce(G) = 3 since G is ¢-path-Hamiltonian
for 1 < ¢ < 3 while the path (v, vs,ve,v7) cannot be extended to a
Hamiltonian cycle. In fact, any Hamiltonian cycle in G containing the
edge vaug must contain exactly one of the edges v v, and vev7. Also, no
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v3 Vq

Figure 3: A 2-path-Hamiltonian graph with minimum degree 2

Hamiltonian cycle in G contains both v;vs and vsv;. Therefore, a set
S C E(G) belongs to S(G) if and only if S is a nonempty subset of either
S’ = {v1v2,v3v4, v5v6, v7vs} or E(C)\S’. Hence, this G is another example
of a 2-path-Hamiltonian graph containing an edge e such that a 2-path-
Hamiltonian graph results when e is subdivided since S(G) # 0. Therefore,
we have the following question.

Problem 2.8 If G is a 2-path-Hamiltonian graph with 6§(G) > 3, then
does G always contain an edge e such that subdividing e results in a 2-path-
Hamiltonian graph?

Next, we determine the Hamiltonian cycle extension number of a well-
known class of graphs having minimum degree 2, namely the Cartesian
products P, O P, of two paths P, and P, of order a and b, respectively.
It is straightforward to verify that P, O P, is Hamiltonian if and only if
a,b > 2 and its order ab is even.

Proposition 2.9 For integers a and b where 2 < a < b and ab is even,

4 ifa=b=2
hee(P, DP)={ 1 if2<a<3<b
2 ifa,b>4.

Proof. Let G = P, O P;. Since a,b > 2 and ab is even, G is Hamiltonian
and so hce(G) > 1. Also, since hee(P, O P;) = hce(Cy) = 4, we may
assume that at least one of a and b is greater than 2. Let V(G) = {v;; :
1<i<a, 1<j<b}and v vy € E(G) if and only if either (i) i = 4’
and |j —j/| =1or (ii) j =4 and |i — | = 1.

First, suppose that at least one of a and b, say the former, is less than 4.
If a = 2, then b > 3 and the edge v; 2v;,2 lies on no Hamiltonian cycle in
G. Similarly, if a = 3, then no Hamiltonian cycle in G contains the edge
v9,1v2,2. Consequently, hce(G) =1if2<a <3 <b.
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Hence, let us next suppose that a,b > 4. Then (v 2,v22,v2,1) is a
3-path that lies on no Hamiltonian cycle in G. Thus, hce(G) < 2 in this
case. In order to show that hce(G) = 2, we verify that every edge lies on
a Hamiltonian cycle in G. Since ab is even, at least one of @ and b is even,
that is, either (i) a = b =0 (mod 2) or (ii) a # b (mod 2). In each case, it
can be shown that G contains four Hamiltonian cycles such that each edge
of G lies on at least one of these four Hamiltonian cycles. This is illustrated
in Figure 4 for Ps O P; and in Ps O P;. s

Figure 4: Four Hamiltonian cycles in Pg [ Ps or in P OO P;

3 On /-Path-Pancyclic Graphs

A graph G of order n > 3 is pancyclic if G contains a cycle of every possible
length, that is, G contains a cycle of length ¢ for each ¢ with 3 < ¢ < n.
The following result is due to Bondy in 1971.

Theorem 3.1 [4] IfG is a graph of order n > 3 such that 02(G) > n, then
either G is pancyclic or n is even and G is the complete regular bipartite

graph Kn/2,n/2-

A graph G of order n > 3 is vertez-pancyclic if each vertex of G lies on
a cycle of length from 3 to n. A graph G of order n > 3 is edge-pancyclic if
each edge of G lies on a cycle of length from 3 to n. In 1974 Faudree and
Schelp established the following result.

Theorem 3.2 [11] If G is a graph of order n > 5 such that 02(G) = n+1,
then for every pair u,v of distinct vertices of G, there is a u — v path of
length € for every integer £ with4 <£<n—1.
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As a consequence of Theorem 3.2, if G is a graph of order n > 5 such
that 02(G) > n + 1, then every edge of G lies on a cycle of length £ for
every integer £ with 5 < £ < n. In 1993 Zhang and Holton [19] presented a
characterization of edge-pancyclic graphs of order n > 5 such that o3(G) >
n+1.

Inspired by the concepts of pancyclic graphs, vertex- or edge-pancyclic
graphs and {-path-Hamiltonian graphs, the concepts of ¢-path-pancyclic
graphs and path-pancyclic graphs were introduced and studied in [2] and
studied further in [3]. For integers £ and n with 2 < £<n —1, a graph G
of order n is £-path-pancyclic if every path of order £ in G lies on a cycle
of every length from £ 4+ 1 to n. In particular, a 2-path-pancyclic graph
is edge-pancyclic. A graph G of order n > 3 is path-pancyclic if G is ¢-
path-pancyclic for each integer £ with 2 < ¢ < n — 1. To illustrate these
concepts, consider the graph G of order 6 in Figure 5. The graph G is 2-
path-pancyclic (or edge-pancyclic). Since the 3-path (u,v,w), for example,
does not lie on a cycle of order 4, it is not 3-path-pancyclic. In fact, this
graph is also not 3-path-Hamiltonian since the path (u,v,y) does not lie on
a Hamiltonian cycle in G.

z Y z
Figure 5: A 2-path-pancyclic graph G that is not 3-path-pancyclic

Certainly, if G is an ¢-path-pancyclic graph of order n > 4 where 1 <
€ < n—1, then G is also ¢-path-Hamiltonian. Obviously, the converse is
not true. For example, hce(C,) = n where n > 4 and so C, is {-path-
Hamiltonian for each £ € {1,2,...,n}, but C, is not ¢-path-pancyclic for
any £ € {1,2,...,n—2}. In [2, 3], sufficient conditions for a graph G to be
£-path-pancyclic were presented in terms of its order, size, minimum degree
as well as the value of 2(G), which we list below.

Theorem 3.3 (2] Let ¢ and n be integers withn > 4 and2<€<n-1. If
G is a graph of order n with 6(G) > (n+ £)/2, then G is £-path-pancyclic.

Theorem 3.4 [3] Let ¢ and n be integers withn >4 and 2 < € <n-— 1.
If G is a graph of order n with g2(G) > (3n + £ — 5)/2, then G is L-path-
pancyclic.

Theorem 3.5 [2] Let £ and n be integers with2 < £ <n—2. IfG is a
graph of order n and size m > (";1) + £+ 1, then G is £-path-pancyclic.
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It was shown in [2, 3] that each of Theorems 3.3-3.5 is best possible.

3.1 Highly Path-Pancyclic Graphs

We first study connected graphs of order n that are ¢-path-pancyclic for
relatively large values of £, namely, £ € {n—3,n—2,n—1}. Those graphs are
referred to as highly path-pancyclic graphs. With the aid of Theorem 2.5,
we are able characterize all highly path-pancyclic graphs. First, we make
some useful observations. If G is a bipartite graph of order n > 4, then G
cannot contain both (n — 1)-cycles and n-cycles. Therefore, if £ and n are
integers satisfying 2 < £ < n — 1, then G is an {-path-pancyclic bipartite
graph of order n if and only if £ = n — 1 is odd and G is either C, or
Kp/2,n/2. Furthermore, each C,, (n > 3) is £-path-pancyclic if and only if
¢ =n — 1. We are now prepared to present the following.

Theorem 3.6 Let G be a graph of order n.
(a) For n > 3, the graph G is (n — 1)-path-pancyclic if and only if

Ge {Cn: Kna Kn/2,n/2}'
(b) Forn > 4, the graph G is (n—2)-path pancylic if and only if G = K,,.

(c) Forn > 5, the graph G is (n — 3)-path pancylic if and only if 6(G) 2
n—2.

Proof. Since an f-path-pancyclic graph is ¢-path-Hamiltonian, (a) and
(b) are straightforward by Theorem 2.5(a).

For (c), suppose first that G is an (n — 3)-path-pancyclic graph of order
n > 5. Consequently, G is (n — 3)-path-Hamiltonian. As observed above,
neither C,, nor K, /3 /2 is (n — 3)-path-pancyclic. Also, one can verify that
G is not (n — 3)-path-pancyclic if G satisfies (ii) in Theorem 2.5(b). Hence,
G = K, (and so §(G) =n —1) or §(G) = n — 2 by Theorem 2.5.

Note that K,, is £-path-pancyclic for 2 < £ < n — 1. For the converse,
therefore, suppose that G is a graph of order n > 5 and §(G) = n—2. Let P
be an u —v path of order n—3 in G and S = {=z,y, z} = V(G)\V(P). Since
G is (n— 3)-path-Hamiltonian by Theorem 2.5(b}, it follows that P belongs
to an n-cycle. We claim that P also belongs to an (n — 2)-cycle and an
(n—1)-cycle in G. By the fact that §(G) = n—2, each of v and v is adjacent
to at least two vertices in S. Without loss of generality, we may assume that
uz, uy, vz € E(G). Thus, (P,z,u) is an (n — 2)-cycle. Also, if zy € E(G),
then (P, z,y,u) is an (n — 1)-cycle. If zy ¢ E(G), then zz € E(G) since
8(G) = n—2. Also, at least one of the u—v paths (u,z, z,v) and (u, z,z,v).
exists in G, resulting in an (n — 1)-cycle containing P. n
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We saw for each integer n > 3 that the n-cycle C, is (n — 1)-path-

pancyclic with minimum degree 2. With the aid of Proposition 2.6, we
show that C, is an exceptional graph in this case as well.

Proposition 3.7 Let £,n be integers satisfying 2 <€ <n-—-1. IfG is
an ¢-path-pancyclic graph of order n, then (i) £ = n—1 and G = Cy, or
(ii) 8(G) = 3.

Proof. Let G be a graph of order n whose minimum degree equals 2.
Since C, is £-path-pancyclic if and only if £ = n — 1, let us now assume
that n > 4 and G # C,. By Proposition 2.6, the graph G is not £-path-
Hamiltonian for 3 < £ < n. Consequently, G is not ¢-path-pancyclic for
3<i<n-1.

Next we show that G is not 2-path-pancyclic. As in Proposition 2.6,
supposes that (v1,vs,...,vn,v;) is a Hamiltonian cycle in G, where deg vy >
3 and degv, = 2. Consider the edge e = vjv,_;. If e € E(G), then the
edge e belongs to no n-cycle in G. On the other hand, if e ¢ E(G), then
the edge vyv, belongs to no 3-cycle in G. Thus, G is not 2-path-pancyclic,
as claimed. .

The graph K4 is an ¢-path-pancyclic graph for £ = 2,3 of order 4 with
0(K4) = 3. Next, we show that the results presented in Propositions 2.6
and 3.7 are best possible for each pair £,n of integers with 3 < ¢<n -1
and n > 6. The 2-path-pancyclic graph G of Figure 5 has order 6 and
0(G) = 3. We saw that G is not 3-path-pancyclic. In fact, by Theorem 3.6,
if G is a graph of order 6 that is 3-path-pancyclic, then §(G) > 4. On the
other hand, this example can be extended to show that for each integer
n > 7, there is a graph G, of order n with §(G,,) = 3 such that G, is
2-path-pancyclic but not ¢-path-pancyclic for any ¢ € {3,4,...,n —1}. To
see this, we replace the subgraph K3 = (u,v,w,u) in the graph G = Gg by
the complete graph H = K,,_3 of order n — 3 > 4 and obtain the graph
G, of order n. Let u,v,w € V(H) such that the subgraph of G,, induced
by {u,v,w,z,y, 2} is the graph Gg. For each integer £ € {3,4,...,n — 1},
the graph G, contains an u — y path of order £ that does not lie on any
Hamiltonian cycle of G,,. Hence, G, is not ¢-path-Hamiltonian and so G,
is not £-path-pancyclic.

3.2 Complete Multipartite Graphs

We now determine the values of £ for which a complete multipartite graph
of order n is ¢-path-pancyclic. If G is a complete bipartite graph of order
n > 4 that is Hamiltonian, then G is not ¢-path-pancyclic for each integer
2 € {2,3,...,n — 2} since G contains no odd cycle. Thus, we consider
complete multipartite graphs having at least three partite sets.
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We represent an arbitrary complete t-partite graph by G = Ky, n,....n.
where n; < ng < --- < n; having partite sets V1, V2,...,V; with |V;| = n;
for 1 € i < t. Thus V; is a maximum independent set in G and so the
independence number of G is a(G) = |V;| = n;.

The Hamiltonian cycle extension number of a Hamiltonian complete
multipartite graph has been determined.

Theorem 3.8 [5] If G is a Hamiltonian complete multipartite graph of
order n, then

_[n if G is complete or G is bipartite
hee(C) = { n+1-—20(G) otherwise

where a(G) is the independence number of G.

Again, let G be a complete t-partite graph of order n, where 3 <t <
n — 1 and V; is the partite set whose cardinality equals a(G). In the
proof of Theorem 3.8 in [5], the fact that the subgraph G — V; contains an
(n — 2a(G) + 2)-path P that cannot be extended to a Hamiltonian cycle
was used. In fact, one can further observe that this P can be extended to a
path of length n— 1 in G. Thus, for each £ with n —-2a(G)+2< €< n—1,
there is an £-path in G containing P as a subpath and this £-path cannot be
extended to a Hamiltonian cycle in G. As a result, we obtain the following.

Observation 3.9 A complete t-partite graph G of order n, where t > 3,
is {-path-Hamiltonian if and only if 1 €< n+1-2a(G).

The next result will be also useful to us.

Proposition 3.10 (3] Let G be a graph of order n with6(G) > (n+£€—1)/2,
where n and ¢ are integers satisfyingn >4 and2 <€<n-1.

(a) In G, every path of order £ lies on a cycle of length ¢’ for each ¢
satisfying £+ 1 < £/ < n ezcept possibly £ = £+ 2.

(b) If u and v are distinct vertices in G, then |[N(u)NN(v)| > £ - 1.
We are now prepared to present the following.

Theorem 3.11 Let G be a complete multipartite graph of order n that is
neither bipartite nor complete. Then G is £-path-pancyclic if and only if
2<l<n+1-20(G).

Proof. If G is f-path-pancyclic, then G is ¢-path-Hamiltonian and so
£ < n+1-2a(G) by Observation 3.9. Thus, it remains to show that
G must be Z-path-pancyclic provided £ £ n + 1 — 2a(G). Suppose that
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2 <2< n+1-20(G) (£ n—3). Then §(G) = n—a(G) > n—(n+1-£)/2 =
(n + € —1)/2. By Proposition 3.10(a), therefore, it suffices to verify that
every {-path lies on an (£ + 2)-cycle in G.

Let P be an = — y path of order £. Then by Proposition 3.10(a), there
exists an (£ + 1)-cycle C that contains P as a subpath, say C = (P, 2, z).
Let S = V(G)\V(C). If N(z)NN(z)NS # O, say there exists a vertexv € S
that is adjacent to both z and 2, then an (£ + 2)-cycle (P, z,v, z) results.
Hence, we next suppose that N(z) NN (z)NS = @. By Proposition 3.10(b),
therefore, N(z) N N(z) = V(P)\{z}, which implies that zy € E(G). Now
degg_gz =€ < (n+ £ —1)/2 and so there exists a vertex w € S that
is adjacent to z. Note then that wz ¢ E(G). Since G is a complete
multipartite graph and zy € E(G) while wz ¢ E(G), it follows that wy €
E(G), which in turn implies the existence of an (£ + 2)-cycle (P,w, z,z). m

A graph G of order n is panconnected if for every two vertices v and v,
there is a u — v path of length £ for every integer £ with d(u,v) <£<n-1.
It is obvious that every panconnected graph is Hamiltonian-connected, but
not conversely. In the case of complete t-partite graphs where ¢ > 3, more
can be said. In the following theorem, Williamson [18] in 1977 showed
that (a)—(c) are equivalent. The fact that the statements (c) and (d) are
equivalent is a direct consequence of Theorem 3.11.

Theorem 3.12 Let G be a complete t-partite graph of order n wheret > 3.
The following statements are equivalent:

(a) The graph G is panconnected;

(b) The graph G is Hamiltonian-connected;
(c) a(G) < (n-1)/2.

(d) The graph G is edge-pancyclic.

3.3 Powers of Cycles

Some 40-50 years ago, there was a great deal of research activity involving
Hamiltonian properties of powers of graphs. For a connected graph G and
a positive integer r, the rth power G™ of G is the graph whose vertex set
equals V(G) and E(G") = {uv : 1 < dg(u,v) < r}. The graphs G? and G®
are called the square and cube of G, respectively.

In 1960, Sekanina [17] proved that the cube of every connected graph is
Hamiltonian-connected and, consequently, the cube of a connected graph
is Hamiltonian if its order is at least 3. In the 1960s, it was conjectured
independently by Nash-Williams {14] and Plummer (see [9, p.139)) that the
square of every 2-connected graph is Hamiltonian. Fleischner [12] verified



this conjecture in 1974 and, in the same year, Chartrand, Hobbs, Jung,
Kapoor and Nash-Williams [6] proved that the square of every 2-connected
graph is Hamiltonian-connected by using Fleischner’s result. Thus the
square of every Hamiltonian graph is Hamiltonian-connected. Williamson
[1] in 1975 showed that the cube of a connected graph is panconnected.

For a connected graph G of order n > 4 and an integer k with 1 < k <
n — 3, the graph G is k-Hamiltonian if G — S is Hamiltonian for every set
S of k vertices of G and k-Hamiltonian-connected if G — S is Hamiltonian-
connected for every set S of k vertices of G. If the order of a graph G is
at least 4, then Chartrand and Kapoor [7] showed that the cube of G is
1-Hamiltonian. Also, it was verified in [5] that G” is (2r — 3)-Hamiltonian-
connected if G is a Hamiltonian graph of order n and 2 <r < (n+1)/2.

The Hamiltonian cycle extension numbers of the powers of an n-cycle
has been determined for each integer n > 3.

Theorem 3.13 [5] For positive integers r and n > 3,

n_fn ifr=1o0rr>|n/2
hce(C'n)—{ r—1 Zf2$r$r[n/2jlrl— 1!

Next, we investigate those powers of cycles that are ¢-path-pancyclic.
For a vertex v in a graph G, the closed neighborhood of v is denoted by
Ng[v] = Ng(v) U {v}. Two vertices » and v in a connected graph G are
twins if v and v have the same neighbors in V(G) — {u,v}. If u and v are
adjacent, they are referred to as adjacent twins (or true twins); while if u
and v are nonadjacent, they are nonadjacent twins (or false twins). The
following observation is useful to us.

Observation 3.14 For positive integers r and n > 3, if C}, is not com-
plete, then C}, does not contain any true twins.

Theorem 3.15 Let k and n be integers with2 < k<n-1. If
(i) r>|3] end2<k<n-1or
(i) 2<r<|3|-1aend2<k<4r—n+1,
then C}, is £-path-pancyclic.
Proof. Let G =C}. Ifr > [%J, then G = K, and so G is ¢-path-

pancyclic for 2 < £ < n — 1. Thus, we may assume that 2 < r < |3] -
1. Since G is (2r)-regular, it follows that §(G) = 2r. We show that if
2r > (n+ € —1)/2 for some integer £ > 2 (or 2 < £ < 4r —n + 1), then
G is {-path-pancyclic. By Theorem 3.3, if §(G) = 2r > (n + £)/2 (or
2 < £ < 4r — n), then G is £-path-pancyclic. Thus, we may assume that
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2r=(n+£—1)/2and so £ = 4r —n+1 and £ and n are of opposite parity.
Now by Proposition 3.10(a), it suffices to show that every ¢-path in G lies
on an (£ + 2)-cycle. We apply an argument similar to the one used in the
proof of Theorem 3.11.

Assume, to the contrary, that there is a path P = (uj,u2,...,us) of
order £ that does not lie on any cycle of length £+ 2 in G. Since §(G) =
(n 4 £-1)/2, it follows by Proposition 3.10(a) that P lies on a cycle of
length £+ 1 in G. Let (uy,us,...,ue, w,u;) be such a cycle. If there is
v € V(G) — (V(P) U {w}) such that v is adjacent to both u; and w or v is
adjacent to both u, and w, then P lies on the cycle (uy,us, ..., ue, w,v,u;)
or (uy,ug,...,u, v, w,u;) of length £ + 2. Thus, we may assume that no
vertex in V(G) — (V(P) U {w}) is adjacent to both u; and w or to both u,
and w.

Since §(G) = (n+£—1)/2, it follows by Proposition 3.10(b) that |N (u;)N
N(w)| 2 £—1 and |[N(u¢) N N(w)| = £ — 1. This implies that N(u;) N
N(w) = {u2,us,...,ue} and N(ug) N N(w) = {u1,u,...,u¢—1}. Hence
wy; € E(G) for 1 <i < ¢, wyu; € E(G) for 2 < i < £ and upu; € E(G) for
1<i<{~1. In particular, uyue € E(G). Let X = V(G) — (V(P)U {w}).
Since §(G) = (n + € — 1)/2 and u; is adjacent to exactly £ vertices in
V(P)U {w}, it follows that u; is adjacent to at least (n — £ — 1)/2 vertices
in X. Let X’ C X such that u; is adjacent to every vertex in X’ and
let X" = X — X', Similarly, w is adjacent to the £ vertices of P and so
w is adjacent to at least (n — £ — 1)/2 vertices in X. Since there is no
vertex in X that is adjacent to both u; and w or to both u, and w and
|X| =n—£-1, it follows that (i) u, is adjacent to exactly (n — £ —1)/2
vertices in X and so |[X'| = (n — £-1)/2 = |X"|, (ii) w is not adjacent to
any vertex in X’ and so w is adjacent to every vertex in X" and (iii) u, and
u) have exactly the same neighbors in X, namely Nx(u;) = Nx(u) = X'.
Since u; and ug have the same neighbors in V(G) — X, it follows that
Ng[u1] = Nglue] = X' UV (P)U {w}. Because u u; € E(G), it follows that
u; and ug are true twins of G, which is impossible by Observation 3.14. =

3.4 On Relationships between 2-Path Pancyclic Graphs
and Hamiltonian-Connected Graphs

There are many cubic Hamiltonian-connected graphs. For example, the
prism (the Cartesian product of a cycle and P;) of order n = 2 (mod 4)
and the Mdbius ladder (an even cycle with the two in each pair of antipodal
vertices joined) of order n = 0 (mod 4) are graphs that are 3-regular and
Hamiltonian-connected. However, there is only one cubic graph that is
2-path-pancyclic.
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Proposition 3.16 A 3-regular graph G is 2-path-pancyclic if and only if
G = K4.

Proof. Let G be a 3-regular 2-path-pancyclic graph. It suffices to show
that G = K. Let uv € E(G). Then in order for this edge uv to belong to
a triangle, N(u) N N(v) # 0.

If |[N(u) N N(v)| = 2, then either G = K, or uv belongs to no 4-cycle,
depending on whether the two vertices in N(u) N N(v) are adjacent or not.
Thus, suppose next that N(u) = {v,u;,w} and N(v) = {u,v;,w}. Since
degw = 3, it follows that w is adjacent to at most one of u; and v, say
uyw ¢ E(G). Then N(u) N N(u1) = § and so the edge uu; belongs to
no triangle. Consequently, G is not 2-path-pancyclic if |N(u) N N(v)| = 1.
This completes the proof. .

Note that, for each integer n > 5, the graph C? is 4-regular and 2-path-
pancyclic. Also, the wheels (the join of a cycle and K;) of order n > 4
show that there are many graphs that are 2-path-pancyclic with minimum
degree 3.

A graph G is called vertez-traceable if every vertex is the initial vertex
of a Hamiltonian path in G.

Proposition 3.17 The join of a graph G and K, is 2-path-pancyclic if
and only if (1) G is vertez-traceable and (ii) every edge in G belongs to a
Hamiltonian path in G.

Proof. Let H = GV K, be the graph obtained from a graph G of order
n > 2 by adding a new vertex z and joining z to each vertex in G. Observe
that the condition (i) is necessary in order for each edge incident with x to
lie on a Hamiltonian cycle in H. Similarly, the condition (ii) is necessary in
order for each edge in G to lie on a Hamiltonian cycle in H. Therefore, it
remains to verify that the conditions (i) and (ii) are sufficient for H to be
2-path-pancyclic. Suppose that G satisfies the conditions (i) and (ii) and
let e € E(H).

Case 1. e ¢ E(G). Then e = vz for some v € V(G). By (i), let
(v1,v2,...,v,) be a Hamiltonian path in G with v =v;. Thenfor 3 < ¢ <
n + 1, there is an ¢-cycle {(z,v,,vs,...,v¢—1,z) in H containing the edge e.

Case 2. e € E(G). Then by (ii), let (v1,v2,...,v,) be a Hamiltonian
path which e belongs to, say e = v;vi4+1 for some t (1 <t < n—1). Then
for each £ € {3,4,...,n + 1}, the cycle

C = (I, Ve—e+3yVt—€44s- - - 1'Ut+11x) if 3 < ¢ <t+ 2
(z,v1,v2,...,0¢-1,T) ift+3<f<n+1

is an ¢-cycle in H containing the edge e. [
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Observe that, the conditions (i) and (ii) on a graph G in Proposition 3.17
are necessary and sufficient for the graph G v K; to be Hamiltonian-
connected. Hence, for example, the join of the Petersen graph and an
isolated vertex is Hamiltonian-connected as well as 2-path-pancyclic. Also,
a Hamiltonian graph satisfies the conditions (i) and (ii), which provides
with us the following corollary.

Corollary 3.18 IfG is Hamiltonian, then GVK, is Hamiltonian-connected
and 2-path-pancyclic.

Corollary 3.19 If G is a graph of order n with §(G) > (n + 1)/2 and
A(G) =n —1, then G is Hamiltonian-connected and 2-path-pancyclic.

As we have already seen, there are many graphs that are Hamiltonian-
connected but not 2-path-pancyclic. The Mé6bus ladder of order n = 0
(mod 4) and graphs of the form G [0 H, where G is a Hamiltonian-connected
graph of order at least 3 and H is a nontrivial traceable graph, are examples
of such graphs.

Observation 3.20 Let G be a graph of order n.

(a) For 3 < n <5, the graph G is 2-path-pancyclic if and only if G is
Hamiltonian-connected.

(b) Forn =6, the graph G is 2-path-pancyclic if and only if G is Hamiltonian-
connected except for the three graphs Gy, = Cs, Go = P, and G3 =
2P;. (These graphs are shown in Figure 6. Note that each edge in
bold belongs to no triangle.)

-

G Gs G3

Figure 6: The three Hamiltonian-connected graphs
of order 6 that are not 2-path-pancyclic

For integers ny,ny > 3, let G = (K, + K,,) V2K;. Then G is a graph
of order ny + ng + 2 (> 8) that is 2-path-pancyclic. However, G is not
3-connected and so cannot be Hamiltonian-connected. Hence, there are
graphs that are 2-path-pancyclic but not Hamiltonian-connected as well as
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there are graphs that are Hamiltonian-connected but not 2-path-pancyclic.
Note that this graph G is not 3-path-pancyclic. We conclude this section
with the following two questions.

Problem 3.21 If G is a 2-path-pancyclic graph, then under what condi-
tions is G Hamiltonian-connected?

Problem 3.22 If G is a £-path-pancyclic graph for some integer k > 3,
is G also Hamiltonian-connected?
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