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Abstract

A red-blue coloring of a graph G is an edge coloring of
G in which every edge of G is colored red or blue. Let F be
a connected graph of size 2 or more with a red-blue coloring,
at least one edge of each color, where some blue edge of F is
designated as the root of F. Such an edge-colored graph F
is called a color frame. An F-coloring of a graph G is a red-
blue coloring of G in which every blue edge of G is the root
edge of a copy of F in G. The F-chromatic index xz(G) of
G is the minimum number of red edges in an F-coloring of G.
A minimal F-coloring of G is an F-coloring with the property
that if any red edge of G is re-colored blue, then the resulting
red-blue coloring of G is not an F-coloring of G. The maximum
number of red edges in a minimal F-coloring of G is the upper
F-chromatic index x%(G) of G. For integers k and m with
1<k <mandm> 3, let Sk,m be the color frame of the star
K},m of size m such that Sj. , has exactly k red edges and m—k
blue edges.

For a positive integer k, a set X of edges of a graph G is
a Ag-set if A(G[X]) = k, where G[X] is the subgraph of G
induced by X. The maximum size of a Ag-set in G is referred
to as the k-matching number of G and is denoted by a(G).
A Ag-set X is maximal if X U {e} is not a A-set for every
e € E(G) — X. The minimum size of a maximal Ag-set of G
is the lower k-matching number of G and is denoted by o}/ (G).
In this paper, we consider Sk, mn-colorings of a graph and study
relations between Sk ,,-colorings and Ag-sets in graphs. Bounds
are established for the Sk ,.-chromatic indexes Xs,. .. (G) and
X5, ..(G) of a graph G in terms of the k-matching numbers
01, (G) and of{(G) of the graph. Other results and questions are
also presented.
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1 Introduction

An area of graph theory that has received increased attention during recent
decades is that of domination. In 1999 a new way of looking at domination
was introduced by Chartrand, Haynes, Henning and Zhang [2] that encom-
passed several of the best known domination parameters in the literature.
This new view of domination was based on a concept introduced by Rashidi
[19] in 1994. A graph G whose vertex set V(G) is partitioned is a stratified
graph. If V(G) is partitioned into k subsets, then G is k-stratified. In par-
ticular, the vertex set of a 2-stratified graph is partitioned into two subsets.
Typically, the vertices of one subset in a 2-stratified graph are considered
to be colored red and those in the other subset are colored blue. A red-blue
coloring of a graph G is an assignment of colors to the vertices of G, where
each vertex is colored either red or blue. In a red-blue coloring, all vertices
of G may be colored the same. A red-blue coloring in which at least one
vertex is colored red and at least one vertex is colored blue thereby pro-
duces a 2-stratification of G. Let F be a 2-stratified graph in which some
blue vertex p is designated as the root of F.. The graph F is then said to
be rooted at p. Since F is 2-stratified, F contains at least two vertices, at
least one of each color. There may be blue vertices in F' in addition to the
root. By an F'-coloring of a graph G, we mean a red-blue coloring of G
such that for every blue vertex u of G, there is a copy of F in G with p at
u. Therefore, every blue vertex u of G belongs to a copy F’ of F rooted at
u. A red vertex v in G is said to F-dominate a vertex u if u = v or there
exists a copy F’ of F rooted at u and containing the red vertex v. The
set S of red vertices in a red-blue coloring of G is an F-dominating set of
G if every vertex of G is F-dominated by some vertex of S, that is, this
red-blue coloring of G is an F-coloring. The minimum number of red ver-
tices in an F-dominating set is called the F-domination number yr(G) of
G. An F-dominating set with yp(G) vertices is a minimum F-dominating
set. The F-domination number of every graph G is defined since V(G) is
an F-dominating set. This concept provides a generalization of domina-
tion and has been studied in many articles (see [1, 6, 7] and [8] - [12] for
example).

An edge version of this concept was introduced by Chartrand in 2011
(13]. In this context, we refer to a red-blue coloring of a nonempty graph
G as an edge coloring of G in which every edge is colored red or blue. Let
F be a connected graph of size 2 or more with a red-blue coloring, at least
one edge of each color. One of the blue edges of F' is designated as the root
edge of F. The underlying graph of F is the graph H obtained by removing
the colors assigned to the edges of F'. In this case, F is called a color frame
of H.
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For a color frame F, an F-coloring of a graph G is a red-blue coloring
of G in which every blue edge of G is the root edge of a copy of F in G.
If G contains no subgraph isomorphic to F, then the only F-coloring of G
is that in which every edge of G is red. The F-chromatic indezx x(G) of
G is the minimum number of red edges in an F-coloring of G. Since the
edge coloring of G that assigns red to every edge is an F-coloring of G,
the number x’7(G) exists for every color frame F and every graph G. An
F-coloring of G having exactly x=(G) red edges is called a minimum F-
coloring of G. For a given color frame F, a minimal F-coloring of a graph
G is an F-coloring with the property that if any red edge of G is re-colored
blue, then the resulting red-blue coloring of G is not an F-coloring of G.
Obviously, every minimum F-coloring is minimal but the converse is not
true in general (as we will soon see). The maximum number of red edges
in a minimal F-coloring of G is the upper F-chromatic index x%(G) of G.
Since every minimum F'-coloring of G is minimal, x%(G) < x%(G). These
concepts have been studied in (3, 13, 14, 15].

Among the concepts that are fundamental in graph theory is that of
matchings. Lovész and Plummer have written a book [18] devoted to the
theory of matchings. A set of edges in a graph G is independent if no two
edges in the set are adjacent in G. The edges in an independent set of
edges of G form a matching in G. A matching of maximum size in G is
a maztmum matching. The matching number o/(G) of G is the number of
edges in a2 maximum matching of G. The number o'(G) is also referred to
as the edge independence number of G. A matching M in a graph G is a
mazimal matching of G if M is not a proper subset of any other matching
in G. While every maximum matching is maximal, a maximal matching
need not be a maximum matching. The minimum number of edges in
a maximal matching of G is called the lower matching number (or lower
edge independence number) of G and is denoted by o”’(G). Necessarily,
o"(G) < &/(G) for every graph G.

The concepts of matching number and lower matching number have
been generalized in [15] as follows. For a positive integer k, a set X of
edges of a graph G is a Ag-set if A(G[X]) = k, where G|X] is the subgraph
of G induced by X. The maximum size of a Ax-set in G is referred to
as the Ag-number or k-matching number of G and is denoted by o} (G).
In particular, o) (G) = o/(G) is the matching number of G. A mazimum
Ag-set in G is a Ag-set of size a},(G). Thus the maximum A;-set of G is
a maximum matching of G. A Ag-set is mazimal if A(G[X U {e}]) > k for
every edge e € E(G) — X. The minimum size of a maximal Ax-set of G is
referred to as the lower Ag-number or lower k-matching number of G and
is denoted by o/(G). In particular, of (G) = o'(G) is the lower matching
number of G. Since every maximum Ag-set is maximal, off (G) < o} (G)
for every graph G. An edge-induced subgraph H of a graph G is called
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Y] and Y; and shown in Figure 2. The color frame Y; of a claw has exactly
one red edge while Y has exactly two red edges. In Y}, there are therefore
two blue edges and in Y, only one blue edge. By symmetry, we can choose
either of the two blue edges in Y) as the root edge, while in Y2, the only
blue edge is the root edge of Ys.

Ny NA
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Figure 2: The two color frames of the claw K 3

In general, for integers k and m with 1 < k < m and m > 3, let Sk.m
denote the color frame of the star K, of size m having exactly k red edges
and m — k blue edges, one of which is the root edge of S .. In particular,
if m = 3, then Sk, is one of the two color frames Y; and Y2 of a claw K 3
shown in Figure 2. Hence the star K ,, has m — 1 color frames for each
integer m > 3. In this paper, we investigate the relationship among the
four parameters x5, (G), x4, .(G), @(G) and of{(G) of a graph G where
1 <k <mand m > 3 and so extend the results established in [3, 15} on
XF(G) and x'=(G) for each color frame F € {Y},Y2}.

It will be convenient to introduce some additional definitions and nota-
tion. For an F-coloring ¢ of a graph G, let E. , denote the set of red edges
of G and E.; the set of blue edges of G. (We also use E, and Ej for E.,
and E.p, respectively, when the coloring ¢ under consideration is clear.)
Thus {E.r, E} is a partition of the edge set E(G) of G when E.; # 0.
Furthermore, let G, = G[E. ;] denote the red subgraph induced by E.,
and Gcp = G[E,,3] the blue subgraph induced by E. . (Similarly, we also
use Gy and G, for G, and G4, respectively, when the coloring ¢ under
consideration is clear.) Thus {G¢,,G¢s} is a decomposition of G. If G is
a disconnected graph with components Gy, G, ..., Gp where p > 2, then
XF(G) = XF(G1) + Xp(G2) + --- + x=(Gp). Thus, it suffices to consider
only nontrivial connected graphs. We refer to the books [4, 5] for graph
theory notation and terminology not described in this paper.

2 Comparing xg, (G) with of(G)

For integers k and m with 1 < k < m and m > 3, the color frame Sk,m of
K1,m has exactly k red edges and m — k blue edges, one of which is the root
edge of Sk,m. If G is a connected graph with maximum degree A(G) < m,
then the only Sk, m-coloring of G is the one that assigns the color red to
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every edge of G and so x5, (G) is the size of G. On the other hand,
if G contains a vertex u with degu > m and uvy,uvs,...,uv, € E(G),
then the red-blue coloring that assigns the color blue to the edges uv; for
1 < i < m -k and the color red to all other edges is an S m-coloring of G.
This leads to the following observation.

Observation 2.1 Let k and m be integers with 1 < k < m and m > 3.
Then x5, . (G) = |E(G)| if and only if A(G) < m for every connected
graph G.

First, we show that x5, (G) is bounded above by o} (G) for every
connected graph G having minimum degree 6(G) > m.

Theorem 2.2 Let k and m be integers with1 <k<mandm>3. IfG
is a connected graph with 6(G) > m, then

X5em (@) < K(G). (1)

Proof. Let F = Sk and X a maximal Ag-set of G with | X| = of{(G).
Define the red-blue coloring ¢ of G that assigns red to each edge in X and
blue to the remaining edges of G. Let e = uv be a blue edge of G. Since X
is maximal, A(G[X U{e}]) > k and so either u or v is incident with exactly
k red edges, say the former. Since degg u > m, it follows that u is incident
with at least m — k blue edges. Hence e belongs to a copy of F and so ¢ is
an F-coloring. Therefore, x»(G) < {X| = of(G).

The condition “6(G) > m” in Theorem 2.2 is necessary. For example,
let G be an (m — 1)-regular bipartite graph of order n > 4 where m > 3.
By Observation 2.1 x5, _(G) = |E(G)| = (m— 1)n/2. By Kénig’s theorem
[17], the graph G is 1-factorable. Hence, for each integer k with 1 < k <
m — 2, it follows that o (G) = kn/2 and so o(G) < kn/2. Therefore,
X5 (G) > a(G).

The following is a consequence of the proof of Theorem 2.2.

Corollary 2.3 Let k and m be integers with 1 < k < m and m > 3. If
X is a marimal Ag-set of a connected graph G with 6(G) > m, then the
red-blue coloring of G that assigns red to each edge in X and blue to the
remaining edges of G is an Sk m-coloring of G.

The converse of Corollary 2.3 is not true in general. For example, Fig-
ure 3 shows a (minimal) Y;-coloring c of a graph, where Y} is the color frame
of a claw with exactly one red edge, but E., is not even a A;-subgraph (a
matching) of the graph.
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Figure 3: A Yi-coloring of a graph

On the other hand, it is possible that x5, (G) = of/(G) even when
0(G) < m. In order to show this, we now describe a class of connected
graphs. For a graph H and a positive integer p, the p-corona cor,(H) of H
is that graph obtained from H by adding p pendant edges at each vertex
of H. In particular, the graph cory(H) = cor(H) is the corona of H. If H
has order n and size m, then the order of cor,(H) is (p + 1)n and the size
of corp(H) is pn + m.

Theorem 2.4 Let k and m be integers with1 <k <m and m>3. IfG
is the p-corona of an n-cycle where p > m —2 and n > 3, then

[n/2] ifk=1
7 G — 1" G =

Xsi.m(G) = k() { (k—1)n ifk>2
Proof. Let Fy = Sk,m where1 <k <m and m > 3 and let G = corp(Cy)
where C, = (v1,V2,...,Vn,Un41 = v1) for some integers p > m — 2 and
n >3 Thenl <k <p+1. Foreachiwithl <i<mn,let X; =
{ui,1vi,ui2vi,. .., ui pv;} be the set of the p pendant edges of G at v;.

There are two cases, according to whether k =1 or k > 2.
Case 1. k = 1. For each even integer n > 4, define a red-blue coloring

¢ of G with

Ecr ={viviz1: iisodd, 1 <i<n-1}; (2)

while for each odd integer n > 3, define a red-blue coloring ¢ of G with
Eer = {viviy1: tisodd, 1 <i<n—2}U {un,1vn} (3)

Since c is an Fj-coloring of G in each case, XF, (G) < |Ecr| = [n/2].

Next, we show that x= (G) > [n/2]. Assume, to the contrary, that G
has an Fj-coloring c* using at most [n/2] — 1 red edges. Thus the size of
the red subgraph G} induced by c* is at most [n/2] — 1. Since G} contains
no isolated vertices and n/2 > [n/2] — 1, the order of G is at most n — 1
and so there is at least one vertex v belonging to C,, such that v ¢ V(G?}),
say v = v;. However then, the blue edge u; ;v; does not belong to any copy
of F1, which is impossible. Thus x, (G) > [n/2] and so X}, (G) = [n/2].
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Case 2. k > 2. Thus 2 < k < p+ 1. For each integer n > 3, define a
red-blue coloring ¢* of G with

B, = E(Cn) ifk=2 8)
e =\ E(Co)U{uiui:1<i<nl<j<k—2} ifk23

Since c* is an Fi-coloring of G, it follows that xF, (G) < |Ee,r| = (k—1)n.
Next, we show that x, (G) > (k — 1)n. Let c be a minimum Fj-coloring
of G. First, suppose that there is some j with 1 < j < n such that
X; U {vjvj+1} contains at most k — 2 red edges. If X; contains a blue
edge f, then f does not belong to any copy of Fi and so each edge in
X; must be red. Since |X;| = p > k — 1, this is impossible. Thus, each
set X; U {vivi4+1} contains at least k — 1 red edges for 1 < ¢ < n and so
XF, (G) = |Ec,r| 2 (k — 1)n. Therefore, xp, (G) = (k- 1)n.

It remains to determine a}(G). Since af(G) = o/'(G) = [n/2], we may
assume that & > 2. Since the set E.. , described in (4) is a maximal Ag-set
of size (k— 1)n, it follows that o}/ (G) < X, (G) = (k—1)n. Next, we show
that o/ (G) > (k—1)n. Assume, to the contrary, that o/(G) < (k—1)n—1
and let X be a maximal Ag-set of G with | X| = of/(G). Let H = G[X]
and so A(H) = k. Suppose first that there is a vertex v € V(C,) such that
v ¢ V(H). Let e be a pendant edge of G that is incident with v. Then
A(G[X U{e}]) = A(H) = k, which contradicts the fact that X is a maximal
Aj-set of G. Hence V(C,) C V(H).

First, suppose that degyv = k for each v € V(C,). Because each
vertex of C, is incident in H with at most two edges of C,, it follows that
|X| > n+ (k- 2)n = (k — 1)n, which is a contradiction. Hence there is
v € V(C,,) such that degy v < k — 1. We consider two cases.

Case 1. 2 < k < p. Let v € V(C,) such that degy v < k — 1. Then
degy v < p—1 and so there is a pendant edge f ¢ X that is incident with v.
However then, A(G[X U {f}]) = A(H) = k, which is a contradiction.

Case 2. k = p+ 1. If there is v € V(C,) such that degy v < k — 1 and
there is a pendant edge f ¢ X that is incident with v, then, as in Case 1,
A(GIX U {f}]) = A(H) = k, which is a contradiction. This implies for
each v € V(C,) that degy v > k — 1 and all pendant edges incident with v
belong to X. However then, |X| > pn = (k — 1)n, which is impossible.

Therefore, ol (G) > (k — 1)n and so of/(G) = (k — 1)n for k > 2. "

Next, we show that the equality in (1) holds for all connected graphs
when k=m — 1.

Theorem 2.5 For an integer m > 3, if G is a connected graph with
6(G) 2 m, then x5, _, (G) = oim_1(G)-
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Proof. Let F = S,,_1,m. By Theorem 2.2, it remains to show that
Xr(G) 2 aj,_1(G). Among all minimum F-colorings of G, let ¢ be one
such that the sum of the degrees of the vertices of degree m or more in the
resulting red subgraph is minimum. Let G, = G[E,, ] be the red subgraph
of G induced by E.,. First, we show that E., is a A,,—1-set. Since c is
an F-coloring of G, it follows that A(G.,;) > m — 1. We now show that

AG.r)=m-—1.
Assume, to the contrary, that the graph G., contains a vertex v for
which degc;c'r v = £ > m, where vv1,vvy,...,vv, are the edges in G.,»

incident with v. Since ¢ is a minimum F-coloring, the red-blue coloring
¢* of G obtained from ¢ by changing the color of vv, to blue is not an
F-coloring of G. First, we claim that v, is incident with at least one blue
edge; for otherwise, assume that v, is incident only with red edges. Since
3(G) = m, the blue edge vv; in the red-blue coloring ¢* belongs to a copy
of F, which implies that c* is an F-coloring of G, a contradiction. Thus v,
is incident with at least one blue edge, as claimed. Also, since ¢* is not an
F-coloring, there is a blue edge e incident with v, such that e belongs to a
copy F that contains the red edge vv, but e does not belong to any other
copy of F. Hence there are edges uv; and vew; (1 < i < m — 2), where

v ¢ {u,w1,ws,...,Wn_2}, such that (1) uv, is blue and u is incident with
at most m — 2 red edges in G., and (2) vew; isred for 1 <i<m -2 and
degg_ . ve = m— 1. This is illustrated in Figure 4 (where uu;, uu,,...,uu,

are red edges in G, p < m — 2 and it is possible that p = 0). The
red-blue coloring ¢’ obtained from ¢ by interchanging the colors of vv; and
veu is also a minimum F-coloring of G. In the red subgraph Gy, of G
induced by E ., it follows that degcc, Jve=m—1, dech, ,usm-—1
and degg, v=~£¢-12>m—1. Thus the number of vertices of degree m
or more in G, is at most the number of such vertices in Ge,,. Since the
sum of degrees of the vertices of degree m or more in G . is at least one
less than that of G. ., this contradicts the defining property of ¢. Thus,
A(G.r)=m—1and so E., is a Ap,—1-set.

n vy w1 we Uy
<. ug
)\é '. me_z ’
—O Up
v Ve u

blue

Figure 4: A step in the proof of Theorem 2.5

Next, we show that E. . is a maximal A,,_;-set. Let e € E(G) — E,,,.
Since c is an F-coloring, the blue edge e belongs to copy of F in G and so e
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is adjacent with m —1 red edges in E, . This implies that A(G[X U{e}]) >
m~1and so E, , is maximal. Hence xz(G) = |E,,r| > oiy,_1(G). Therefore,
xp(G) = ap_,(G). .

As a consequence of Theorem 2.5, if G is a connected graph with 6(G) >
3 and Y> is the color frame of the claw K, 3 having exactly two red edges,
then xy, (G) = a3(G), which was verified in [3]. There are reasons to make
the following conjecture.

Conjecture 2.6 Let k and m be integers withl1 <k <m andm > 3. If
G is a connected graph with §(G) > m, then x§, (G) = o(G).

3 Comparing x5, (G) with 0;(G)

First, we show that x§, _(G) is bounded below by ¢} (G) where1 <k <m
and m > 3. '

Theorem 3.1 Let k and m be integers with1 <k <m and m>3. IfG
is a connected graph with 6(G) > m, then

X4, .(G) = e (C). (5)

Proof. Let F' = Sk, and X a maximum Ag-set of G. Then [ X| = o4 (G).
Since X is maximum, X is maximal. By Corollary 2.3, the red-blue coloring
¢ of G that assigns red to each edge in X and blue to the remaining edges
of G is an F-coloring of G. It remains to show that ¢ is minimal. Assume,
to the contrary, that ¢ is not minimal. Then there is a proper subset X’ of
X such that the red-blue coloring ¢’ with E . = X' is an F-coloring of G.
Let f = zy € X — X’ be a blue edge in ¢’. Since f belongs to a copy of
F, it follows that either z or y is incident with at least k red edges in X’.
However then, A(G[X’]) > k and so A(G[X]) > k, which is impossible.
Therefore, ¢ is a minimal F-coloring and so x§, _(G) 2 |X| = a(G).

The discussion appeared after Theorem 2.2 also shows that the condition
“6(G) 2 m” in Theorem 3.1 is necessary. The following is a consequence
of the proof of Theorem 3.1.

Corollary 3.2 Let k and m be integers with 1 < k < m end m > 3. If
X is a mazimal A-set of a connected graph G with §(G) > m, then the
red-blue coloring of G that assigns red to each edge in X and blue to the
remaining edges of G is a minimal Sk m-coloring of G.

The converse of Corollary 3.2 is not true in general as the graph Fig-
ure 3 shows, where the Y;-coloring is minimal but E., is not even a 4A;-
subgraph (or a matching) of the graph. Next, we show that it is possible
for x§, ,.(G) = },(G) even when §(G) < m.
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Theorem 3.3 Let k and m be integers withl1 <k <m andm > 3. If G
is the p-corona of an n-cycle where p > m—2 and n > 3, then

Y Iy _ | kn ifl1<k<p
X5, (G) = a4 (G) = { kn—[n/2] #k=p+1.

Proof. Let Fy = S, where1 <k <m and m > 3 and let G = cor,(Cy)
where C, = (v1,v2,...,Vn,Unt1 = v1) for some integers p > m — 2 and
n > 3. For each i with 1 <i < n, let X; = {u;1v;,ui 20, ..., pv;} be the
set of the p pendant edges of G at v;. Sincek<m—1andp>m—2, it
follows that 1 < k < p+ 1. We consider two cases, according to whether
1<k<pork=p+1

Case 1. 1 < k < p. Since the red-blue coloring c* of G with
Eep ={uijui: 1<i<n,1<j<k}

is a minimal Fy-coloring of G, it follows that X, (G) > |Ec-,r| = kn. To
show that X%, (G) < kn, we consider two subcases, according to whether
k=1lork>2.

Subcase 1.1. k = 1. Among all minimal Fj-colorings of G having exactly
X7, (G) red edges, let ¢ be one such that the red subgraph G, induced by
¢ has the largest edge independence number. We claim that E., is an
independent set of edges in G. It suffices to show that each vertex of Cj,
is incident with exactly one red edge in G,. First, suppose that there is
v; € V(Cy) where 1 < i < n such that v; is incident with no red edge of
Gr. Then any blue edge in X; does not belong to any copy of Fy, which is
impossible. Next, suppose that there is v; € V(C,,) where 1 < j < n such
that v; is incident with at least two red edges of G, say j = 1. If there
is an edge e € X such that e is red, then the red-blue coloring obtained
from ¢ by changing the color of e to blue is a Fj-coloring of G with fewer
red edges, which is a contradiction. Thus v, is incident with exactly two
red edges, namely, v,v; and vjv,. If either v, or v, is incident with two
or more red edges, say v, is incident with two or more red edges, then the
red-blue coloring obtained from ¢ by changing the color of v;v, to blue is
a Fi-coloring of G with fewer red edges, which is again a contradiction.
Thus v;v; is the only red edge incident with v5. Then the coloring ¢’ of G
obtained from ¢ by exchanging the colors of vyv; and ug,1v2 is a minimal
Fi-colorings of G having exactly x, (G) red edges. However then, the red
subgraph induced by ¢’ has a larger edge independence number than that
of Gy, which is impossible. Therefore, every vertex of C, is incident with
exactly one red edge in G,. This implies that E, , is an independent set of
edges in G and so X, (G) = |E,r| < &/(G) = n. Therefore, x4, (G) = n.
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Subcase 1.2. k > 2. Let ¢ be a minimal Fk-colorings of G having
exactly xf, (G) red edges and let G, be the red subgraph induced by c.
We claim that degg_v = k for every vertex v € V(C,); for otherwise, we
may assume, without loss of generality, that degg_v1 # k. First, suppose
that dege_ v < k — 1. Since k < p, there is a blue edge in X and so this
blue edge does not belong to any copy of Fi in G, a contradiction. Next,
suppose that degg_v) > k+1. Since k+1 > 3, it follows that X; contains
at least one red edge, say u;,1v; is red. However then, the red-blue coloring
obtained from ¢ by changing the color of u; ;v; to blue is an Fg-coloring of
G with fewer red edges, a contradiction. Hence, as claimed, degg_v = k
for every vertex v € V(C,). By the structure of G, the largest possible size
of G is kn and so x}, (G) < kn. Therefore, x}, (G) = kn.

Case2. k=p+1. Thusk=m —1, p=m — 2 and the order of G is
kn. For an even integer n > 4, define a red-blue coloring ¢ of G with

E.,= {v,-v,-+1 :iisodd, 1 <i<n-— l}U{u,-,jv,- :11<€i<n,1<35< k—l}

and so |E. | = (k—1)n+n/2 = kn—n/2. For an odd integer n > 3, define
a red-blue coloring ¢ of G with

Eer = {vivigr: iisodd, 1 <i<n}U{uv:1<5<k—-2}
Ufui v :2<i<n,1<j<k—1}

Then |E, .| = (k—1)(n—1)+(k—2)+(n+1)/2 = (k—1)n+(n—1)/2. Sincec
is a minimal Fi-coloring, x%, (G) > |E.r| = (k—1)n+|n/2| = kn—[n/2].
Next, we show that xf, (G) < kn — [n/2]. Assume, to the contrary,
that
Xp(G)=t>kn—[n/2]+1 (6)

Let ¢* be a minimal Fj-coloring of G having exactly t red edges and let G,
be the red subgraph induced by ¢*. Thus the size of G, is t. First, suppose
that G, contains a vertex v such that degg_v =deggv=k+1,sayv=1u
and vyw; isted for 1 < i < k+1. Since k =p+1 > 2, it follows that
k +1 > 3. Thus some edge vjw; (1 <4 < k+1) is a pendant edge of G,
say vywy = viuy,; € X1. Then the red-blue coloring obtained from c* by
changing the color of vju;,; to blue is an Fi-coloring, which is impossible.
Thus degg_ v < k for every vertex v of G. Since (i) the order n, of G is at
most the order of G, namely n, < (p+1)n = kn and (ii) at most n vertices
in G, have degree k and the remaining vertices of G, are end-vertices, it
follows that the size t of G, is at most 1/2[kn + (k — 1)n] = kn — n/2.
By (6), kn — [n/2] +1 < t < kn —n/2 or (n + 2)/2 < [n/2], which is
impossible. Therefore, x7, (G) = kn — [n/2].

It remains to determine o, (G). For 1 < k < p, the set E- , defined
in Case 1 is a Ag-set of size kn, it follows that a}(G) > |Ec- »| = kn.
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For k = p + 1, the set E,, defined in Case 2 is a Ax-set of size kn —
[n/2]. Tt follows that of(G) > |Ecr| = kn — [n/2]. Next, we show
that o4 (G) < X7, (G). Let X be a Ag-set with [X| = a},(G) and let
H = G[X]. Since X is a maximum Aj-set, it follows that H contains
every vertex of C, and A(H) = degy v for some v € V(Cy,,). Furthermore,
every edge in H is incident with some vertex v of C,,. If 1 < k < p,
then |X| < 3° cyc.)degyv < kn = x% (G). Thus, we may assume
that k = p+ 1. In this case, we show that |X| < kn — [n/2]. (Here,
we apply an argument similar to the one used in Case 2 to show that
X7, (G) < kn — [n/2].) Assume, to the contrary, that

1X| =t > kn — [n/2] + 1. )

Since (i) degy v < k for every vertex v of H, (ii) the order ny of H is
at most the order of G, namely ny < (p+ 1)n = kn and (iii) at most n
vertices in H have degree k and the remaining vertices of H are end-vertices,
it follows that the size ¢t of H is at most 1/2[kn + (k — 1)n] = kn — n/2.
By (7), kn — [n/2] +1 <t < kn —n/2 or (n +2)/2 < [n/2], which is
impossible. Hence a},(G) = |X| < kn — [n/2] when k = p+ 1. Therefore,
(G) £ xF, (G) and so o4 (G) = xF, (G).

Although it was conjectured (in Conjecture 2.6) that if G is a con-
nected graph with 6(G) = m, then x5, (G) = ¢ (G), this is not the case
for xs,..(G) and }(G). In fact, the value of x§, (G) - ak(G) can be
arbltrarlly large. For k = 1,2, it was shown in [15] that x%(G) — ai(G)
can be arbitrarily large if F' is a color frame of the claw K; 3. This is also
possible for k > 3. For example, the value of x§ . (G)—aj,_;(G) can be
arbitrarily large for a connected graph G, as we " show next. For integers m
and t where 3 < m < ¢, let H and H’ be two copy of the complete bipartite
graph Kpm_1,¢, where the partite sets of H are U = {u,u2,...,%m—-1} and
V = {v1,vs,...,v} and the partite sets of H' are U’ = {ul,ug,... ,ub 1}
and V' = {v},v3,...,v;}. The graph H,,_, . is obtained from H and H’
by adding the t new vertices wy,ws,...,w; and joining each w; to v; € V
and to v; € V' for i = 1,2,...,t. The order of Hy,—1 . is 3t + 2(m —1).

Define a red-blue coloring ¢ of Hy—1,; with E, . = E(H)UE(H’). Since
cis aminimal S,,_ m-coloring of Hy,—1 4, it follows that st"m-l,m (Hm=-1,) 2
|Ee,r| = 2(m — 1)t. Next, we show that o, _;(Hm-1,) < 2t + 2(m — 1)2.
Let X be a maximum A,,_;-set of Hym_j ¢ and let F = H,,_1[X] denote
the subgraph of Hy_1,: induced by X. Since (i) the size of the subgraph
FIX -(E(H)U E(H’))] of F induced by X — (E(H)U E(H')) is at most
2t and (u) the set X is a A,,_;-set, it follows that the size of F' is at most
2t + 2(m —1)2. This implies that af,_;(Hm—1,) = |X| < 2t 4+ 2(m — 1)2.
Thus x% (Hm-1,t) — 0 1(Hm-1t) = 2(m — 1)t - 2t — 2(m — 1)2.

m=1,mn

Now let t = m + @ where a is an arbitrarily large positive integer. Then
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XSy (Hm=12t) — @1 (Hm-1,t) 2 2a(m — 2) — 2 and so the value of
XSy (Hm=1,t) — ¢p_1 (Hm—1,t) can be arbitrarily large.

4 Intermediate Value Problems

For integers k and m with 1 < k < m and m > 3, we saw that x5, (G) <
X5, (G) and aj(G) < &} (G) for every graph G. It was shown in (16] that if
G is a graph and a is an integer with of(G) = o”(G) £ a < a/(G) = a}(G),
then G contains a maximal matching of size . This brings up the following
question.

Problem 4.1 For integers k and m with 1 <k <m and m > 3, let Sk,m
be the color frame of the star Ki n,.

(a) If G is a connected graph of order at least 4 and x is an integer with
Xs, .(G) £ x £ X5, ..(G), is there a minimal Sk,m-coloring of G
using ezactly x red edges?

(b) If G is a connected graph of order at least 4 and a is an integer with
a}(G) € a £ a)(G), is there a marimal A-set of G having ezactly
o edges?

We show that if G is the p-corona of an n-cycle where p > m — 2 and
n > 3, then Problem 4.1 has an affirmative answer.

Theorem 4.2 Let k and m be integers with 1 < k < m and m > 3 and
let G be the p-corona of an n-cycle where p > m —2 and n > 3.

(@) For each integer x with x5, (G) < x <Xx§, . (G), there is a minimal
Si,m-coloring of G using ezactly x red edges.

(b) For each integer a with a){(G) < a < o} (G), there is a marimal
Ay-set of G having exactly a edges.

Proof. We first verify (a). Let x be an integer with x5, (G) < x <
X5, ..(G). We show that there is a minimal Fi-coloring of G using exactly
x red edges. By Theorems 2.4 and 3.3. we may assume that x # xgk.m (G)
and x # x§, . (G). We consider three cases, according to whether £ =1,
2<k<pork=p+1.

Case 1. k = 1. Then x5, (G) = [n/2] and X5, (G) = n. Let
x = [n/2] +i with 1 < i < [n/2] — 1. First, suppose that n > 4 is even
and so [n/2] = n/2. Let cp be the red-blue coloring of G such that E, -
is the set in (2). Let ¢; be the red-blue coloring of G obtained from co
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by changing the color of v;v; to blue and changing the colors of u pv;
and ug vz to red, that is, E., » = (Eeo,r — {v1v2}) U {uy,pv1, u2,pv2} and
so |E¢,r| = |Eg,r| + 1. In general, for each i with 2 < ¢ < n/2 -1,
the red-blue coloring ¢; is obtained from c;—; by changing the color of
v2i—1V2; to blue and changing the colors of ugi—1,pv2i—1 and ugipva; to
red; that is, Ec, » = (E¢,_,,r — {v2i-1v2:}) U {u2i—1,p¥2i—1, u2i,pv2:} and so
|Ee,r| = |Eci_, vl + 1. It can be verified that each coloring c; is a minimal
F)-coloring with exactly n/2 + i red edges for 1 <i <n/2—1.

Next, suppose that n > 3 is odd and so [n/2] = (n + 1)/2. Let ¢
be the red-blue coloring of G such that E. , is the set in (3). For each i
with 1 < ¢ < (n — 1)/2, the red-blue coloring ¢; is obtained from ¢;—; by
changing the color of v3;_1v2; to blue and changing the colors of ug;_1 pv2i—1
and ug; pV2; to red and so |E; »| = |E,_, | +1. It can be verified that each
coloring ¢; is a minimal F-coloring with exactly (n+ 1)/2 +1 red edges for
1<i<(n-1)/2.

Case 2. 2< k < p. Then x5, (G)=(k—1)n and x§, _(G) = kn. Let
co be the red-blue coloring of G such that E, ,. is the set in (4). For each i
with 1 < i < n, the red-blue coloring ¢; is obtained from c;—; by changing
the color of v;v;4; to blue and changing the colors of a blue edge in X; and
a blue edge of X4 to red. Thus |E, .| = |E.,_,-|+1forl1<i<n. It
can be verified that each coloring ¢; is a minimal Fy-coloring with exactly
(k—1)n+irededgesforl <i<n.

Case 3. k =p+1. Then x5, (G) = (k—1)n and x§, (G)=kn—
[n/2] = (k — 1)n + |n/2]. Let co be the red-blue coloring of G such
that E, - is the set in (4). For each i with 1 < i < |n/2], the red-blue
coloring c; is obtained from ¢;_; by changing the color of vo;_jv2; to blue
and changing the colors of ug;_1 pv2:—1 and ug; pvo; to red; that is, E, , =
(Eeioy,r — {vai-1vai}) U{u2i-1,pv2i-1, U2i,p¥2:} and so |E, | = |Ec,_, r|+1.
It can be verified that each coloring ¢; is a minimal F}-coloring with exactly
(k —1)n + i red edges for 1 <i < |n/2].

Next, we verify (b). Let a be an integer with o/(G) < a < a}(G) where
1 < k < m. We show that there is a maximal Aj-set of G having exactly
a edges. By Theorems 2.4 and 3.3. we may assume that a # o} (G) and
a # op(G). Since the result is true if £ = 1, we may assume k > 2. We
consider two cases, according to whether 2< k<pork=p+ 1.

Case 1. 2 < k < p. Then of/(G) = (k — 1)n and o} (G) = kn. Let X,
be the set E.. . in (4). Then Xj is a maximal Ag-set of G having (k — 1)n
edges. For each i with 1 < 7 < n, the set X; is obtained from X;_; by
removing the edge v;v;41 and adding the edges ui v and wiy1 x—1vit1-
Thus |X;| = | Xi—1|+ 1 for 1 < i < n. It can be verified that each set X; is
a maximal Ax-set of G having exactly (k — 1)n 4 i edges for 1 <i < n.
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Case 2. k =p+1. Then of(G) = (k — 1)n and a},(G) = kn — [n/2] =
(k= 1)n+ |n/2]. Let Xo be the set E.. , in (4). Then X, is a maximal
Ag-set of G having (k — 1)n edges. For each i with 1 < i < |n/2], the
set X; is obtained from X;_; by removing the edge v2;v2;4+1 and adding
two edges ug;pv; and ugiy1pv2i1; that is, X; = (Xic1 — {vaivais1}) U

{u2i,pvai, Uiy1,pv2i+1} and so |X;| = |X;—1| + 1. It can be verified that
each X; is a maximal Ag-set of G with exactly (k — 1)n + ¢ edges for
1<i<|n/2). n

For a connected graph G and a color frame F, if xp(G) = a and
X#(G) = b, then a < b by the definitions of the F-chromatic index and
upper F-chromatic index of G. It can be shown that there are infinitely
many pairs a, b of positive integers with a < b for which there exists a con-
nected graph G such that x%(G) = a and x%(G) = b where F is a color
frame of a star. Thus we conclude this paper with another question.

Problem 4.3 For integers k and m with1 <k <m and m > 3, let Sk,;m
be the color frame of the star Ky m. Determine all pairs a,b of positive
integers with a < b for which there exists a connected graph G such that
X5,.,.(G) =a and x§,  (G)= b.
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